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Abstract

Non-linear dimensionality reduction methods are powerful techniques to deal with
high-dimensional datasets. However, they often are susceptible to local minima
and perform poorly when initialized far from the global optimum, even when
the intrinsic dimensionality is known a priori. In this work a prior over the di-
mensionality of the latent space is introduced, which allows for simultaneously
optimizing both the latent space and its intrinsic dimensionality. Ad-hoc initial-
ization schemes are unnecessary with this approach; the latent space is initialized
to the observation space and the latent dimensionality is automatically inferred
using an optimization scheme that drops dimensions in a continuous fashion. The
prior is applied to various tasks involving probabilistic non-linear dimensionality
reduction, and it is shown that this method can outperform graph-based dimen-
sionality reduction techniques as well as previously suggested ad-hoc initialization
strategies. Results are reported for artificial datasets which cause problems to
nearest neighbor-based spectral methods and for a real-world example, where the
task consists of tracking a person performing activities in a kitchen scenario.
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Zusammenfassung

Eine Vielzahl unterschiedlicher Sensoren erlaubt heute die Registrierung von Daten
auf modernen Rechenmaschinen. Allerdings ist die Dimension D der Daten (zum
Beispiel D = 1310720 im Falle einer 1280 × 1024-Videokamera) oft zu hoch um
sie direkt weiter verarbeiten zu können. Daher sind Methoden für nichtlineare Di-
mensionsreduktion unerlässlich. Solche Methoden versuchen, durch eine geeignet
gewählte Abbildung (in einen Raum niederer Dimension), die Datenmenge zu re-
duzieren ohne dabei die für die Aufgabe relevante Beziehungen in den Daten zu
zerstören. Dabei wird angenommen dass die Daten auf oder nahe einer Man-
nigfaltigkeit niederer Dimension verteilt sind, welche in einen hochdimensionalen
Raum eingebettet ist. Je nach Methodik kann dabei auch a-priori Vorwissen über
den Prozess mit eingearbeitet werden, sofern dieses zur Verfügung steht.

Verschiedene Verfahren zur Reduktion der Dimension sind in den letzten Jahren
entwickelt worden. Ein besonderes Augenmerk fällt dabei auf die nicht-linearen
Verfahren, da diese oft eine kompaktere Repräsentation erzeugen können als lin-
eare Verfahren [Pea01]. Dies ist im Besonderen dann der Fall, wenn die Daten
Abhängigkeiten aufweisen, die sich nicht in Korrelationen äussern. Einige dieser
Verfahren bieten geschlossene Lösungen an [RS00, TSL00, TB99, WS06, BN03,
ZZ03], reagieren aber oft empfindlich auf die Wahl der Parameter oder die Daten-
verteilung.

Andere basieren auf der Optimierung nicht-konvexer Funktionen [Law05, LQC06]
und sind daher anfällig für lokale Minima im Optimierungsprozess.

Wieder andere setzen a-priori Wissen ein [WFH08, UD07, UFG+08], welches
allerdings, je nach Aufgabe, nicht immer zur Verfügung steht. Zudem wird eine
geeignete Wahl der Dimension bei den meisten Verfahren als bekannt angenom-
men. Diese muss zunächst, zum Beispiel durch aufwändige Vergleichsprüfung
(Cross-Validation) oder andere Verfahren [mFSA07, LB05] ermittelt werden.

In dieser Diplomarbeit wird eine neue Methode vorgestellt, welche auf dem Gaus-
sian Process Latent Variable Model (GPLVM) aufbaut. Durch einen Rank Prior
über die Anzahl der Dimensionen wird die Dimensionalität kontinuierlich (während
des Optimierungsprozesses) reduziert. So lassen sich lokale Minima des GPLVM
vermeiden und die Anzahl der Dimensionen wird automatisch ermittelt. Die resul-
tierende kompakte Repräsentation bietet zudem eine probabilistische Abbildung
vom niederdimensionalen (latenten) Raum in den hochdimensionalen (Daten-)
Raum. Dadurch lassen sich Aussagen über die Unsicherheit eines abgefragten
Datums treffen.
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Im Abschnitt Experiments wird das entwickelte Verfahren auf 3 Fälle angewandt:
Zunächst wird illustriert, wie sich mit der Methode eine Schweizer Rolle trotz
spärlicher Abtastung noch zuverlässig entfalten lässt. Danach wird die Methode
auf Beispiele angewandt, in denen es die geeignete Dimension zu bestimmen gilt.
Abschliessend werden Bewegungen eines artikularen menschlichen Körpers eingel-
ernt. Diese werden dann verwendet um eine Person, welche Aktivitäten in der
Küche (wie beispielsweise Auswellen, Mahlen, Schneiden) durchführt, erfolgreich
zu verfolgen und die Bewegungen korrekt zu klassifizieren.
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1 Introduction

Many real-world problems involve high dimensional datasets that are computa-
tionally challenging to handle. In such cases it is desirable to reduce the dimension-
ality of the data while preserving the original information in the data distribution,
allowing for more efficient learning and inference. Linear dimensionality reduc-
tion methods (e.g., PCA) are efficient but miss important structure in non-linear
data. Graph-based techniques, e.g., LLE [RS00] and ISOMAP [TSL00], capture
non-linear dependencies but require highly dense and homogeneously sampled
manifolds for accurate modeling.

Non-linear dimensionality reduction techniques can be applied to more complex
data, but generally suffer from local minima. Choosing the dimensionality of the
latent space is non-trivial, and existing methods typically rely on cross-validation.
Even when given the correct latent dimensionality, these techniques often do not
succeed in practice when initialized far from the global minimum [UFG+08]. Fac-
tors which contribute to this include the distortion introduced by the initialization
and the non-convexity of the optimization: when optimization is performed in a
low dimensional space the model may not have the requisite degrees of freedom
to avoid local minima.

In this work we develop a prior on the dimensionality of the set of latent coordi-
nates, encouraging low dimensional representations. Our Rank Prior enforces a
penalty on the non-sparsity of the singular values of the matrix of latent variables,
and automatically discovers the latent space and its dimensionality using a con-
tinuous optimization that drops dimensions on the fly. By initializing the latent
coordinates to the original space no distorsion is introduced; since we decrease the
dimensionality slowly (starting from a high-dimensional space) extra flexibility is
gained which allows the method to avoid local minima during optimization. To
our knowledge, ours is the first non-linear dimensionality reduction technique that
penalizes the latent space rank and simultaneously optimizes the structure of the
latent space as well as its intrinsic dimensionality.

We demonstrate the effectiveness of our approach when learning probabilistic la-
tent variable models with the Gaussian Process Latent Variable Model (GPLVM)
[Law05], a generalization of Probabilistic PCA to the non-linear case that models
the mapping from the latent space to the data space as a Gaussian process. The
GPLVM has proven successful in many applications, but initialization, knowledge
of the latent dimensionality, and/or additional prior knowledge were assumed (e.g.,
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CHAPTER 1. INTRODUCTION

[GMHP04, SUF08, UFG+08]). Incorporating our prior with the GPLVM objec-
tive results in an optimization problem that allows us to discover the latent space
and the intrinsic dimensionality of artificial and real datasets.

We chose articulated body tracking as an application of our technique. Since a
full human body model consists of many degrees of freedom (DOFs), reducing
the dimensionality is key to performing robust and reliable tracking. Since the
observation likelihood for high-dimensional models is highly non-convex, tracking
in the original space is a hard problem, especially when using a small number of
cameras or a simple observation likelihood. Furthermore the need for many eval-
uations of the likelihood function inhibits a reasonable tracking speed. Consider
for example a particle filter where the number of particles needed grows exponen-
tionally with the number of dimensions. Using a prior model created via motion
capturing data helps in two ways: While making the algorithm computationally
tractable it helps disambiguating ambiguous observations. We thus demonstrate
the effectiveness of our approach in tracking and classifying complex articulated
human body motions from video by using such a prior model which is explained
in more details in this thesis.
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2 Dimensionality Reduction

A fundamental challenge of artificial intelligence is to develop useful internal rep-
resentations of the external world, ideally by introducing as little prior knowledge
as possible. The human brain excels in tasks like memorizing objects or faces by
extracting features from a vast amount of input information perceived by sensors
like the eyes, for instance. Since visual information is usually high-dimensional in
raw form (consider the image of a 10 Megapixels consumer camera), reducing the
dimensionality is key for further using the data by processing it on a computer.
Only with a good representation and relevant features is higher-level decision mak-
ing possible (a high-level decision in an image could be a single binary feature,
such as the answer to the question if a given object is present in the image or
not).

While features for visual input can be designed in problem-specific fashion (e.g.
by building bag-of-word features or by looking for strong gradients, corners and
using methods like SIFT [Low99]) signal data may be on hand in many different
forms and an automatic feature retrieval method is eligible.

From a statistical view, dimensionality reduction (also called dimension reduction)
is the process of reducing the number of random variables under consideration.
This can be further divided into feature selection and feature extraction. While
feature selection tries to find a subset of the original variables which is most
representative, feature extraction relates the high dimensional data to a lower
dimensional space while trying to maintain the information contained in the input
data. The projection can be either linear or non-linear, both approaches are
presented within this thesis.

2.1 Notation

In order to avoid confusion the following notation has been retained throughout
the paper:

• N : Number of training points

• D: Dimensionality of the high dimensional input (=data) space Y

• Q: Dimensionality of the low dimensional latent space X

13



CHAPTER 2. DIMENSIONALITY REDUCTION

• yi: input (=data) point i, yi ∈ <D

• xi: latent point i, xi ∈ <Q

• Y = (y1, ...,yN)T : Collection of input (=data) points, Y ∈ <N×D

• X = (x1, ...,xN)T : Collection of latent points, X ∈ <N×Q

• Yij is the entry of matrix Y at row i and column j

• Xij is the entry of matrix X at row i and column j

• yij = Yji is the entry of the transposed matrix YT at row i and column j

• xij = Xji is the entry of the transposed matrix XT at row i and column j

• x ∼ N (µ,Σ): x follows a Gaussian distribution

• f(x) ∼ GP(m(x), k(x,x′)): f(x) follows a Gaussian Process distribution

• x: mean of x: x = 1
N

∑N
i=1 xi

• y: mean of y: y = 1
N

∑N
i=1 yi

2.2 Linear Dimensionality Reduction

Linear dimensionality reduction finds a linear projection from a low dimensional
subspace X to a higher dimensional space Y. For example Principal Component
Analysis (PCA) [Pea01, DHS00], sometimes also called the Karhunen-Loève trans-
form, seeks an optimal affine subspace X of Y which maximizes variance (along
the dimensions of X) and minimizes the reprojection error when projecting back
from X to Y. More formally let the projection from the latent space X to the
data space Y be

ŷi = y +

Q∑
j=1

xijej (2.1)

where {ej, ...eQ} spans a Q-dimensional orthonormal basis in the data space Y.
Then the least squares reprojection error is defined as

E =
N∑
i=1

‖ŷi − yi‖2 =
N∑
i=1

‖y +

Q∑
j=1

xijej − yi‖2.

Considering that {ej, ...eQ} forms a orthonormal basis, we can expand E to

E =
N∑
i=1

[
Q∑
j=1

[
x2
ij + 2xije

T
j (y− yi)

]
+ ‖y− yi‖2

]
. (2.2)
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CHAPTER 2. DIMENSIONALITY REDUCTION

Minimizing E with respect to xij can be done in closed form and leads to

∂E
∂xij

= 2xij + 2eTj (y− yi)
!

= 0

⇒ xij = −eTj (y− yi).

Applying this result to equation 2.2 we have

E =
N∑
i=1

[
−

Q∑
j=1

x2
ij + ‖y− yi‖2

]
(2.3)

= −
Q∑
j=1

eTj Sej +
N∑
i=1

‖y− yi‖2 (2.4)

where S is the scatter matrix of Y, defined as

S =
N∑
i=1

(y− yi)(y− yi)
T .

The constraint ‖ei‖ = 1 is enforced by introducing Lagrange Multipliers λ into
the target equation:

E ′ = −
Q∑
j=1

eTj Sej +
N∑
i=1

‖y− yi‖2 +

Q∑
j=1

λj(e
T
j ej − 1) (2.5)

Minimizing E ′ with respect to ej is straightforward

∂E ′

∂ej
= −2Sej + 2λej

!
= 0

leading to the eigenvalue problem

Sej = λjej.

Since

eTj Sej = λje
T
j ej

15



CHAPTER 2. DIMENSIONALITY REDUCTION

E ′ is minimized by selecting ej as the top Q eigenvectors of S. Once the basis
{ej, ...eQ} has been calculated, projections in both directions (from X to Y and
vice versa) are readily given (since we assumed linearity in equation 2.1) as

xi = ET (yi − y) and yi = Exi + y

where E is a D ×Q matrix comprising the basis vectors ej as columns.

2.3 Non-linear Dimensionality Reduction

Linear Dimensionality Reduction (LDR) is often used due to its simplicity and
closed form solution. When data dependencies are mostly expressed in terms of
correlations this leads to reasonable results. Considering real world data (and also
very simple artificial examples), linearity cannot be assumed in general. Consider
for example a one dimensional manifold1 coiled up to a spiral when embedded
in two dimensions (see figure 3.2). Applying PCA in this case leads to a bad
solution since points which are far away in the two dimensional input space Y are
projected to nearby points on the one dimensional subspace X (in the figure, this
means that red points (circles) and yellow points (crosses) are not separated after
applying 1D PCA).

To handle non-linear dependencies one has to resort to Non-Linear Dimensionality
Reduction (NLDR) techniques which are discussed in this section of the thesis.

2.3.1 Graph Based Methods

Graph based methods allow for non-linear dimensionality reduction by taking into
consideration a k-nearest-neighbor graph. They often offer closed-form solutions
and have proven successful in real-world applications like classification of digits,
for example. A short overview of such techniques is given next.

ISOMAP [TSL00] finds a projection that preserves the global, nonlinear geom-
etry of the data by preserving the geodesic manifold distances between points. It
first approximates the geodesic distances (by means of a nearest neighbor graph)
and then runs multidimensional scaling to find a projection that preserves these
distances.

1A manifold is an abstract mathematical space in which every point has a neighborhood which
resembles Euclidian space, but in which the global structure may be more complicated.
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CHAPTER 2. DIMENSIONALITY REDUCTION

Laplacian Eigenmaps [BN03] calculates the embedding map by constructing a
weighted graph (based on nearest neighbors or ε-balls) and calculating the eigen-
vectors of the graph Laplacian, which is an approximation to the Laplace Beltrami
operator

Lf = −divO(f)

The weights are chosen either by the heat kernel

wij = exp

(
−
‖yi − yj‖2

t

)
or by setting wij = 1 if an edge exists and wij = 0 otherwise.

Locally Linear Embeddings (LLE) [RS00] assume that the data points Y can
be locally reconstructed in the latent space X. First, weights are calculated by
minimizing the cost function

E =
N∑
i=1

‖yi −
∑
j∈ηi

wijyj‖2

where ηi denotes the set of indices of nodes in the neighborhood of yi. The

invariance constraint
∑|ηi|

j=1wij ensures that the weights sum up to one. Finally
the latent embedding is found by minimizing

E ′ =
N∑
i=1

‖xi −
∑
j∈ηi

wijxj‖2

with respect to x while keeping the weights fixed. It turns out that - by removing
the translational and rotational degree of freedom - this leads to a well posed
problem and can be solved by a standard eigenproblem solver.

Local Tangent Space Alignment (LTSA) [ZZ03] represents the local geome-
try of the manifold by fitting an affine subspace in a neighborhood of each data
point. The tangent spaces are then aligned to give the internal global coordinates
of the data points with respect to the underlying manifold by way of a partial
eigendecomposition of the neighborhood connection matrix. To do so, a smooth
function

yi = f(xi) + ε

which generates the data points yi from latent points xi is assumed. Thus a first
order Taylor expansion

f(x) = f(x) + Jf (x)(x− x) +O(‖x− x‖2)

is used to reconstruct the data points locally by means of the tangent space
spanned by the columns of the Jacobi matrix Jf (x). Here x is taken as each
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CHAPTER 2. DIMENSIONALITY REDUCTION

local neighborhood’s mean, respectively. [ZZ03] shows that finding the best Q-
dimensional affine subspace approximation leads to a singular value problem.
Global coordinates are then extracted by minimizing the overall reconstruction
error, leading to an eigenvalue problem.

Maximum Variance Unfolding (MVU) [WS06] assumes that nearby inputs
match the distances between nearby outputs. It places rigid connections between
neighboring nodes by enforcing hard constraints. The optimizing problem is for-
mulated as a quadratic program:

Maximize ∑
ij

‖xi − xj‖2

subject to

(1) ‖xi − xj‖2 = ‖yi − yj‖2 for all (i, j) with wij = 1 (2.6)

(2)
∑N

i=1 xi = 0 (2.7)

where wij = 1 if an edge in the neighborhood graph exists and wij = 0 otherwise.
The problem is made tractable by reformulating the optimization as a semidefinite
program (SDP) resulting in a linear program.

All spectral NLDR methods described above rely on a local neighborhood struc-
ture where the neighborhood size k is a parameter and the dimensionality Q is
assumed to be known. Predicting a new data point yi often requires to re-run
the algorithm again. Furthermore they do not in general provide a measure of
uncertainty about a given point, i.e. they are non-probabilistic.

In the following section probabilistic Latent Variable Models are discussed with a
focus on the Gaussian Process Latent Variable Model, to which the prior proposed
in this thesis will be applied in section 3.3.

2.3.2 Latent Variable Models

Latent Variable Models (LVMs), e.g., MDS or Probabilistic PCA [TB99] (a prob-
abilistic extension of PCA and a special case of the Gaussian Process Latent Vari-
able Model), assume that the data Y has been generated by some latent (which
means unobserved) variables X that lie on or close to a low-dimensional manifold.
Probabilistic LVMs relate the latent variables to a set of observed variables via a
probabilistic mapping. Since we focus on the GPLVM, the next section introduces
Gaussian Processes first.
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CHAPTER 2. DIMENSIONALITY REDUCTION

(a) Prior p(f) (b) Posterior p(f |X,Y)

Figure 2.1: Sampling from a Gaussian Process. (a) shows 3 functions drawn
at random from a GP prior. (b) depicts 3 functions drawn at random
from the posterior, i.e. the prior conditioned on the five noise free
observations indicated. The gray areas show the uncertainty for each
point x respectively. This figure was taken from [RW06].

Gaussian Processes

Gaussian Processes (GPs) [RW06] underwent a revival in the Machine Learning
community over the past ten years. Since the implementation is simple they
became useful tools for probabilistic regression and classification. Here GPs are
introduced in the context of regression and we give a short illustrative example.

A Gaussian Process is a stochastic process and can be seen as an infinite dimen-
sional Gaussian distribution.

Definition 1 A Gaussian Process is a collection of random variables, any finite
number of which have a joint Gaussian distribution. It is completely specified by its
mean function m(x) and its covariance function k(x,x’) and we write a Gaussian
Process as

f(x) ∼ GP(m(x), k(x,x’))

where

m(x) = E(f(x)) (2.8)

k(x,x’) = E [(f(x)−m(x))(f(x’)−m(x’))] (2.9)

The specification of the covariance function implies a distribution over functions.
To see this, one can draw samples from this distribution, as done in figure 2.1.
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Note that the definition of GPs automatically implies a consistency requirement,
also known as the marginalization property, since the covariance function k(x,x’)
specifies entries of the covariance matrix K. The covariance function is also called
a kernel function. This property means that if the GP (e.g.) specifies (y1, y2) ∼
N (µ,Σ), then it must also specify y1 ∼ N (µ1,Σ11) and y2 ∼ N (µ2,Σ22).

As for section 2.3.1, let Y = [y1, · · · ,yN ]T be the set of observations yi ∈ <D,
and let X = [x1, · · · ,xN ]T be the set of latent variables xi ∈ <Q, with Q � D.
We further assume a mapping from X to Y as following:

y = f(x) + η (2.10)

where y differs from the function values f(x) by additive noise, which is assumed
to be independent, identically and Gaussian distributed:

η ∼ N (0, σ2
n)

By putting a GP prior over the function space, marginalization of f leads to the
marginal likelihood

p(y|X) =

∫
p(y|f,X)p(f|X)df (2.11)

where p(f|X) ∼ N (0, K) and f is a vector containing the function values of X.
Since the likelihood p(y|f,X) and the prior p(f|X) are Gaussian, the marginal
likelihood is again Gaussian distributed. More insight can be gained by comparing
the weight space view to the function space view. Consider the decomposition of
f into non-linear basis functions ϕi

f(x) =
∞∑
i=1

θiϕi(x)

where θi are normally distributed weights θi ∼ N (0, σ2
θ). Marginalizing the weights

in the weight space view corresponds to marginalizing the functions in the func-
tion space view and is straightforward, due to the conjugate property of the prior:
Since f(x) is a linear combination of Gaussian distributed weights θi, the resulting
distribution over f is again Gaussian. Considering an instance of the GP for a fi-
nite number of training points N , the mean and the covariance are straightforward
to calculate:
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µk = E

(
∞∑
i=1

θiϕi(xk)

)
=
∞∑
i=1

E (θi)ϕi(xk) = 0 (2.12)

Σkl = E

((
∞∑
i=1

θiϕi(xk)

)(
∞∑
i=1

θiϕi(xl)

))
(2.13)

= E

(
∞∑
i=1

θiϕi(xk)θiϕi(xl)

)
(2.14)

=
∞∑
i=1

E (θiϕi(xk)θiϕi(xl)) (2.15)

= σ2
θ

∞∑
i=1

ϕi(xk)ϕi(xl) (2.16)

= σ2
θk(xk,xl) (2.17)

Since we are operating in an inner product space, we make use of the kernel
trick (in the last equality): A non-degenerate kernel like the radial basis function
(RBF)

k(xi,xj) = θ1 exp

(
−
‖xi − xj‖22

2θ2
2

)

allows for implicitly making use of an infinite dimensional space (i = 1, ...,∞)
without evaluating it explicitly (which would be intractable). Here the hyperpa-
rameters Θ = {θ1, θ2} stand for the RBF lengthscale (or kernel height) θ1 and the
kernel width θ2.

Putting it all together we arrive at a simple expression for equation 2.10. If we
restrict the number of training points to be finite, f(x) is Gaussian distributed.
Thus we have a conjugate prior p(f|X) and y is normally distributed, too. This
results in

p(y|X) ∼ N (0|K)

with K the covariance matrix defined by a RBF + noise kernel:

Kij = k(xi,xj) = θ1 exp

(
−
‖xi − xj‖22

2θ2
2

)
+ θ3δij. (2.18)
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Here Θ = {θ1, θ2, θ3} are the hyperparameters, where θ1 is the RBF lengthscale,
θ2 the kernel width, and θ3 the noise. The latter not only models the observation
noise, but also contributes to a numerically stable inversion of the covariance K.

The GP key predictive equations provide the mean µ(f∗) and the covariance σ2(f∗)
for a given test point x∗ given the training points {X,Y}. They are readily derived
from the Gaussian conditional distribution as

p(f∗|x∗,X,y) ∼ N (µ(f∗), σ
2(f∗))

where

µ(f∗) = K∗,f
[
Kf,f + σ2

nI
]−1

y (2.19)

σ2(f∗) = K∗,∗ −K∗,f
[
Kf,f + σ2

nI
]−1

Kf,∗ (2.20)

Here Kf,f denotes the covariance matrix of the training points, K∗,f is the Kernel
Density Estimate (KDE) with respect to the test point f∗ and K∗,∗ is the variance
of the test point. Note that Gaussian Processes always represent a projection
from <Q to <1, whereas this limitation is overcome by the GPLVM, introduced
in section 2.3.2.

To illustrate GP regression we might first consider a collection of only 2 random
variables which gives rise to a 2 dimensional Gaussian distribution as an instance
of the full GP. To illustrate the shape of a Gaussian, figure 2.2 shows face plots
of 2 dimensional Gaussian distributions generated from

N (0,

(
1 Υ
Υ 1

)
)

with different off-diagonal elements Υ. Υ = K12 = K21 = 0.9 is assumed for figure
2.3. Given the training point y1, the mean and variance for y2 can be calculated
easily using equation 2.19 and 2.20.

A slightly more complex example is shown in figure 2.4. 3 input points are given
along with the covariance matrix where Kij = k(xi,xj) measures the distance
along the abscissa between two points. This figure shows clearly that the uncer-
tainty increases with the distance of the test points from the training points.

Free GP toolkits for visualization of GPs, regression and classification (MATLAB
and C) are available online2.

2http://www.gaussianprocess.org/, http://www.rainsoft.de/projects/gausspro.html
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Figure 2.2: Face plots of 2D Gaussians. Here face plots of 2 dimensional
Gaussians are shown for different parameters of the covariance matrix.
While (a) is uncorrelated (Υ = 0), (b) is correlated with Υ = 0.5. (c)
exhibits almost perfect linear coherence (Υ = 0.99) whereas (d) is
negatively correlated (Υ = −0.8).

Figure 2.3: 2D illustration of Gaussian Process regression. Here y1 is given
and the correlation between y1 and y2 is assumed to be known by
means of a kernel function k(xi,xj). Since y1 and y2 are correlated,
the mean of the conditional distribution p(y2|y1) is similar to the mean
y1 itself while the small variance indicates only little uncertainty.
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Figure 2.4: 5D illustration of Gaussian Process regression. Here 3 training
points are given compared to only one in figure 2.3. Since we have
2 test points, the regression results in a 5 dimensional Gaussian dis-
tribution. Note that uncertainty increases with the distance of a test
point from the training data.

Gaussian Process Latent Variable Model

While the training points for GP regression include Y as well as X, the GPLVM
assumes that the latent variables X are unknown and optimizes the model likeli-
hood with respect to X and the hyperparameters Θ in an unsupervised fashion in
order to learn the latent space. Furthermore it allows for a D-dimensional data
space Y by multiplying D single Gaussian Processes, one for each data dimension,
resulting in the final GPLVM likelihood. As it turns out, starting from a good
initial guess is key to avoid local minima, since the target function is non-convex.

More formally, let

y(d) = f (d)(x) + η

with y(d) the d-th coordinate of y, and η ∼ N (0, θ3) iid Gaussian noise. The Gaus-
sian Process Latent Variable Model (GPLVM) [Law05] places a Gaussian process
prior (see section 2.3.2) over the space of mapping functions f . Marginalizing over
the functions f and assuming conditional independence of the output dimensions
given the latent variables results in the GPLVM likelihood
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p(Y|X) =
D∏
d=1

p(y(d)|X) =
D∏
d=1

N (y(d)|0,K) (2.21)

where y(d) is the d-th column in Y, and K is the covariance matrix, defined
in terms of a kernel function. Here we use the RBF + noise kernel, defined in
equation 2.18, since it allows for a variety of smooth, non-linear mappings using
only a limited number of hyperparameters (|Θ| = 3).

The log-likelihood of equation 2.21 is given as

ln p(Y|X) = −DN
2

ln 2π − D

2
ln |K| − 1

2
trace(K−1YYT ). (2.22)

While the first term is a constant, the second term can be interpreted as a reg-
ularizer, which prevents K from getting too big (for example by means of high
noise or a large kernel height) and the third term is the data-fitting term, which
tries to maintain the relationship between points in the input space.

Learning the GPLVM is performed by maximizing the posterior

p(X|Y) ∝ p(Y|X)p(X)

with respect to the latent variables X and the kernel hyperparameters Θ. Here
p(X) encodes prior knowledge about the latent space X. In [Law05] the redun-
dancy between the overall scale of the matrix X and the kernel width is removed
by chosing a product of isotropic Gaussian priors p(X) =

∏N
i=1N (xi|0, I) which

leads to a Wishart distributed scatter matrix XTX. In practice however, this
can lead to degenerate solutions (like X = 0). To prevent from this behaviour,
we applied constrained optimization instead and used another prior, which penal-
izes the dimension, as described in section 3.3. While [Law05] uses SCG (Scaled
Conjugate Gradients) [Mol93] we made use of SNOPT (Software for Large-Scale
Non-Linear Programming), a constrained non-linear optimizer [GMS02] based on
sequential quadratic programming.

PCA and graph-based techniques are commonly used to initialize the latent space
in GPLVM-based dimensionality reduction; both offer closed-form solutions. How-
ever, PCA [Pea01] cannot capture non-linear dependencies, LLE [RS00] gives a
good initialization only if the data points are uniformly sampled in the manifold,
and ISOMAP [TSL00] has difficulties with non-convex datasets [Har07]. Gener-
ally, when initialized far from the true minimum, the GPLVM optimization can
get stuck in local minima [Law05, UFG+08].

To avoid this problem, different priors over the latent space have been developed
(see chapter 3).
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A further issue evolves from the fact that GPLVMs rely on the calculation of the
inverse of the covariance matrix, which prohibits the use of a large number of
training points and will be addressed in the next section.

2.3.3 Sparsification

One of the main limitations of using Gaussian Processes in practical applications is
the computational complexity of learning a model - like for many kernel methods in
general. Since learning involves the inversion of a N × N -matrix, computational
cost3 is approximately O(N3). This restricts applicability to cases with N <
5000.

While several methods for Gaussian Process sparsification have been developed
[SNS06, YDD05, UD08, SW02, QCR05], it is a bit more subtle to overcome the
time limitiations for GPLVMs. This is due to the fact that in each iteration the
inverse of the covariance matrix K−1 is needed for calculating the gradient of
equation 2.22 with respect to X. One way of increasing the speed is to simply
remove points from the training set by subsampling or applying information cri-
terions like the one proposed in the Informative Vector Machine (IVM) [LSH02].
If further speed-up is needed without rejecting training points from the dataset,
one has to resort to more sophisticated techniques, like the ones described in the
following.

Sparse Gaussian Process Approximations

A unifying view, which includes many existing probabilistic sparse approximations
for Gaussian Process regression has been developed in [QCR05]. The approach re-
lies on expressing several methods in terms of the so-called effective prior. Rather
than the interpretation ”approximate inference with exact prior” the methods are
reinterpreted as ”exact inference with an approximated prior”.

Let us first consider inference for GP regression. Since

p(f, f∗|y) =
p(f, f∗)p(y|f∗, f)

p(y)
and p(y|f∗, f) = p(y|f)

inference can be done by marginalizing out the unwanted training variables

p(f∗|y) =

∫
p(f, f∗|y)df =

1

p(y)

∫
p(y|f)p(f, f∗)df (2.23)

3The Strassen algorithm can solve the matrix inversion problem in O(N2.807). The fastest
known algorithm - derived by Coppersmith and Winograd - lies in O(N2.376), but has huge
constants hidden in the O notation and is therefore not used in practice.
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where p(y|f) = N (f, σ2
ηI) is the likelihood, p(f, f∗) is the conjugate joint prior and

1
p(y)

is a normalization constant. The predictive distribution p(f∗|y) is Gaussian
with the first and second central moment given by equation 2.19 and equation
2.20.

In order to reduce computational requirements from 2.23, several approximations
to the joint prior p(f∗, f) are reviewed in [QCR05]. The prior has been rewritten
by introducing another set of M latent variables u = [u1, ..., uM ]T which are called
inducing variables. They are values of the Gaussian process, corresponding to a
set of input locations Xu, which are called inducing inputs. Since GPs exhibit
the marginalization property, the joint GP prior p(f∗, f) can be rewritten as the
marginal

p(f∗, f) =

∫
p(f∗, f,u)du =

∫
p(f∗, f|u)p(u)du

where p(u) = N (0,Ku,u). The approximation is then done by assuming that f∗
and f are conditionally independent given u, such that

p(f∗, f) '
∫
p(f∗|u)p(f|u)p(u)du.

The different computationally efficient algorithms proposed in the literature cor-
respond to different additional assumptions about the two approximate inducing
conditionals p(f∗|u) and p(f|u). Applying sparse Gaussian Process approximation
reduces the computational complexity from O(N3) to O(NM2) where N is the
number of training points and M is the number of inducing variables. Further de-
tails as well as the individual approximation schemes are discussed in [QCR05].

In [Law07] the method reviewed in [QCR05] was transferred to the Gaussian Pro-
cess Latent Variable Model and the optimization was performed with respect to
X, Xu and Θ. While being an elegant way to reduce computational complexity,
introducing additional variables (Xu) into the model also makes the optimization
prone to overfitting and introduces local minima. In practice, the inducing vari-
ables also tend to be placed at non-intuitive locations after optimization which
has to be further investigated.

Nyström Method

The Nyström Method [WS01] computes an approximation to the eigendecompo-
sition of the Gram matrix K. It is done by carrying out an eigendecomposition
on a smaller system of size M < N and then expanding the result back to N
dimensions. The computational complexity therefore reduces to O(NM2).
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Considering the kernel function

k(x,y) =
R∑
i=1

λiφi(x)φi(y)

where R ≤ ∞ and λi are the eigenvalues to the eigenfunctions φi, such that

∫
k(x,y)φi(x)p(x)dx = λiφi(y)

where p(x) denotes the probability density of the input vector x. The integral over
p(x) is replaced by an empirical average (which is called the Nyström Method) to
obtain

1

q

q∑
k=1

k(y,xk)φi(xk) ≈ λiφi(y).

This motivates the matrix eigenproblem

KU = UΛ.

Computational costs of computing K can now be cut down by using the eigen-
decomposition K = UΛUT where U is orthonormal and Λ a diagonal matrix
with the eigenvalues of K. Williams et al approximate K + σI by UΛUT + σI.
Furthermore they show that the eigenvalues and eigenvectors which are needed
can be approximated by

λ
(N)
i ≈ N

M
λ

(M)
i (2.24)

u
(N)
i ≈

√
M

N

1

λ
(M)
i

KN,Mu
(M)
i (2.25)

where
{

(λ
(N)
i ,u

(N)
i )

}N
i=1

are eigenvalues and eigenvectors of the full kernel matrix

K and
{

(λ
(M)
i ,u

(M)
i )

}M
i=1

are eigenvalues and eigenvectors of a M ×M submatrix

of K.

If the eigenvalues of K decay rapidly, good approximations can be obtained by
using M � N . However there is no clear answer to the choice of the subset
of points which give rise to the M × M submatrix of the N × N matrix K.

28



CHAPTER 2. DIMENSIONALITY REDUCTION

Furthermore, using our datasets, it turned out that the eigenvalues of K didn’t
decay as quickly as needed for using the Nyström method, mainly because of a
large kernel width.

Therefore we employed the simple method described next to speed up learning of
larger motion datasets.

Product of local and global Gaussian Processes

The method proposed here is simple to implement and based on the assumption
that topological knowledge about the latent points is given. More precisely, it is
sufficient to know local neighborhoods. Thus this method can be applied when
dealing with motion capture data, for example.

Instead of mapping the full dataset from the latent space X to the data space
Y, different subsets of X are mapped to different subsets of Y. This results in a
product of products of Gaussian Processes, or a product of GPLVMs (see equation
2.21). The likelihood of the sparse GP can be written as

p(Y|X) ≈
∏

s∈L∪G

D∏
d=1

N (y(d)
s |0,Ks) (2.26)

where L is a set of indices capturing overlapping local neighborhoods along the
motion trajectory and G is a set of indices which puts points into global relation
to each other. The idea is illustrated in figure 2.5. The resulting computational
complexity is O(M3) with M = maxs∈L∪G |s|. Note that this is not a proper
sparsification technique in a probabilistic sense, but rather serves as a reasonable
ad-hoc approximation to the gradients needed for the GPLVM.
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Figure 2.5: Sparsification: Global and local GPs. This figure illustrates the
sparsification method used for motion datasets with a large number
of training points. The colored points are training points, lying on a
motion trajectory (black) in the data space. Instead of inverting the
full Gaussian Process covariance matrix (which takes O(N3), with N
the number of training points), we make use of prior knowledge about
the nature of motion data, i.e. we assume smoothness over time (or
frames). Thus only a set of smaller local GPs (which overlap with
neighboring sets, shown in gray) is calculated, reducing the computa-
tion time dramatically. To also keep track of global relationships, each
point in a local GP set is linked to one point in each other local GP set
via a global GP (which thus again consists of a very limited number
of training points, contributing to a speed-up in learning the model).
In this example 3 global GPs are depicted (red, green and blue).
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3 Priors for Latent Variable Model

To overcome the problem of local minima and to learn smooth latent spaces for
human motion, different priors over the latent space have been developed. In
[WFH08] a prior was introduced in the form of a Gaussian process over the dy-
namics in the latent space (see section 3.1). This results in smoother manifolds
but performs poorly when learning stylistic variations of a motion or multiple mo-
tions. Urtasun et al. [UFG+08] proposed a prior over the latent space, inspired by
the LLE cost function, that encourages smoothness and allows the introduction
of prior knowledge, e.g., topological information about the manifold (see section
3.2). However, such prior knowledge is not commonly available, reducing consid-
erably the applicability of their technique. In contrast, the method developed in
section 3.3 below introduces a generic prior that requires no specific prior knowl-
edge, directly penalizing the dimensionality of the latent space to learn effective
low-dimensional representations.

3.1 Dynamical Priors

Dynamical Priors, as introduced in the Gaussian Process Dynamical Model (GPDM)
[WFH08], assume knowledge about the dynamics in the latent space, i.e. that data
points have been recorded consecutively with a constant frame rate. They thus
employ a model where an additional mapping within the latent space captures a
first-order Markov dynamics

x(t+1) = g(x(t)) + η(t)
x (3.1)

y(t) = f(x(t)) + η(t)
y (3.2)

where t represents a discrete time index. The prior p(X) is then given as

p(X) = p(x(1))

∫ N∏
t=2

p(x(t)|x(t−1),g)p(g)dg.

In [WFH08] a GP prior and a linear + RBF kernel was used for modeling the
dynamics mapping. They show that incorporating the dynamics prior into the
GPLVM likelihood results in smoother latent trajectories which can be used for
better motion generation or articulated body tracking. However, when the training
data contains large stylistic variations and multiple motions, the generic GPDM
and the back-constrained GPDM [UFG+08] do not produce useful models.
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3.2 Topological Priors

In [UFG+08] we introduced Topologically-Constrained Latent Variable Models which
incorporate a prior based on knowledge about walk cycle phases to align motions
and separate style (e.g. weak vs. exaggerated arm movement) from content (the
walking cycle itself). Furthermore when switching between styles (e.g. walking
vs. running) a transition is restricted to be possible only when at least one foot
touches the ground. The application is graphics animation, where an animator
specifies foot constraints, for example, and a motion is generated from a specific
model with respect to the specified constraints.

In order to do so we inspired ourselves by the Locally Linear Embedding (LLE)
NLDR method (see section 2.3.1). Our proposed prior is given by

p(X|W) ∝ exp

(
− 1

σ2

N∑
i=1

D∑
j=1

‖Xij −
∑
k∈ηi

w
(j)
ik Xij‖2

)

where W is the weight matrix, σ2 represents a global scaling of the prior and ηi
is the local neighborhood of data point i. In LLE the weights are computed by
solving ∀j∀k ∈ ηi ∑

l

Clkw
(j)
ik = 1

where Csim
lk = (yi − yl)

T (yi − yk) if l, k ∈ ηi, and 0 otherwise.

To incorporate transitions, the covariance matrix C can be modified as

Ctrans
ij = 1−

[
δij exp

(
−ζ(ti − tj)2

)]
with ζ a constant, and δij = 1 if ti and tj are in the same set

{
t̂k
}M
k=1

and otherwise

δij = 0. Here
{
t̂k
}M
k=1

is defined as a subset of frames where transitions are
possible. This covariance encourages the points at which transitions are physically
possible to be close together in the latent space.

Cyclic topologies can be enforced by introducing covariances based on the phase,
specifying different covariances for each latent dimension:

Ccos
jk = (cos(φi)− cos(φj))(cos(φi)− cos(φk)) (3.3)

Csin
jk = (sin(φi)− sin(φj))(sin(φi)− sin(φk)) (3.4)

We also show, that it is possible to use the back-constrained GPLVM [LQC06]
to incorporate prior knowledge by modifying the kernel function. Experiments
show, that the learned models are smooth and exhibit desirable properties for
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character animation, for example. However, the prior knowledge needed is not al-
ways available. While the cyclic assumption is reasonable for walking or running
motions, motions in general do not exhibit this structure, thus violating the as-
sumption (consider for example arbitrary motions performed in a kitchen scenario
as discussed in section 4.3 of this thesis, see figure 4.14). The Rank Prior intro-
duced in the next section seeks for a viable embedding without making additional
assumptions about the dynamics or the topology of the dataset.

3.3 Rank Priors

Here we introduce a novel method for probabilistic non-linear manifold learning
which avoids the initial distortion induced by ad-hoc initialization. The idea is
illustrated in the figures 3.1 and 3.2. While figure 3.1 describes the general idea
motivated by a spring-force system, figure 3.2 shows the actual algorithm when
applied to a spiral manifold embedded in two dimensions.

In our method we initialize the latent space to the high-dimensional observation
space and define a Rank Prior which favors latent spaces with low dimensionality.
Minimizing the dimensionality of the latent space is equivalent to minimizing R,
the rank of the unbiased covariance estimate (along the dimensions) of X̃

R = rank

(
1

N − 1
X̃
T
X̃

)
(3.5)

where X̃ denotes the mean subtracted latent variables X̃ = X − X and Xij =
1
N

∑N
n=1 Xnj.

3.3.1 Rank Prior Formulation

The cost function in Eq. (3.5) is discrete and thus difficult to minimize. However,
it can be expressed in terms of singular values and singular vectors of the covari-
ance matrix along the dimensions. Let the singular value decomposition (SVD) of
X̃ be UΣVT , where U and V are matrices containing the left and right singular
vectors, and Σ comprises the singular values {σ1(X̃), ..., σD(X̃)} on its diagonal.

Then X̃
T
X̃ = VΣ2VT , andR can be minimized by minimizing the number of non-

zero singular values of X̃. This connection can also be drawn by comparing the

null spaces of X̃ and X̃
T
X̃, leading to the insight that rank

(
X̃
)

= rank
(
X̃
T
X̃
)

.

Reducing the dimensionality of X̃ is equivalent to reducing the rank of X̃ or the
number of non-zero singular values.
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Figure 3.1: Illustration using a spring-force system. From a simplified view-
point the method can be seen as a system of observation points (red)
in the high-dimensional data space, connected by springs (green and
blue) of strengths defined according to the distance of the two points
they are connnecting, respectively. Thus the spring strength can be
defined by a radial basis function, for example. Here, e.g., the blue
spring is weaker than the two green springs since the data points it
connects are further apart from each other. Before applying the al-
gorithm, the springs are in their home position, imposing no force.
The spring system stands for the GPLVM, which preserves dissimilar-
ities. On the other hand, the pressure plates surrounding the system
apply forces towards the covariance directions. They represent the
Rank Prior which favors low-dimensional spaces. Here the pressure
along the smaller variance is strongest since we want to get rid of
the ”smaller” dimensions first. This is achieved by using a non-linear
penalty function, as described in section 3.3.3.
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Figure 3.2: Illustration of our Rank Prior with a GPLVM. The goal is to
recover the 1D manifold embedded in 2D. The GPLVM gets stuck in
local minima very early (upper row) since PCA initialization does not
capture non-linear dependencies, whereas our method decreases di-
mensionality gradually and recovers the correct manifold (lower row).

We transform the discrete optimization criteria in Eq. (3.5) into a continuous one
by introducing a sparsity penalty on the singular values. In particular we introduce
a prior of the form

p(X) =
1

Z
exp

(
−

D∑
m=1

ϕ(σ̂m(X̃))

)
(3.6)

where σ̂m(X̃) = 1√
N−1

σm(X̃) is the normalized singular value of X̃, ϕ is a spar-

sity penalty function, and Z =
∫

exp
(
−
∑D

m=1 ϕ(σ̂m(X̃))
)
dX̃ a normalization

constant1.

One might consider a variety of sparsity penalty functions. The identity function
ϕ(σ̂) = σ̂ results in the L1-norm since the singular values are always positive.
Of particular interest to us are functions that drive small singular values faster
towards 0 than larger ones. Examples of such functions are the logarithmic ϕ(σ̂) =
α ln(1 +βσ̂2) and the sigmoid ϕ(σ̂) = α(1 + exp(−β(σ̂− γ)))−1 functions, with α,
β and γ constant parameters.

Minimizing the negative log posterior − ln p(Y|X) − ln p(X) results in an opti-
mization that reduces the dimensionality in a continuous fashion:

min
X

[
D

2
ln |K(X,Θ)|+ D

2
tr(K(X,Θ)−1YYT ) +

D∑
m=1

ϕ(σ̂m(X̃))

]
s.t. ∆E = 0

(3.7)

1Please note that the fact that this is an improper prior has no impact in the optimization
since it acts as a constant when minimizing the negative log posterior.
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where
∆E = |E(X̃)− E(Ỹ)|

is the difference between the energies of the spectrum of the mean subtracted
latent coordinates X̃ and the mean subtracted observations, Ỹ = Y − Ȳ, with
Ȳ the mean of the observations. This constraint keeps the overall energy of the
system constant during optimization and thus removes the redundancy between
the overall scale and the kernel width. The energy of the spectrum at the current
iteration is defined as

E(X̃) =
D∑

m=1

σ̂2
m(X̃)

while the energy of the initial spectrum equals the energy of the data points’
spectrum:

E(Ỹ) =
D∑

m=1

σ̂2
m(Ỹ).

Equation 3.7 is straightforward to optimize, the required derivatives are given
below.

3.3.2 Derivatives

The derivative of the GPLVM log likelihood (equation 2.22) with respect to the
kernel matrix K is given by

∂ ln p(Y|X)

∂K
=

1

2
K−1YYTK−1 − D

2
K−1

and can be composed with

∂k(xi,xj)

∂xi
= −θ1

θ2
2

(xi − xj) exp

(
−‖xi − xj‖2

2θ2
2

)
(3.8)

∂k(xi,xj)

∂θ1

= exp

(
−‖xi − xj‖2

2θ2
2

)
(3.9)

∂k(xi,xj)

∂θ2

=
θ1‖xi − xj‖2

θ3
2

exp

(
−‖xi − xj‖2

2θ2
2

)
(3.10)

∂k(xi,xj)

∂θ3

= δij (3.11)

via the chain rule
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∂f(K)

∂Xij

= trace

[(
∂f(K)

∂K

)T
∂K

∂Xij

]

The derivative of the rank prior is also easy to calculate. Since X̃ = UΣVT we
have UT X̃V = Σ. Thus, since Σ is diagonal, the derivative of the rank prior with
respect to the latent coordinates follows as

∂

∂Xij

D∑
m=1

ϕ(σ̂m) =
1√

N − 1

D∑
m=1

∂ϕ(σ̂m)

∂σ̂m
UimVjm , (3.12)

where ∂ϕ(σ̂m)
∂σ̂m

depends on the sparsity function and Uim and Vjm are elements of
the respective singular vectors.

We use the SNOPT [GMS02] non-linear constraint optimizer to minimize Eq.
(3.7). After optimization, we select the latent dimension as

Q = argmaxm
σ̂m

σ̂m+1 + ε

where ε � 1, and σ̂1 ≥ σ̂2 · · · ≥ σ̂D. Alternatively one could also threshold the
singular value spectrum.

3.3.3 Putting it all together: the Algorithm

The final steps consist of applying PCA in the optimized Q-dimensional space
and optimizing p(Y|X,Θ) with respect to the hyperparameters Θ. Note that the
mapping is still non-linear since PCA is performed in the latent space, not in
the observation space, and simply rotates the data to produce the most compact
Q-dimensional representation.

An overview of the complete algorithm is given in the following.

Algorithm 1 Continuous Non-Linear Dimensionality Reduction

1: Normalize Y and set X = Y
2: Select parameters (Θ, α, β, γ)
3: Optimize equation 3.7 with respect to X
4: Apply PCA to X for final rotation (this reduces Q)
5: Optimize equation 2.22 with respect to Θ while keeping X fixed

Figure 3.2 compares the GPLVM (initialized with PCA) with the result of opti-
mizing Eq. (3.7) on a toy example where a 1D manifold is embedded in 2D space.
PCA provides a non-optimal initialization, and the GPLVM gets trapped in local
minima whereas our method recovers the correct structure. Note that our final
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PCA projection rotates the latent space and results in a 1D manifold. In this
example, using spectral methods could lead to a successful initialization for the
GPLVM. However, for more complex datasets this is not necessarily the case in
general, as shown in the examples section in Figs. 4.1 and 4.15.

Figure 3.3 (a),(b) and (c) depicts the evolution of the first ten singular values
when optimizing Eq. (3.7) with a linear, sigmoid and logarithmic sparsity penalty
function respectively (for a motion database composed of 30D observations). Note
how our method drops dimensions as the optimization evolves (i.e., the smallest
singular values drop to zero within the first few iterations). A comparison of the
spectrum of different sparsity penalty functions is shown in figure 3.3 (d). The L1-
norm results in a poor estimation of the dimensionality, while the more aggressive
sigmoid and logarithmic functions are able to recover the correct dimensionality in
this example. In the remainder of the paper we use the logarithmic function since
it converges faster than the L1-norm and has fewer parameters than the sigmoid.
Since the final result often depends strongly on the sparsity penalty function and
its parameters further investigation will be needed concerning this choice.
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(d) Comparing the resulting spectrum

Figure 3.3: Spectrum of a 30D motion database. (a),(b) and (c): Evolution
of the first ten singular values as a function of the optimization iter-
ation number for a linear, sigmoid and logarithmic sparsity penalty
functions. (d): Spectrums learned after convergence by different spar-
sity penalty functions compared to the observation space spectrum
(red).
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4 Experimental results

In this section we demonstrate our approach in three different scenarios. In sec-
tion 4.1 we compare our method to graph-based techniques and the GPLVM with
different initializations in artificial data (a sparsely sampled swiss roll). We fur-
ther illustrate our method’s ability to estimate the latent space dimensionality in
complex synthetic data in section 4.2. Finally we present an application of our
technique to the challenging problem of tracking and classifying 3D articulated
human body motion in the kitchen domain (see section 4.3).

4.1 A sparsely sampled swiss roll

The swiss roll is a widely used example of a 2D manifold which is embedded in
a 3D space. Since the manifold is embedded in the data space in a non-linear
fashion, PCA [Pea01] fails to recover it. However, many state-of-the-art graph-
based techniques (like ISOMAP [TSL00], Laplacian Eigenmaps [BN03], Locally
Linear Embedding [RS00], Local Tangent Space Alignment [ZZ03] and Maximum
Variance Unfolding [WS06]), which rely on local neighborhoods and have a closed-
form solution, can be used to unravel it correctly if the data is homogenously
sampled, the noise is small, and the neighborhood size is selected appropriately.
However, real data often violates these assumptions resulting in poor performance.
Imagine for example a motion dataset: Using a high-frequency motion capturing
system, many training points can be obtained from a motion along its trajectory
in the data space, but the sampling is very sparse in the direction of different
styles. This explains the need for more sophisticated methods than the spectral
methods mentioned above when it comes to handle complex and sparse datasets
like human motion.

Therefore we have created an example where only a very sparse and noisy subset
of the swiss roll is assumed to be known to the algorithm (see figure 4.1a, points
in black). The goal is to recover the correct underlying manifold (depicted on the
left side). We then compare the reconstruction of the test points in 2D and their
mean reprojection in 3D to the ground truth (figure 4.1a).

The first row in figure 4.1 (b) shows the result of applying PCA, Isomap, Lapla-
cian Eigenmaps, LLE, LTSA and MVU (see [vdMPvdH07] for a review on these
techniques). The second row depicts our technique and the result of optimizing
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Figure 4.1: Finding a 2D manifold in 3D space on a sparsely sampled
swiss roll. Only a sparse, noisy subset (depicted in black) of the full
manifold is assumed to be known (a). (b) shows the initialization (with
neighborhood size k=6), GPLVM result and 2D/3D reconstruction of
the full manifold (from top to bottom).
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the GPLVM with different initializations. Finally the last two rows of figure 4.1
(b) show the test data (i.e., colored samples) reconstructed in the latent space and
in the original space.

The results of our method are shown in the last column of figure 4.1b. To visualize
our algorithm, figure 4.2 shows how the latent space (which in our case is initialized
to the data space) evolves over time.

Note that our method, unlike PCA, graph-based techniques and the GPLVM with
any of the initializations, is able to recover the correct manifold. The bending
effect at the boundaries of the manifold (which causes the manifold to spread at
the red and yellow end) is explained by the fact that the GPLVM preserves global
distances (the inner points are close to the outer points) rather than only local
relationships between data points next to each other.

We evaluate the performance of the different algorithms on this example com-
puting a global and a local measure of accuracy. The reconstruction error is a
global measure of the ability to generalize, and was obtained by first finding the
latent coordinates x∗ of the test data y∗ by maximizing p(x∗|y∗,X,Y), and then
computing the average mean prediction error

1

Nt

∑
i

‖µ(x∗i )− y∗i ‖2

with Nt the number of test data. The relationship error, Rerror, measures how
well local neighborhoods are preserved and is defined as

Rerror =
Nt∑
i=1

∑
j∈ηi

(
Γij − Γ̄ij

)2
where ηi is the set of neighbors of the i-th test data, Γij =

‖xi−xj‖2
‖yi−yj‖2 is the ratio

between the distance in the latent space and the distance in the observation space
for two neighbors, and Γ̄ij is the mean ratio in the local neighborhood. figure 4.3
and figure 4.4 depict these two error measures when performing the experiment
in figure 4.1 averaged over 20 random partitions of the data. We use a local
neighborhood of size 4 to compute the relationship error in all experiments, and
a logarithmic sparsity function with α = 10, β = 10, and Θ = {0.5, 1.5, 0.01} .
The hyperparameters were optimized for the GPLVM baselines. Note that our
method outperforms the baselines independent of the initialization used for the
GPLVM.
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(a) Iteration 0 (b) Iteration 10

(c) Iteration 29 (d) Iteration 48

(e) Iteration 60 (f) Iteration 91

Figure 4.2: Learning a sparsely sampled Swiss Roll. Here snapshots of the
learning process are shown at different iterations during optimization
using our method. One can clearly see how the roll is unraveled cor-
rectly. The final manifold has 2 dimensions.
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(a) Reconstruction Error (b) Relationship Error

Figure 4.3: Example: A sparsely sampled swiss roll. Reconstruction Error
(a) and Relationship Error (b) for the experiment in figure 4.1 aver-
aged over 20 random partitions of the data for the 8 best performing
dimensionality reduction techniques. A more detailed result is given
in figure 4.4.
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Reconstruction Error Relationship Error
mean stddev mean stddev

our method 0.0041 0.0107 0.0008 0.0013
PCA init 0.0845 0.1860 0.4232 0.1915
ISOMAP init (k=6) 0.3813 0.1794 0.0038 0.0120
ISOMAP init (k=9) 0.1720 0.8453 0.0011 0.0076
ISOMAP init (k=12) 0.3583 0.4221 0.0130 0.0035
ISOMAP init (k=15) 0.2350 0.2326 0.0731 0.0314
Laplacian init (k=6) 3.7027 2.6553 9.2735 2.5540
Laplacian init (k=9) 2.3136 1.3150 0.6426 8.1716
Laplacian init (k=12) 1.6038 0.2878 7.9784 1.5029
Laplacian init (k=15) 0.5561 2.0321 2.2400 0.0508
LLE init (k=6) 3.5514 2.1871 7.5591 1.4807
LLE init (k=9) 2.6175 2.5141 8.5485 1.4881
LLE init (k=12) 1.6235 1.1386 0.1058 0.1064
LLE init (k=15) 2.7300 4.5488 1.7820 8.9215
LTSA init (k=6) 2.6377 0.7273 1.2636 1.6498
LTSA init (k=9) 3.5149 3.8835 2.0575 2.4038
LTSA init (k=12) 2.1734 3.2099 2.3700 3.0718
LTSA init (k=15) 4.0950 3.6681 2.1819 4.5150
MVU init (k=6) 0.3783 0.5381 0.1238 0.0055
MVU init (k=9) 0.3383 0.3665 0.0491 0.0465
MVU init (k=12) 0.3228 0.3477 0.0672 0.0164
MVU init (k=15) 0.0706 0.2560 0.5856 2.8057

Figure 4.4: Example: A sparsely sampled swiss roll. Reconstruction and
Relationship Error for the experiment in figure 4.1 averaged over 20
random partitions of the data. Here more detailed results are shown,
including PCA and graph-based methods with different neighborhood
sizes. The 8 best performing techniques are depicted in 4.3.
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4.2 Discovering the correct dimensionality

Here we illustrate our method’s ability to discover the intrinsic dimensionality
of the underlying manifold in 5 complex synthetic examples, which all are em-
bedded in 3D space (D = 3), but exhibit a different intrinsic dimensionality
(Q = {1, 2, 3}). In figure 4.5a a spiral with a wide separation between rings is
reduced to a 1D manifold. When the distance between the different rings de-
creases, the intrinsic manifold dimensionality changes from 1D to 2D (see figure
4.5b), since relationships between points that have the same phase are considered.
In figure 4.5c the underlying 2D manifold from a cut-off sphere sampled along
longitudinal lines is discovered. The manifold in figure 4.5d is intrinsically 3D
and thus cannot be reduced (as discovered by our method), while the manifold in
figure 4.5e can be reduced to 2D. The learning process is illustrated in figure 4.6,
4.7, 4.8, 4.9, 4.10, 4.11 and 4.12.

Figure 4.5: Dimensionality estimation. (Top) Five 2D manifolds embedded in
3D. (Bottom) Latent spaces and intrinsic dimensionalities Q learned
using our continuous dimensionality reduction method.
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(a) Iteration 0 (b) Iteration 19

(c) Iteration 23 (d) Iteration 27

(e) Iteration 33 (f) Iteration 50

Figure 4.6: Learning a hat shaped manifold generated by sine functions.
Snapshots of the learning process are shown at different iterations
during optimization using our method. The discovered dimensionality
Q is 2.
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(a) Iteration 0 (b) Iteration 10

(c) Iteration 13 (d) Iteration 16

(e) Iteration 19 (f) Iteration 50

Figure 4.7: Learning a hat shaped manifold with a hole. Snapshots of the
learning process are shown at different iterations during optimization
using our method. The discovered dimensionality Q is 2.
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(a) Iteration 0 (b) Iteration 21

(c) Iteration 30 (d) Iteration 50

(e) Iteration 65 (f) Iteration 100

Figure 4.8: Learning a cut-off bowl manifold sampled along longitudal
lines. Snapshots of the learning process are shown at different iter-
ations during optimization using our method. The discovered dimen-
sionality Q is 2.
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(a) Iteration 0 (b) Iteration 6

(c) Iteration 20 (d) Iteration 25

(e) Iteration 31 (f) Iteration 60

Figure 4.9: Learning a 2D wave shaped manifold. Snapshots of the learning
process are shown at different iterations during optimization using our
method. The discovered dimensionality Q is 2.
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(a) Iteration 0 (b) Iteration 11

(c) Iteration 16 (d) Iteration 30

(e) Iteration 50 (f) Iteration 100

Figure 4.10: Learning a spiral manifold embedded in 3D. Snapshots of the
learning process are shown at different iterations during optimization
using our method. The discovered dimensionality Q is 1.
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(a) Iteration 0 (b) Iteration 14

(c) Iteration 21 (d) Iteration 35

(e) Iteration 47 (f) Iteration 100

Figure 4.11: Learning a spiral manifold embedded in 3D. Snapshots of the
learning process are shown at different iterations during optimization
using our method. The discovered dimensionality Q is 1.
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(a) Iteration 5 (b) Iteration 10

(c) Iteration 14 (d) Iteration 18

(e) Iteration 24 (f) Iteration 50

Figure 4.12: Learning a narrow spiral manifold embedded in 3D. Snap-
shots of the learning process are shown at different iterations during
optimization using our method. The discovered dimensionality Q is
2.
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4.3 Tracking and classification in the kitchen
domain

An interesting real-world application of discovering low-dimensional structure in
a high-dimensional space is tracking and classifying human motion from video
sequences. Tracking consists of inferring the 3D locations of body joints from
images. Since tracking requires good generalization abilities and latent trajectories
to be smooth this is a difficult task.

The goal of this experiment is to evaluate a model learned from different motions
by tracking and classifying human movements performed in a kitchen scenario.
This is done by learning the model from previously captured motion capturing data
and tracking the person’s movements using a particle filter approach (see figure
4.17). Once tracking can be performed robustly, classification is straightforward,
e.g. by assigning the class label of the nearest neighbor in the latent space to the
current frame.

Ølength #total #learning #tracking
rolling 18 s 6 2 4
milling 15 s 4 2 2
brooming 11 s 2 2 0

Figure 4.13: Dataset used in the tracking experiment. Here an overview of
the dataset used in the experiment is given. First, the average length
per sequence is given in seconds. Next the total number of utilizable
sequences, the number of sequences used for learning the model and
the number of sequences used for tracking is shown.

We show how learning multiple motions in a single latent space can be done
using our method since this is a difficult task in general. We use the kitchen
dataset of [KPFW08], that consists of images from 2D cameras and ground truth
joint angles of 3 motion types (i.e., rolling, milling, brooming), performed several
times by the same subject. Unfortunately, only a subset of the entire dataset was
found to be not corrupted by mislabelings and could be used for the experiments.
More specifically those were 6 rolling motions, 4 milling motions and 2 brooming
motions. For our experiments we learned a common latent space using the first
two motions of each type and tested our algorithm on the remaining motions.
Therefore no tests on the brooming motions were performed although they were
included in the training set. The motion capture data was recorded using a VICON
system (at 100 Hz) while the video streams were captured by four Sony VWF 500
color cameras (at 30 Hz). An overview of the available sequences is given in table
4.13 and in figure 4.14.
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(a) Camera 1: Rolling (b) Camera 2: Rolling

(c) Camera 1: Brooming (d) Camera 2: Brooming

(e) Camera 1: Milling (f) Camera 2: Milling

Figure 4.14: Tracking sequences. For the tracking and classification experi-
ments the database from [KPFW08] was used. It contains several
types of motion, captured with a VICON motion capturing system
and four Sony VWF 500 color cameras (resolution 640x480). In this
figure snapshots of 3 motions (rolling, brooming and milling) are de-
picted from 2 views each.
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Figure 4.15: Learning different types of motion into one single 3D latent
space. Each type is visualized with a different color (red = rolling,
green = brooming, blue = milling). (a) depicts a 3D-GPLVM initial-
ized to LLE, discontinuities are emphasized in black. (b,c) show the
manifold learned by our method along with the variance.

4.3.1 Learning

We learned a single 3D latent space from 30D joint angle observations of 2 trials
for each of the 3 different motions. Since learning involves the inversion of the
covariance matrix K and thus scales as O(N3) where N represents the number of
training examples, only a limited number of samples can be used for training the
model.

Due to variation in dynamics, learning a latent space using a simple subsampling
(like 1 out of 4) of the dataset leads to suboptimal results, since similar points in
the latent space do not contribute to a richer model. Thus a small threshold has
been employed which determines the minimum distance between 2 observation
points. Observations were then added incrementally to an initially empty vector
if the condition is fulfilled. Alternatively, one could also apply the IVM criteria,
described in [LSH02]. The number of training examples which we used finally was
N = 1120, comprising samples from 3 motions with 2 trials each.

For a further speedup the sparsification technique, as described in section 2.3.3
was employed. Altogether we were able to learn the model in 4 hours on a 2-Ghz
single CPU machine.

Since articulated body motion is non-linear we used LLE initialization for the
GPLVM as a baseline. Figure 4.15 shows the result of learning the latent space
of the full model using a GPLVM initialized with LLE (a) and our method (b).
Note that our method, unlike the GPLVM initialized with LLE, leads to a smooth
(i.e., consecutive frames in time are close in the latent space) result, and separates
well the different classes. As shown in the figure, smoothness implies a lower
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Figure 4.16: Learning 2 motions (blue = milling, green = rolling) using
our method. The upper-body skeleton (in red) depicts mean-poses
calculated at the corresponding points in the latent space. One can
see that ”grabbing the mill” (using the left hand, poses to the left) is
well separated from ”grabbing the rolling pin” (using the right hand,
poses to the right).

relationship error. To quantify class separation, we also compute the Fisher score
[UD07] defined as

Fscore = tr
(
S−1
w Sb

)
where Sw is the within class matrix

Sw =
C∑
i=1

Ni

N

[
1

Ni

Ni∑
j=1

(
x

(i)
j − x(i)

)(
x

(i)
j − x(i)

)T]

and Sb is the between class matrix

Sb =
C∑
i=1

Ni

N

(
x(i) − x

) (
x(i) − x

)T
.

Here C denotes the number of classes (e.g. C = 3 in figure 4.15), Ni is the number

of points in class i and N is the total number of training points. Furthermore x
(i)
j

stands for the j’th point in class i, x(i) is the mean of class i and x represents
the overall mean. Note that our method performs significantly better than the
GPLVM with LLE initialization in terms of both, the relationship error and the
fisher score.

To gain more insight into the latent space, figure 4.16 shows the model after
optimizing training data from 2 types of motion. Here the mean pose is depict for
different points in the latent space.
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4.3.2 Feature extraction and image likelihood

Tracking was performed using silhouette features. In contrast to [UFF06], where
points in the video sequence (for example knees, hands, elbows, etc.) had to be
tracked by a separate 2D tracker, this appearance-based approach has the advan-
tage of no need to being reinitialized manually (after occlusions) or relying on
a separate tracking algorithm. Disadvantages include that gradient-based refine-
ments (for accurate tracking) are harder to incorporate and a more sophisticated
likelihood had to be used than the one we used here. However, we found that with
our test data reliable tracking was possible with an easy-to-implement likelihood
described in this section.

To retrieve silhouettes from the input image, a small number of frames (we used
4 frames of the sequence) was labeled manually in each view (see figure 5.2).
Departing from the labeled frames, a background and a color representation has
been created. The background representation consists of storing all pixel values
belonging to the background for each labeled frame. The color representation
was created by storing a foreground and a background color histogram, where 16
bins per color (since each color channel provides 256 values, 16 values have been
condensed together) have been used. Thus, in total 16×16×16 = 4096 bins have
been used.

The background segmentation was done by comparing all pixels of a 640 × 480
input image to all pixels (up to 4) in the background representation for the cor-
responding pixel coordinate. A pixel was then considered belonging to the fore-
ground (or to the silhouette) if its Euclidian distance to all background pixels
at this location (in the RGB color space) was larger than 18 (which was found
emperically).

For the (skin) color segmentation we used the Bayesian classifier described in
[PBC05] which employs a minimum cost decision rule: Classify a pixel with color
c as skin (or foreground silhouette), iff: P (skin|c) > P (skin|c). Since

P (skin|c) =
P (c|skin)P (skin)

P (c)
and P (skin|c) =

P (c|skin)P (skin)

P (c)

we have
P (c|skin)

P (c|skin)
>
P (skin)

P (skin)
.

Here P (c|skin) and P (c|skin) are given as counts by the previously collected color
histograms:

P (c|skin) =
number of foreground pixels with same color

total number of foreground pixels

P (c|skin) =
number of background pixels with same color

total number of background pixels
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Figure 4.17: Tracking setup. First, some (3-5) frames of the sequence were
labeled manually (a). Then a background and a color representation
has been generated automatically in order to segment the complete
sequence (b). The likelihood is based on a matching (green) between
the generative model and the segmentation in each frame (c). Finally
a particle filter was used to track the sequence (d).

For the experiments reported in this thesis P (skin)
P (skin)

was set to = 0.3, which was
found empirically.

We finally combined the background segmented image and the color segmented
image using a logical AND operator with respect to the foreground region. For
calculating the image likelihood p(z|y) (here z denotes an observation, which -
in our case - comes frome one or two color cameras) given a (30 dimensional)
data point y, the silhouette of the articulated body model (see figure 4.17) was
generated from y and rendered into the back buffer of an ATI graphics card
via OpenGL. By reading the graphics buffer back into memory, p(z|y) was finally
obtained as p(z|y) ∝ %, where % denotes the number of pixels (in the projected and
the segmented image) belonging to the same class (foreground or background).

4.3.3 Particle filter

Tracking itself (see figure 5.3) was performed using a simplified particle filter with
second order Marcov dynamics in the latent space. We assumed that all observed
poses are captured by our pose model. The probabilistic framework of the tracker
is described next.

Let st be the state of our system at time t and let zt be the observation of
the cameras at time t. To shorten notation we abbreviate s1:t = {s1, ..., st} and
z1:t = {z1, ..., zt}.

Following [IB98] we assume that the object dynamics forms a temporal Markov
chain, i.e.

p(st|s1:t−1) = p(st|st−1).
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Furthermore the observations zt are assumed to be conditional independent and
independent of the underlying dynamical process

p(z1:t−1, st|s1:t−1) = p(st|s1:t−1)
t−1∏
i=1

p(zi|si)

which leads to the mutual conditional independence (by marginalizing st)

p(z1:t|s1:t) =
t∏
i=1

p(zi|si).

Using these assumptions, the rule for propagation of state density over time can
be formulated as

p(st|z1:t) = ktp(zt|st)p(st|z1:t−1)

where

p(st|z1:t−1) =

∫
p(st|st−1)p(st−1|z1:t−1)dst−1

and kt is a normalisation constant that does not depend on st. The rule can
be interpreted as the Bayes’ rule for inferring the posterior state density from
observations for the time-varying case. The prove can be found in [IB98].

Since the observation density is non-Gaussian, the evolving state density p(st|z1:t)
is also non-Gaussian. Applying a non-linear filter to evaluate the state density
cannot be done analytically. Thus we are using an approximation by evaluating
a finite set of particles.

Our state vector st consists of st =
{
x(t),x(t−1)

}
, the estimation of the position

in the latent space at time t and time t − 1. Including the latent position at
time t− 1 is needed for drawing samples from the second order Marcov dynamics.
Given the state vector st at time t we estimate the state vector st+1 at time t+ 1
by creating P samples x̂i with i = {1, ..., P} in the latent space and calculating
the image likelihood of the mean projection p (zt+1|µ(x̂i)) as described in section
4.3.2. Then st+1 is chosen as

st+1 =

(
x(t+1)

x(t)

)
=

(
argmaxx̂i

[p (zt+1|µ(x̂i))]

x(t−1)

)
.

The samples x̂i were generated from the (predictive) Mixture-of-Gaussians distri-
bution (see figure 4.18)

p(x̂i|x(t),x(t−1)) =
2

5
N
(

x(t),
1

25
I

)
+

2

5
N
(

2x(t) − x(t−1),
1

625
I

)
+

1

5
pKDE

(
x(t)
)

where the first term is a Gaussian distribution centered at the position of x at
time step t, the second term represents a Gaussian distribution centered on the
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Figure 4.18: Predictive Distribution. This figure illustrates the dynamical
model. The predictive distribution is taken as a Mixture-of-Gaussians
with 3 components: (1) A random walk sampled directly around xt
to marginalize the danger of local minima, (2) a second order Marcov
model which extrapolates linearly from xt and xt−1 (Gaussian around
blue point), and (3) Gaussians around training points, weighted by
their corresponding kernel density estimate using a RBF kernel. Here
2 trajectories with their training points are shown in the latent space.
Gaussians are depict by a circle. The line width of the circles indicate
their respective mixture weight.

second order Marcov estimate and the third term is a Kernel Density Estimate
(KDE) of x at time t, defined as

pKDE(x(t)) =
1∑N

i=1 k(x(t), x̂i)

N∑
i=1

k(x(t), x̂i)N (x̂i,
1

625
I)

where N is the number of training points in the model. Here the inference kernel
k(xi,xj) is defined as a radial basis function:

k(xi,xj) = θ1 exp

(
−
‖xi − xj‖22

2θ2
2

)
+ θ3δij

In our experiments we set the hyperparameters of the inference kernel to θ1 = 1,
θ2 = 0.2 and θ3 = 0.0001.

Since we are dealing with Gaussian Processes and large datasets, speed becomes
an issue. Calculating the mean pose µ(x̂i) of a sample point x̂i using a full
GP involves a one time inversion of the covariance matrix K which scales as
O(N3). Furthermore, for each sample x̂i, a full KDE and N -dimensional matrix-
vector multiplication has to be performed which scales as O(N2). To speed up
inference several approximation techniques could be used [SNS06, YDD05, UD08,
SW02, QCR05]. We chose one of the most intuitive ones, which makes use of the
sparseness of K. As in [UD08] we infer the mean pose µ(x(i)) using only a subset
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(we chose the 50 nearest neighbors) of the training points, which in practice lead
to a sufficiently good approximation.

Improvement in tracking accuracy could be gained by further optimizing the pos-
terior p(s|z) as done in [UFF06], which allows for tracking poses beyond the ones
captured by the model. In this scenario, however, we found direct sampling from
the model sufficient to obtain good tracking results (see figure 4.19).

4.3.4 Results

figure 4.19 depicts tracking and classification performance for milling and rolling
motions1 when using the models depicted in figure 4.15. We used the particle filter
described in section 4.3.3, that operates in the low dimensional latent space and
models the dynamics with a second order Markov model. Our image likelihood
is based on low-level silhouette features (see section 4.3.2). The reason for using
a simple likelihood is that it was found sufficient for the experiments shown in
this thesis. This is mainly because most of the ambiguities are resolved by the
strong pose prior we use. For more complicated sequences however, designing a
more sophisticated likelihood can improve results. This could be done by using
features based on optical flow, edges, appearance or incorporating an additional
discriminative model into the tracking process [UD08].

In practice we could achieve a sample evaluation rate of 100 frames per second on a
2 Ghz single CPU machine with hardware graphics acceleration. This means that
using 25 particles and 2 cameras (which was found sufficient for reliable tracking
in our scenario, see figure 4.19) results in a tracking frame rate of 2 frames per
second, for example.

The tracking error was measured by averaging the positions of 6 joints (shoulder
left/right, elbow left/right, hand left/right). It is given as

Tracking Error =
1

6

6∑
i=1

‖p̂i − pi‖2

where p̂i denotes the 3D position of the i’th joint as estimated by the particle
filter and pi stands for the ground truth.

For classification purposes, we labeled the dataset using the following 7 classes:

• rest (both hands rest on the table next to the board)

• grasp pin (reaching for the pin with the right hand)

• rolling (perform a cyclic rolling motion with the rolling pin)

• grasp broom (grasp the broom and the dustpan with both hands)

1No results are shown for brooming since no test data was available.
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Figure 4.19: Tracking and nearest neighbor classification performance for
milling and rolling motions using our method (red) and GPLVM ini-
tialized to LLE (blue) as a function of the number of particles used
in the particle filter.

• brooming (perform a brooming motion using the broom and the dustpan)

• grasp mill (grasp the mill with the left hand)

• milling (perform a cyclic milling motion)

Classification was done by computing the nearest neighbor of the current pose
estimate in the latent space, and assigning its class label to the current frame.
The classification accuracy is then given by

Classification Accuracy =
number of correctly labeled frames

total number of frames
× 100%.

Our method significantly outperforms the GPLVM with LLE initialization in both
tracking accuracy and NN classification performance (see figure 4.19) when using
both, one or two cameras. We observed that the milling motion is more ambiguous
than the rolling motion and thus can be tracked reliably only when using two
cameras, whereas one camera proved sufficient for the rolling motion.
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We furthermore observed that although the GPLVM model initialized to LLE
exhibits many jumps and discontinuities in the latent space, a particle filter can
still perform relatively well, depending on the neighborhood size which was used
for generating the Locally Linear Embedding. This is due to the fact that in
order to disambiguate motions with any of the models, the standard deviation
used for creating samples can not drop below a certain value. Thus jumps in the
latent space were found to be not as critical as initially assumed. In contrast, if
one wants to generate motion by sampling, discontinuities start to play a much
more important rule, leading to unrealistic motions when used for animation. We
also expect a tracking system which further optimizes the observation likelihood
together with the pose prior to behave significantly worse with a model like the
one shown in figure 4.15a. Thus we think that a method like ours, which can
reduce dimensionality in a non-linear way without generating jumps in the latent
space can be worth further investigations.
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5 Implementation

This project was implemented in C++ using Eclipse CDT and Ubuntu 8.04 - the
Hardy Heron. The following libraries were used:

• FLTK (Fast Light Toolkit, cross-platform C++ GUI toolkit)

• OpenGL (visualizing the latent space, rendering the generative model)

• OpenCV (import, export and undistortion of images, 2D drawing)

• SNOPT (constrained non-linear optimization for learning the model)

• BLAS, LAPACK (efficient algorithms for linear algebra, e.g. SVD)

Figures 5.1, 5.2 and 5.3 show the GUI of the program created during this thesis.
First a script has been used to undistort images using the OpenCV function
cvUndistort2 with the intrinsic camera parameters found by the MATLAB camera
calibration toolbox 1. Furthermore errors in the motion datasets were corrected by
looking for discontinuities along the latent trajectories. The errors occured during
registration of the motion capture dataset due to mislabeled markers. If a small
number of consecutive defective frames were detected, a linear interpolation was
used to interpolate in between. If a large number of consecutive frames was
defective the trial was rejected from being used for learning or tracking.

In the second step the motions were loaded into the program depict in figure 5.1
and a latent space was learned using the method described in section 3.3. This
program also allows for showing the quality of the model by placing a line into
the latent space and reconstructing the mean pose y from samples along this line.
For samples close to the training points those artificially generated motions should
look realistic, which indicates good interpolation and extrapolation abilities and
a useful model for tracking or motion generation.

The third step consists of labeling 4 dissimilar frames of an image sequence which
is about to be tracked manually, as can be seen in 5.2. This program further
allows for creating the image statistics necessary for tracking and for checking the
result of a segmented test image.

In the final step, another program allows for tracking the scene using the particle
filter described in section 4.3.3 (see figure 5.3). The program parameters com-
prise the number of particles which are used for tracking as well as the number

1http://www.vision.caltech.edu/
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Figure 5.1: Learning the latent space. This application allows for loading
a motion dataset and learning a latent space using different meth-
ods like GPLVM or GPLVM with Rank Prior. Initializations with
graph based techniques were obtained via the MATLAB toolkit from
[vdMPvdH07]. The main window shows the current latent space, pro-
jected to the first three dimensions via PCA. It also allows for dis-
playing the covariance plot and the particle sample distribution in
the latent space after a tracking experiment. The upper-right window
displays the evolution of the singular values over time during an op-
timization. The lower-right window depicts the current state of the
articulated human body model by applying the mean projection from
the latent to the data space of a given test point.

of cameras. Since our test sequences behaved well, we found one or two cam-
eras sufficient for this task. Tracking error and classification accuracy are stored
in text files. Furthermore images which show the tracking and classification re-
sult from different views are created. Videos of those results can be found at
http://www.rainsoft.de.

After tracking a sequence the particle distribution over time can be displayed in
the latent space by loading the samples and the model back again into the program
depict in figure 5.1.
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Figure 5.2: Image likelihood and features. Prior to tracking, this application
asks the user to label the silhouette of the subject in 4 frames (upper-
left). Using this information, a background- and a color-representation
is created. The lower images show the result of applying those rep-
resentations to a new frame (upper-right), resulting in a foreground
segmentation (lower-left) and edges (lower-right). For tracking, the
foreground representation was matched with a generative model of
the articulated body.
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Figure 5.3: Tracking using a simple particle filter. After learning the model
and creating the feature representations this application performs the
tracking itself. A particle filter can be started, which is initialized by
computing the training point with the highest likelihood. The tracking
step itself involves the generation of 5 to 100 particles (depending on
the experiment) using a second order Markov model. After computing
the mean prediction, the generative articulated body model silhuette
is read from the OpenGL back buffer and matched against the obser-
vation silhouette (for 1 or 2 cameras, depending on the experiment).
The sample with the highest likelihood is kept and the mean prediction
is displayed to the OpenGL front buffer.
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2.1 Sampling from a Gaussian Process. (a) shows 3 functions
drawn at random from a GP prior. (b) depicts 3 functions drawn
at random from the posterior, i.e. the prior conditioned on the
five noise free observations indicated. The gray areas show the
uncertainty for each point x respectively. This figure was taken
from [RW06]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Face plots of 2D Gaussians. Here face plots of 2 dimensional
Gaussians are shown for different parameters of the covariance ma-
trix. While (a) is uncorrelated (Υ = 0), (b) is correlated with
Υ = 0.5. (c) exhibits almost perfect linear coherence (Υ = 0.99)
whereas (d) is negatively correlated (Υ = −0.8). . . . . . . . . . . 23

2.3 2D illustration of Gaussian Process regression. Here y1 is
given and the correlation between y1 and y2 is assumed to be known
by means of a kernel function k(xi,xj). Since y1 and y2 are cor-
related, the mean of the conditional distribution p(y2|y1) is similar
to the mean y1 itself while the small variance indicates only little
uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 5D illustration of Gaussian Process regression. Here 3 train-
ing points are given compared to only one in figure 2.3. Since we
have 2 test points, the regression results in a 5 dimensional Gaus-
sian distribution. Note that uncertainty increases with the distance
of a test point from the training data. . . . . . . . . . . . . . . . . 24
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2.5 Sparsification: Global and local GPs. This figure illustrates
the sparsification method used for motion datasets with a large
number of training points. The colored points are training points,
lying on a motion trajectory (black) in the data space. Instead of
inverting the full Gaussian Process covariance matrix (which takes
O(N3), with N the number of training points), we make use of prior
knowledge about the nature of motion data, i.e. we assume smooth-
ness over time (or frames). Thus only a set of smaller local GPs
(which overlap with neighboring sets, shown in gray) is calculated,
reducing the computation time dramatically. To also keep track of
global relationships, each point in a local GP set is linked to one
point in each other local GP set via a global GP (which thus again
consists of a very limited number of training points, contributing
to a speed-up in learning the model). In this example 3 global GPs
are depicted (red, green and blue). . . . . . . . . . . . . . . . . . 30
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(red) in the high-dimensional data space, connected by springs
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the two points they are connnecting, respectively. Thus the spring
strength can be defined by a radial basis function, for example.
Here, e.g., the blue spring is weaker than the two green springs since
the data points it connects are further apart from each other. Before
applying the algorithm, the springs are in their home position, im-
posing no force. The spring system stands for the GPLVM, which
preserves dissimilarities. On the other hand, the pressure plates
surrounding the system apply forces towards the covariance direc-
tions. They represent the Rank Prior which favors low-dimensional
spaces. Here the pressure along the smaller variance is strongest
since we want to get rid of the ”smaller” dimensions first. This
is achieved by using a non-linear penalty function, as described in
section 3.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Illustration of our Rank Prior with a GPLVM. The goal is to
recover the 1D manifold embedded in 2D. The GPLVM gets stuck
in local minima very early (upper row) since PCA initialization does
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dimensionality gradually and recovers the correct manifold (lower
row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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3.3 Spectrum of a 30D motion database. (a),(b) and (c): Evolu-
tion of the first ten singular values as a function of the optimiza-
tion iteration number for a linear, sigmoid and logarithmic sparsity
penalty functions. (d): Spectrums learned after convergence by dif-
ferent sparsity penalty functions compared to the observation space
spectrum (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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4.13 Dataset used in the tracking experiment. Here an overview
of the dataset used in the experiment is given. First, the average
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4.14 Tracking sequences. For the tracking and classification experi-
ments the database from [KPFW08] was used. It contains several
types of motion, captured with a VICON motion capturing system
and four Sony VWF 500 color cameras (resolution 640x480). In
this figure snapshots of 3 motions (rolling, brooming and milling)
are depicted from 2 views each. . . . . . . . . . . . . . . . . . . . 56

4.15 Learning different types of motion into one single 3D latent
space. Each type is visualized with a different color (red = rolling,
green = brooming, blue = milling). (a) depicts a 3D-GPLVM ini-
tialized to LLE, discontinuities are emphasized in black. (b,c) show
the manifold learned by our method along with the variance. . . . 57

4.16 Learning 2 motions (blue = milling, green = rolling) using
our method. The upper-body skeleton (in red) depicts mean-
poses calculated at the corresponding points in the latent space.
One can see that ”grabbing the mill” (using the left hand, poses
to the left) is well separated from ”grabbing the rolling pin” (using
the right hand, poses to the right). . . . . . . . . . . . . . . . . . 58

4.17 Tracking setup. First, some (3-5) frames of the sequence were la-
beled manually (a). Then a background and a color representation
has been generated automatically in order to segment the complete
sequence (b). The likelihood is based on a matching (green) be-
tween the generative model and the segmentation in each frame
(c). Finally a particle filter was used to track the sequence (d). . . 60
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4.18 Predictive Distribution. This figure illustrates the dynami-
cal model. The predictive distribution is taken as a Mixture-of-
Gaussians with 3 components: (1) A random walk sampled directly
around xt to marginalize the danger of local minima, (2) a second
order Marcov model which extrapolates linearly from xt and xt−1

(Gaussian around blue point), and (3) Gaussians around training
points, weighted by their corresponding kernel density estimate us-
ing a RBF kernel. Here 2 trajectories with their training points are
shown in the latent space. Gaussians are depict by a circle. The
line width of the circles indicate their respective mixture weight. 62

4.19 Tracking and nearest neighbor classification performance
for milling and rolling motions using our method (red) and GPLVM
initialized to LLE (blue) as a function of the number of particles
used in the particle filter. . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Learning the latent space. This application allows for loading
a motion dataset and learning a latent space using different meth-
ods like GPLVM or GPLVM with Rank Prior. Initializations with
graph based techniques were obtained via the MATLAB toolkit
from [vdMPvdH07]. The main window shows the current latent
space, projected to the first three dimensions via PCA. It also
allows for displaying the covariance plot and the particle sample
distribution in the latent space after a tracking experiment. The
upper-right window displays the evolution of the singular values
over time during an optimization. The lower-right window depicts
the current state of the articulated human body model by applying
the mean projection from the latent to the data space of a given
test point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Image likelihood and features. Prior to tracking, this applica-
tion asks the user to label the silhouette of the subject in 4 frames
(upper-left). Using this information, a background- and a color-
representation is created. The lower images show the result of ap-
plying those representations to a new frame (upper-right), resulting
in a foreground segmentation (lower-left) and edges (lower-right).
For tracking, the foreground representation was matched with a
generative model of the articulated body. . . . . . . . . . . . . . . 69
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5.3 Tracking using a simple particle filter. After learning the
model and creating the feature representations this application per-
forms the tracking itself. A particle filter can be started, which is
initialized by computing the training point with the highest like-
lihood. The tracking step itself involves the generation of 5 to
100 particles (depending on the experiment) using a second order
Markov model. After computing the mean prediction, the gener-
ative articulated body model silhuette is read from the OpenGL
back buffer and matched against the observation silhouette (for 1
or 2 cameras, depending on the experiment). The sample with the
highest likelihood is kept and the mean prediction is displayed to
the OpenGL front buffer. . . . . . . . . . . . . . . . . . . . . . . . 70
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