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Please follow the examples in the Visual Genome dataset and generate a 
scene graph that best describes the following text: 
“A Wizard standing in front of a Wooden Desk, gazing into a Crystal 
Ball placed on the Wooden Desk, with a Stack of Ancient Spell Books 
sitting on the Wooden Desk and next to the crystal ball.”

Nodes (Objects):
  - Wizard
  - Wooden Desk
  - Crystal Ball
  - Stack of Ancient Spell Books

Edges (Relationships):
  - Wizard -> standing in front of -> Wooden Desk
  - Crystal Ball -> placed on -> Wooden Desk
  - Wizard -> gazing into -> Crystal Ball
  - Stack of Ancient Spell Books -> sitting on -> Wooden Desk
  - Stack of Ancient Spell Books -> next to -> Crystal Ball

Attributes:
  - Wizard: bearded, robed, wise-looking
  - Crystal Ball: small, glowing, transparent, mystical
  - Stack of Ancient Spell Books: leather-bound, weathered, rune-etched
  - Wooden Desk: sturdy, carved, aged
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Figure 1. GraphDreamer takes a scene graph as input and generates a compositional 3D scene where each object is fully disentangled. To save the effort of
building a scene graph from scratch, the scene graph can be generated by a language model (e.g., ChatGPT) from a user text input (left box).

Abstract

As pretrained text-to-image diffusion models become in-
creasingly powerful, recent efforts have been made to distill
knowledge from these text-to-image pretrained models for
optimizing a text-guided 3D model. Most of the existing
methods generate a holistic 3D model from a plain text
input. This can be problematic when the text describes a
complex scene with multiple objects, because the vectorized
text embeddings are inherently unable to capture a complex
description with multiple entities and relationships. Holistic
3D modeling of the entire scene further prevents accurate
grounding of text entities and concepts. To address this lim-
itation, we propose GraphDreamer, a novel framework to
generate compositional 3D scenes from scene graphs, where
objects are represented as nodes and their interactions as
edges. By exploiting node and edge information in scene
graphs, our method makes better use of the pretrained text-
to-image diffusion model and is able to fully disentangle
different objects without image-level supervision. To facil-
itate modeling of object-wise relationships, we use signed
distance fields as representation and impose a constraint to
avoid inter-penetration of objects. To avoid manual scene
graph creation, we design a text prompt for ChatGPT to
generate scene graphs based on text inputs. We conduct

both qualitative and quantitative experiments to validate the
effectiveness of GraphDreamer in generating high-fidelity
compositional 3D scenes with disentangled object entities.

1. Introduction
Recent years have witnessed substantial progresses in text-to-
3D generation [21, 29, 39], largely due to the rapid develop-
ment made in text-to-image models [32, 33] and text-image
embeddings [31]. This emerging field has attracted consider-
able attention due to its significant potential to revolutionize
the way artists and designers work.

The central idea of current text-to-3D pipelines is to lever-
age knowledge of a large pretrained text-to-image generative
model to optimize each randomly sampled 2D view of a
3D object such that these views resemble what the input
text describes. The 3D consistency of these 2D views is
typically guaranteed by a proper 3D representation (e.g.,
neural radiance fields (NeRF) [23] in DreamFusion [29]).
Despite being popular, current text-to-3D pipelines still suf-
fer from attribute confusion and guidance collapse. Attribute
confusion is a fundamental problem caused by text-image
embeddings (e.g., CLIP [31]). For example, models often
fail at distinguishing the difference between “a black cat
on a pink carpet” and “a pink cat on a black carpet”. This
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problem may prevent current text-to-3D generation methods
from accurately grounding all attributes to corresponding
objects. As the text prompt becomes even more complex, in-
volving multiple objects, attribute confusion becomes more
significant. Guidance collapse refers to the cases where the
text prompt is (partially) ignored or misinterpreted by the
model. This typically also happens as the text prompt gets
more complex. For example, “a teddy bear pushing a shop-
ping cart and holding baloons”, with “teddy bear” being
ignored. These problems largely limit the practical utility of
text-to-3D generation techniques.

A straightforward solution is to model the multi-object
3D scene in a compositional way. Following this insight,
recent methods [5, 18, 28, 47] condition on additional con-
text information such as 3D layout which provides the size
and location of each object in the form of non-overlapping
3D bounding boxes. While a non-overlapping 3D layout
can certainly help to produce a compositional 3D scene with
each object present, it injects a strong prior and greatly limits
the diversity of generated scenes. The non-overlapping 3D
box assumption can easily break when objects are irregular
(non-cubic) and obscuring each other. For example, the text
prompt “an astronaut riding a horse” can not be represented
by two non-overlapping bounding boxes. To avoid these
limitations while still achieving object decomposition, we
propose GraphDreamer, which takes a scene graph (e.g.,
[13]) as input and generates a compositional 3D scene. Un-
like 3D bounding boxes, scene graphs are spatially more
relaxed and can model complex object interaction. While
scene graphs are generally easier to specify than spatial 3D
layouts, we also design a text prompt to query ChatGPT
that enables the automatic generation of a scene graph from
unstructured text. See Figure 1 for an illustrative example.

GraphDreamer is guided by the insight that a scene graph
can be decomposed into a separate and semantically un-
ambiguous text description of every node and edge1. The
decomposition of a scene graph into multiple textual de-
scriptions makes it possible to distill knowledge from text-
to-image diffusion models, similar to common text-to-3D
methods. Specifically, to allow each object to be disentan-
gled from the other objects in the scene, we use separate
identity-aware positional encoder networks (i.e., object fea-
ture fields) to encode object-level semantic information and
a shared Signed Distance Field (SDF) network to decode
the SDF value from identity-aware positional features. The
color value is decoded in a way similar to the SDF value.
Scene-level rendering is performed by integrating objects
based on the smallest SDF value at each sampled point in 3D
space. More importantly, with both SDF and color values of
each object, we propose an identity-aware object rendering
that, in addition to a global rendering of the entire 3D scene,
renders different objects separately. Our local identity-aware

1Cf. the assumption of independent causal mechanisms [34]

rendering allows the gradient from the text-dependent dis-
tillation loss (e.g., score distillation sampling [29]) to be
back-propagated selectively to corresponding objects with-
out affecting the other objects. The overall 3D scene will be
simultaneously optimized with the global text description to
match the scene semantics to the global text. In summary,
we make the following contributions:
• To the best of our knowledge, GraphDreamer is the first

3D generation method that can synthesize compositional
3D scenes from either scene graphs or unstructured text
descriptions. No 3D bounding boxes are required as input.

• GraphDreamer uses scene graphs to construct a disentan-
gled representation where each object is optimized via its
related text description, avoiding object-level ambiguity.

• GraphDreamer is able to produce high-fidelity complex 3D
scenes with disentangled objects, outperforming both state-
of-the-art text-to-3D methods and existing 3D-bounding-
box-based compositional text-to-3D methods.

• In Appendix C, we envision a new paradigm of semantic
3D reconstruction – Inverse Semantics, where a vision-
language model (e.g., GPT4-V) is used to extract a scene
graph from an input image (i.e., scene graph encoder) and
GraphDreamer is used to generate a compositional 3D
scene from the scene graph (i.e., scene graph decoder).

2. Related Work
Text-to-2D generation. Driven by large-scale image-text
aligned datasets [35], text-to-image generation models [1, 32,
33] have made great progress in producing highly realistic
images. Among these models, generative diffusion models
learn to gradually transform a noisy latent z with noise ϵ
typically from a Gaussian distribution, towards image data x
that reproduce the semantics of a given text prompt y. This
generative process slowly adds structure to the noise, based
on a weighted denoising score matching objective [12, 27].
2D-lifting for 3D generation. In contrast to existing text-
to-image generation models, text-guided 3D generative mod-
els [10, 21, 22, 24, 26, 29, 38, 39] usually optimize a 3D
model by guiding its randomly rendered 2D view based on
the pretraining knowledge of some text-to-image genera-
tion model, because of the shortage of text-3D paired assets.
DreamFusion [29] and subsequent work [4, 17, 37, 42, 44]
propose to optimize the 3D model by distilling a pretrained
diffusion model [32, 33] via score distillation sampling [39].
Generate objects with SDF. In text-to-3D generation, re-
cent works [10, 17, 19, 21, 29, 37, 39, 40, 42] parameterized
the 3D scene as a NeRF [2, 23] or a hybrid pipeline com-
bining NeRFs with a mesh refiner [11, 17, 36, 38]. In our
approach, we use a signed distance field (SDF) as the geom-
etry representation instead of NeRF densities, as we aim at
modeling multi-object scenes in a compositional way, where
objects may be coupled in various ways. SDF provides cru-



cial inside/outside information, allowing for geometry con-
straints to prevent unexpected intersections between objects,
and is ideal for complex scenes as it facilitates customization
of initial locations and scales of object SDFs.
Hybrid 3D representation for disentanglement. Another
line of work uses hybrid representations to learn disentan-
gled 3D objects [15, 20, 43]. The works [6, 7] put forward
a hybrid approach that represents the face/body as meshes
and the hair/clothing as NeRFs, enabling a disentangled re-
construction of avatars. [48] adopts this representation and
proposes a text-to-3D method that generates compositional
head avatars. However, the use of a parametric head model
limits this method to human head generation. Their disen-
tanglement only applies to two objects (e.g., face and hair),
and in contrast, ours can be used for multiple objects.

3. Preliminaries
Score distillation sampling (SDS). SDS [29] is a technique
that optimizes a 3D model by distilling a pretrained text-to-
image diffusion model. Given a noisy image zt rendered
from a 3D model parameterized by Θ, and a pretrained text-
to-image diffusion model with a learned noise prediction
network ϵϕ(·), SDS uses ϵϕ(·) as a score function that pre-
dicts the sampled noise ϵ contained in xt at noise level t as
ϵ̂ϕ(y, t) = ϵϕ(zt; y, t), where y is a given conditional text
embedding. The score is then used to warp the noisy zt
towards real image distributions, by guiding the direction of
the gradients that update the parameters Θ of the 3D model:

∇ΘL(z; y) = Et,ϵ

[
w(t)

(
ϵ̂ϕ(y, t)− ϵ

) ∂z

∂Θ

]
(1)

where w(t) is a weighting function that depends on t and ϵ
is the sampled isotropic Gaussian noise, ϵ ∼ N (0, I).
SDF volume rendering. To render a pixel color of a tar-
get camera, we cast a ray r from the camera center o
along its viewing direction d, then sample a series of points
p = o+td in between the near and far intervals [tn, tf ]. Fol-
lowing NeRF [23], the ray color C(r) can be approximated
by integrating the point samples,

C(r) =

N∑
i=1

wici =

N∑
i=1

Tiαici (2)

where wi is the color weighting function, Ti represents
the cumulative transmittance, which is calculated as Ti =∏i−1

j=1(1−αj), and αi denotes the piece-wise constant opac-
ity value for the i-th sub-interval, with αi ∈ [0, 1].

Unlike NeRFs that directly predict the density for a given
position p, methods based on implicit surface representation
learn to map p to a signed distance value with a trainable
network and extract the density [46] or opacity [41] from
the SDF with a deterministic transformation. We extract the

opacity following NeuS [41]. NeuS formulates the transfor-
mation function based on an unbiased weighting function,
which ensures that the pixel color is dominated by the inter-
section point of camera ray with the zero-level set of SDF,

αi = max

(
Φβ(ui)− Φβ(ui+1)

Φβ(ui)
, 0

)
(3)

where Φβ(·) is the Sigmoid function with a trainable steep-
ness β, and ui is the SDF value of the sampled position.

4. Method
Consider generating a scene of M objects, O = {oi}Mi=1

from a global text prompt yg. When the scene is complex
or has many attributes and inter-object relationships to spec-
ify, yg will become very long, and the generation will be
accompanied by guidance collapse [3, 16]. We thus propose
to first generate a scene graph G(O) from yg following the
setting of [13], which precisely describes object attributes
and inter-object relationships. We provide an example of a
four-object scene in Figure 1 for better illustration.

4.1. Leveraging Scene Graphs for Text Grounding

Given user text input yg, objects {oi}Mi=1 in the text (which
can be detected either manually or automatically, e.g., using
ChatGPT2) form the nodes in graph G(O), as shown in
Figure 1. To provide more details to an object oi, the user
can add additional descriptions, such as “Wise-looking” and
“Leather-bound”, which become the attributes attached to
oi in G(O). Combining oi with all its attributes simply by
commas, we get an object prompt y(i) for oi that can be
processed by text encoders.

The relationship between each pair of objects oi and oj is
transformed into edge ei,j in G(O). For instance, the edge
between node “Wizard” and “Desk” is “Standing in front of”.
For a graph with M nodes, there are possibly CM

2 edges.
By combining oi, ei,j , and oj , we obtain edge prompt y(i,j)
that exactly defines the pairwise relationship, e.g., “Wizard
standing in front of Wooden Desk”. Note that there might
be no edge between two nodes, e.g., between “Wizard” and
“Stack of Ancient Spell Books”. We denote the number of
existing edges in G(O) as K, with K ≤ CM

2 .
From this example, we also see that using graph G(O)

is a better way to customize a scene compared to a pure
text description yg, in terms of both flexibility in attaching
attributes to objects and accuracy in defining relationships.
By processing the input scene graph, we now obtain a set of
(1 +M +K) prompts Y

(
G(O)

)
as:

Y
(
G(O)

)
=
{
yg, y(i), y(i,j) | oi ∈ O, ei,j ∈ G(O)

}
(4)

which are used to guide scene generation from the perspec-
tive of both individual objects and pairwise relationships.

2ChatGPT4, https://chat.openai.com

https://chat.openai.com
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Figure 2. The overall pipeline of GraphDreamer. Specifically, GraphDreamer first decomposes the scene graph into global, node-wise and edge-wise text
description, and then optimizes the SDF-based objects in the 3D scene using their corresponding text description.

GraphDreamer consists of three learnable modules: a
positional feature encoder Fθ(·), a signed distance network
uϕ1

(·), and a radiance network cϕ2
(·). The entire model

is parameterized by Θ = {θ, ϕ1, ϕ2}. There are two goals
in optimizing GraphDreamer: (i) to model the complete
geometry and appearance of each object, and (ii) to ensure
that object attributes and interrelationships are in accordance
with the scene graph G(O). The overall training process is
illustrated in Figure 2.

4.2. Disentangled Modeling of Objects

Positional encodings are useful for networks to identify the
location it is currently processing. To achieve the first goal
of making objects separable, we need to additionally identify
which object a position belongs to. Therefore, instead of
one positional feature embedding, we encode a position p
into multiple feature embeddings by introducing a set of
positional hash feature encoders, each parameterized by θi,
corresponding to the number of objects,

Fθ(·) = {Fθi(·)}Mi=1 θ = {θi}Mi=1 (5)

These feature encoders then form different object fields, i.e.,
one field per object across the same scene space Ω ⊂ R3.
Individualized object fields. Given a position p ∈ Ω, the
feature that forms the field of object oi is obtained as:

f (i)(p) = Fθi(p) ∈ RF i ∈ {1, · · · ,M} (6)

where F is the number of feature dimensions, the same for all
Fθi(·). Here, for each Fθi(·) we adopt the multi-resolution
hash grid encoding from Instant NGP [25] following [17, 37,
42] to reduce computational cost.

These identity-aware feature embeddings are then passed
to the shared shallow MLPs for SDF and color prediction,
e.g., the SDF u(i)(p) ∈ R and color c(i)(p) ∈ R3 values for
object oi’s field are predicted as:

u(i)(p) = uϕ1

(
f (i)(p)

)
c(i)(p) = cϕ2

(
f (i)(p)

)
(7)

where u(i)(p) indicates the signed distance value from po-
sition p to the closest surface of object oi, with negative
values inside oi and positive values outside, and c(i)(p) the
color value in oi’s field where only object oi is considered.
Here, we follow prior work [45] to initialize the SDF approx-
imately as a sphere. We transform u(i)(p) into opacity with
Eq. (3) as γ(i)(p) for the volume rendering of object fields.

In scenes where mutual-obscuring relationships are in-
volved, to generate the complete geometry and appearance
for each object, we need to make hidden object surfaces visi-
ble. Therefore, the scene needs to be properly decomposed
before rendering the objects.

Scene space decomposition. Intuitively, a position p ∈ Ω
can be occupied by at most one object. Since the SDF de-
termines the boundary of an object, p can thus be identified
as belonging to object oi if its SDF values {u(i)}Mi=1 are
minimized at index i. Based on this, we define an one-hot
identity (column) vector λ(p) for each position p as:

λ(p) = argmax
i=1,··· ,M

{
−u(i)(p)

}
∈ {0, 1}M (8)

Based on λ(p), we can decompose the scene into identity-
aware sub-spaces and render each object individually with
all other objects removed.

Identity-aware object rendering. To render object oi,
given a position p, we multiply its opacity γ(i) in oi’s field
with λ(i)(p) to obtain the opacity for only object oi as:

α(i)(p) = λ(i)(p) · γ(i) ∈ [0,+∞) (9)

where λ(i)(p) is the i-th element in vector λ(p). If
λ(i)(p) = 1, which means p is identified as most likely
to be occupied by object oi, we have opacity α(i)(p) ≥ 0 in
object o’s field only, while in all other object fields p will be
empty. Based on this identity-aware opacity α(i)(p), we can
obtain the ray color with object oi present only as:



C(i)
r =

∑
p

α(i)(p)T (i)(p) · c(i)(p) (10)

where the cumulative transmittance T (i)(pj) is defined fol-
lowing Eq. (2). By aggregating all rendered pixels, an object
image C(i) is obtained, which contains object oi only. With
C(i) and the object prompt y(i) from the scene graph G(O),
we can thus define the object SDS loss following Eq. (1) as:

∇ΘL(i)
(
C(i); y(i)

)
oi ∈ O (11)

to supervise GraphDreamer at the object level.

4.3. Pairwise Modeling of Object Relationships

By building up a set of identity-aware object fields, we are
now able to render objects in G(O) individually to match
y(i). To make two related objects oi and oj respect the
relationship defined in edge prompt y(i,j), we need to render
oi and oj jointly. Therefore, a combination of two object
fields is required.
Edge rendering. Given an edge ei,j connecting nodes oi
and oj , we can accumulate an edge-wise opacity α(i,j)(p)
at position p from opacity values of oi and oj based on the
one-hot identity vector λ(p) as:

α(i,j)(p) =
∑

k∈{i,j}

λ(k)(p) · γ(k)(p) (12)

and similarly, an edge-wise color c(i,j)(p) at position p as:

c(i,j)(p) =
∑

k∈{i,j}

λ(k)(p) · c(k)(p) (13)

from which we can render a ray color across two object
fields of oi and oj following the same integration process as
Eq. (2), and obtain an edge image C(i,j) in with both objects
involved. We can thus define an edge SDS loss as:

∇ΘL(i,j)
(
C(i,j); y(i,j)

)
ei,j ∈ G(O) (14)

to match the edge prompt y(i,j).
Scene rendering. To provide global scene graph G(O) con-
straints, we further render the whole scene globally by com-
bining all object fields together. Similarly as for the edge
rendering, we use λ(p) to accumulated the global opacity
αg(p) and a global color c(p) at position p over all object
fields as:

αg(p) = λT (p) · γ(p) cg(p) = λT (p) · c(p) (15)

with γ(p) and c(p) denote the column vectors of opacity
and color values at p over all object fields. Through the
integration process, we can render the entire scene into a
scene image Cg that represents the entire scene graph. We

define a scene-level SDS loss, ∇ΘLg
(
Cg; yg

)
, to globally

optimize GraphDreamer to match the scene prompt yg .

Efficient SDS guidance. So far, a number of (M +K + 1)
SDS losses are introduced, corresponding to the number of
prompts we obtained in Eq. (4). However, optimizing all
constraints jointly is intractable. Instead, in each training
step, we include two SDS losses only: (i) an object SDS
loss Eq. (11) for only one object oi, with each step choosing
a different object oi looping through O; (ii) an edge SDS
loss Eq. (14) of one ei,j connected to oi, looping through
all existing edges connected to oi. The scene SDS loss is
included only in the training step after each traversal of O,
and is used solely in that step without any other SDS loss.
Thus, the total SDS loss for optimizing GraphDreamer is:

LSDS =

{
∇ΘL(i) +∇ΘLe, i = s % (M + 1)

∇ΘLg, others
(16)

where s indexes the current training step, and e refers to one
of the edges connected with oi.

4.4. Training Objectives

Apart from the SDS guidance, to further optimize the pre-
diction of unobserved positions, i.e., inside objects and on
hidden surfaces at object intersections, we include two geom-
etry constraints for physically plausible shape completion.

Penetration constraint. Since each point p ∈ Ω can be
inside or on the surface of at most one object o in the set
of objects O, and for regions outside the actual objects,
u(p) ∈ (0,+∞) with p ∈ Ω \ O, we define a penetration
measurement at point p:

N−(p) =

M∑
i=1

max
{

sgn
(
−u(i)(p)

)
, 0
}

(17)

where sgn(x) is the sign function. Intuitively, N−(p) mea-
sures the number of objects inside which the point p is
located, according to the predicted u(i)(p). Using this mea-
surement, we propose to implement a penetration constraint,

Lpenet(p) = max
{
0,N−(p)− 1

}
(18)

to constrains the penetration number N−(p) not to exceed
1, which is averaged over all sampled points during training.

Eikonal constraint. At each sampled position p, we adopt
the Eikonal loss [8] on SDF values u(i)(p) from all object
fields, formulated as

Leknl =
1

NM

∑
i,p

(∥∥∥∇u(i)(p)
∥∥∥
2
− 1

)
(19)

where N is the size of the sample set Pr on ray r.
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CLIP
Score

Magic3D [17] MVDream [37]
GraphDreamer

(w/o graph)
GraphDreamer

mean 0.3267 0.3102 0.3019 0.3326
std. 0.0362 0.0061 0.0254 0.0252

Table 1. Quantitative results. The mean and standard deviation (std.) values
are summarized from CLIP scores of 30 multi-object scenes, with the
number of objects in the scene ≥ 2. For better comparison, we provide the
result of GraphDreamer (w/o graph), the configuration with the scene graph
G(O) dropped from GraphDreamer, and thus the conditioning text for all
renderings collapse to a single yg .

Total training loss. Our final loss function for training
GraphDreamer thus consists of four terms:

LΘ = β1LSDS + β2Lpenet + β3Leknl (20)

where {β1, β2, β3} are hyperparameters.

5. Experiments and Results
Implementation details. We adopt a two-stage coarse-to-
fine optimization strategy following previous work [4, 17,
29, 37]. In the first stage of 10K denoising steps, we render
images of 64×64 resolution only for faster convergence and
use DeepFloyd-IF3 [14, 33] as our guidance model, which is
also trained to generate 64px images. In the second stage of
10K steps, the model is refined by rendering 256px images
and uses Stable Diffusion4 [32] as guidance. Both stages of
optimization use 1 Nvidia Quadro RTX 6000 GPU; Graph-
Dreamer uses 16.88/18.58/20.05 GB for generating 2/3/4
objects, while Magic3D/MVDream uses 11.44/20.33 GB.
Baseline approaches. We report results of two state-of-the-
art approaches, Magic3D [17] and MVDream [37]. Both
approaches use a frozen guidance model without additional
learnable module [42] and do not have special initialization
requirements [4] for geometry. We use the same guidance
models and strategy to train Magic3D, while for MVDream,
since it proposes to use a fine-tuned multi-view diffusion
model5, we follow its official training protocol and use its
released diffusion model as guidance. The experimental
results of GraphDreamer and the baselines are all obtained
after training for 20K steps in total.
Evaluation criteria. We report the CLIP Score [30] in quan-
titative comparison with baseline models and evaluation on
object decomposition. The metric is defined as:

CLIPScore(C, y) = cos
〈
EC(C), EY (y)

〉
(21)

which measures the similarity between a prompt text y for
an image C and the actual content of the image, with EC(C)
the visual CLIP embedding and EY (y) the textual CLIP
embedding, both encoded by the same CLIP model6.

3DeepFloyd-IF, huggingface.co/DeepFloyd/IF-I-XL-v1.0
4Stable diffusion, huggingface.co/stabilityai/stable-diffusion-2-1-base
5MVDream-sd-v2.1-base-4view, huggingface.co/MVDream/MVDream
6CLIP B/32, huggingface.co/openai/clip-vit-base-patch32

CLIP Score
w. Self Prompt ↑ w. Other Prompts ↓
mean std. mean std.

GraphDreamer 0.308 0.012 0.201 0.009

Table 2. The CLIP scores of individual object images C(i). Metric w. Self
Prompt refers to scores calculated between C(i) and its own prompt y(i),
and w. Other Prompts between C(i) and prompts of all other objects in
the same scene {y(j), j ̸= i, oj ∈ O}. Detailed experimental settings and
analysis on these figures as well as the on the chart showing in Figure 4,
can be found in Subsection 5.3.
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Figure 4. Error bands of object CLIP scores.

5.1. Comparison to Other Methods

We report quantitative results in Table 1 and qualitative re-
sults in Figure 3. The figures in Table 1 are summarized
from CLIP scores of 30 multi-object scenes, with the num-
ber of objects ≥ 2. GraphDreamer (full model) achieves the
highest CLIP score. Qualitative results shown in Figure 3
also suggest that GraphDreamer is generally more applica-
ble in producing multiple objects in a scene with various
inter-object relationships. As can be observed from baseline
results, semantic mismatches are more commonly found,
such as, in the example of “two macaw parrots sharing a
milkshake with two straws”, Magic3D generates two “milk-
shakes” and MVDream produces one “parrot” only, which
mixed up the number attribute of “milkshake” and “parrots”,
and in the example of ”a hippo biting through a watermelon”,
two objects “hippo” and “watermelon” are blended into one
object; GraphDreamer, on the other hand, models both in-
dividual attributes and inter-object relationships correctly
based on the guidance of the input scene graph.

5.2. Ablation Study

To evaluate the effect of introducing scene graph G(O) as
guidance on preventing guidance collapse, we consider to
drop G(O) from GraphDreamer, termed w/o graph, and
compare the results in Table 1 and Figure 3. GraphDreamer
(w/o graph) collapses the conditioning text from a set of
prompts defined in Eq. (4) to only the global prompt yg and
thus involves no object/edge rendering (described in Sec-
tion 4.2 and 4.3) in training; LSDS from Eq. (16) becomes
∇ΘLg , with all other implementation details unchanged. As
reported in the fourth column of Table 1, the mean CLIP
score of the ablated configuration decreases by more than 3

https://huggingface.co/DeepFloyd/IF-I-XL-v1.0
https://huggingface.co/stabilityai/stable-diffusion-2-1-base
https://huggingface.co/MVDream/MVDream
https://huggingface.co/openai/clip-vit-base-patch32
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Figure 5. More qualitative compositional examples from GraphDreamer.

std. compared to the full model, indicating that the ability
of this configuration to generate 3D scenes that match given
prompts is significantly reduced. The results in Figure 3 also
corroborate such a decline, given that the problems such as
missing objects and attribute confusion arise again. Both
evaluations suggest the need for the scene graph G(O) in
GraphDreamer for combating guidance collapse problems.

5.3. Decomposition Analysis

We consider scenes with the number of objects ≥ 2. To
further quantitatively evaluate whether objects in a scene are
well separated and rendered into object images individually,
we calculate two CLIP metrics for each object image C(i):
(i) w. Self Prompt (abbr., wSP) refers to the CLIP score be-
tween C(i) and its own object prompt y(i), and (ii) w. Other
Prompts (abbr., wOP) refers to the CLIP scores between
C(i) and all other object prompts {y(j), j ̸= i, oj ∈ O} in
the same scene. Intuitively, if a scene is well decomposed,
each object image C(i) should contain one object oi only
without any part of other objects, and thus the scores wSP
should be much higher than the scores wOP. Table 2 re-
ports a statistical summary on the metrics of 64 objects, for
each object, we render images from 4 orthogonal views C(i)

v

(v = 1, 2, 3, 4), and thus we get 4 wSP scores and multiple

wOP scores per object. We calculate the mean and standard
deviation (std.) of these wSP and wOP scores separately
over the view images. The figures reported in the table are
averaged over all 64 objects. The mean and std. values are
also presented in an error band graph in Figure 4, where
the x-axis is the index of objects. From this graph it can be
observed more obviously that the wSP CLIP score is signif-
icantly higher than the wOP CLIP score, without overlap
between the mean wSP scores and the mean ± 3 std. error
band of the wOP scores, which shows that the scenes are
properly decomposed into individual objects. More compo-
sitional examples can be found in Figure 5.

6. Concluding Remarks

This paper proposes GraphDreamer, which generates compo-
sitional 3D scenes from scene graphs or text (by leveraging
GPT4-V to produce a scene graph from the text). Graph-
Dreamer first decomposes the scene graph into global, node-
wise, and edge-wise text descriptions and then optimizes the
SDF-based objects with the SDS loss from their correspond-
ing text descriptions. We conducted extensive experiments
to show that GraphDreamer is able to prevent attribute confu-
sion and guidance collapse, generating disentangled objects.
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A. Experimental Settings
A.1. Additional Implementation Details

Point-wise identity vector λ(p). As defined in Eq. (8), identity vector λ(p) at a given position p is defined as an one-hot
vector for a better disentanglement in the forward rendering process. To combine λ(p) into differentiate training, we customize
the gradient of λ(p) in back-propagation by combining with a Softmax operation:

λ+(p) = λ(p) +
{
s(p)− sg

[
s(p)

]}
s(p) = Softmax

(
−u(p)

)
(22)

where second term s(p)− sg[s(p)] is zero in value, with sg(·) standing for the stop-gradient (e.g., .detach() in PyTorch)
operation, and thus contributes only the gradient for updating GraphDreamer.

Penetration Constraint Lpenet. In Eq. (18), we introduced a rather intuitive definition for the penetration constraint, which
is, however, not continuous over object identities i ∈ {1, · · · ,M}. To further refine this constraint, we implement Lpenet as:

Lpenet =
1

(M − 1)N

∑
j ̸=i,p

{
ReLU

[
d(p)− u(p)

]}2

d(p) = ReLU
[
λ+(p) · −u(p)

]
(23)

where N is the size of sampled positions on the current ray, λ+(p) is the differentiable identity vector defined in Eq. (22),
and term d(p) is an one-hot vector. If p is inside or on the surface of object o(i), and u(i)(p) gets the minimum among other
object SDFs, the only non-negative element of d(p) equals the absolute value of u(i)(p). Then, Lpenet prevents all other SDF
values (j ̸= i) from being negative. Or else, if p is outside of all objects, Lpenet has not impact on u(p). An ablation study for
this constraint can be found in Section B.

A.2. Hyperparameter Settings

Training loss coefficients. We set coefficients {β1, β2, β3} defined in Eq. (20) based on the magnitude of each loss term, as
β1 = 1 for LSDS , β2 = 100 for Lpenet, and β3 = 10 for Leknl.
Classifier free guidance. Classifier-free guidance [9] weight (CFG-w) is a hyperparameter that trades off image quality and
diversity for guiding the 2D view. We schedule CFG-w for the training of GraphDreamer roughly based on the number of
objects M as below, considering that the larger the number M , the more difficult it is for mode seeking.

Method GraphDreamer
Magic3D MVDream

(Nmber of Objects) M = 2 M ≥ 3

Coarse Stage (<10K steps) 50 (IF) 100 (IF) 100 (IF)
50 (MVSD)

Fine Stage (10K∼20K steps) 50 (SD) 50 (SD) 50 (SD)

Table 3. CFG-w settings for GraphDreamer and baseline approaches. IF stands for DeepFloyd-IF model, SD for Stable diffusion, and MVSD for MVDream
Stable diffusion, as detailed in Section 5 (para. Baseline approaches).



B. Additional Experiments and Results
B.1. Ablation: Penetration Constraint

As introduced in Section 4.4 and defined practically in Eq. (23), the purpose of using the penetration constraint Lpenet is to
prevent unexpected penetrations between the implicit surfaces of objects, represented by SDF u(i)(p), in a multi-object scene.
To verify the necessity of this constraint, we ablate Lpenet in training GraphDreamer and report the quantitative and qualitative
results of this ablated configuration, denoted as GraphDreamer w/o Lpenet, in Table 4 and Figure 6.
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Figure 6. Ablation study: GraphDreamer (w/o Lpenet) stands for the configuration that trains GraphDreamer without penetration constraint Lpenet(p).

As shown in Figure 6, objects generated without Lpenet are more likely to inter-penetrate; as a result, it is much harder to
identify clean segmentation boundaries between objects. The CLIP scores shown in Table 4 also suggest a degradation in the
performance of this ablated configuration in modeling individual objects, as the mean similarities of both object image C(i)

with its own prompt y(i) (w. Self Prompt) and scene image Cg with global prompt yg (Global) drop down significantly, while
the mean similarity of C(i) with other object prompts (w. Other Prompts) increases slightly.

CLIP Score
w. Self Prompt w. Other Prompts Global

mean (↑) std. mean (↓) std. mean (↑) std.

GraphDreamer (w/o Lpenet) 0.2665 0.0091 0.2070 0.0087 0.3064 0.0210
GraphDreamer 0.3077 0.0121 0.2006 0.0085 0.3326 0.0252

Table 4. Ablation study of the penetration constraint (with or without Lpenet).

B.2. User Study

Methods MVDream Magic3D GraphDreamer
Selected (%) 23.12 14.62 62.26

Table 5. User study: selecting one from three generated results that best aligns with given text prompts. The results are collected from 31 raters and
summarized over 30 multi-object prompts. All raters are asked to evaluate all prompt examples.

To further evaluate the performance of GraphDreamer in generating guidance-compliant multi-object scenes, we conduct a
survey of the results generated by the baseline approaches and GraphDreamer over 30 multi-object text prompts. We invite
31 raters for this study. All raters are asked to evaluate all examples and, for each prompt, to select one of the three results
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Figure 7. Extended qualitative comparison with more baseline approaches. Note that Fantasia3D relies on the SDF initialization, which may achieve better
performance if fine-grind initial shapes are provided. Here, we report results using default sphere initialization.



that semantically best fits the given prompt (if all/none of the results fit well, select the one that has the highest fidelity). The
answers are summarized in Table 5. In general, more raters (62.26%) selected the results produced by GraphDreamer over the
other two baseline approaches, considering our results to be more consistent with the given prompts.

B.3. Extended Comparison to Other Text-to-3D Methods

To provide a more comprehensive comparison on the performance of recent TT3D methods in generating multi-object scenes,
we extend the quantitative and qualitative comparison reported in Table 1 and Figure 3 respectively with two more baseline
approaches, DreamFusion [29] and Fantasia3D [4] and one more evaluation criteria, CLIP R1-Precision as reported in Table 6.
Both baseline results are obtained after 20K training steps. For DreamFusion, we adopt the same two-stage training protocol as
GraphDreamer and Magic3D, with details provided in Section 5. As shown in Figure 7, problems related to guidance collapse
occur in both methods, while Fantasia3D failed in some cases. Note the performance of the Fantasia3D methodology may
vary depending on how the shape of the SDF surface is initialized, whereas here we have only performed the default sphere
initialization (with a radius of 0.5). We have also conducted generation experiments with ProlificDreamer [42], which adopts a
three-stage optimization strategy, and yet it still failed to generated any content in these multi-object cases after 20K steps of
training in the first stage (both setting CFG-w to 100 or 200), and the results are thus not included.

Metric Magic3D MVDream DreamFusion Fantasia3D GraphDreamer
CLIP R1-Precision 87.5% 89.2% 80.0% 71.7% 94.2%
CLIP-B/32 Score 0.3267 0.3102 0.2743 0.2243 0.3326

Table 6. CLIP-B/32 Score & R1-Precision across all 30 multi-object scenes. The reported precision is averaged over 4 orthogonal views for each object.

Videos of Figure 3 and Figure 5 can be found in our project page.



C. Inverse Semantics: A Paradigm of Semantic Reconstruction with GPT4V-guided Graph-
Dreamer

In this section, we envision a new paradigm, called inverse semantics, which first reconstructs a scene graph from an input
image and then produces a compositional 3D scene based on this scene graph. We call it inverse semantics, because it
resembles the idea of inverse graphics in a high-level sense. Inverse semantics differs from inverse graphics in the aspect of
reconstruction that is emphasized; it focuses on interpreting semantic meaning rather than reconstructing visual details. The
comparison between inverse graphics and inverse semantics is given as follows.

Inverse Semantics

(a) The traditional analysis-by-synthesis reconstruction pipeline

Physical parameters
(Albedo, Geometry, Lighting, Viewpoint, etc.)

Image Image

Encoding Rendering
3D representation

(b) The semantic reconstruction pipeline

Scene GraphImage Image

Encoding Rendering

Inverse Graphics

Object-centric 3D representation

Decoding

Pixel-level reconstruction

Semantics-level reconstruction

Figure 8. A paradigm comparison between inverse graphics and inverse semantics

Specifically, we can implement the inverse semantics paradigm with a GPT4V-guided GraphDreamer. We first use GPT4V
to obtain the scene graph from an input image, and then apply GraphDreamer to generate a compositional 3D scene based on
this scene graph. Enhanced by GPT4V’s powerful image understanding capabilities, we can obtain a detailed scene graph from
the input image and generate a 3D scene from the graph that semantically inverses the given image. An qualitative example of
our inverse semantics paradigm is provided in Figure 9.

Moreover, it is also possible to extract rough estimates of the center coordinates of the objects in the graph from the image
with GPT4V. The coordinate estimates are in 2D (the up-right plane) only, since the image is in 2D. For the third coordinate
(on the front axis), GPT4V can offer the relative order by layering objects from the viewer’s perspective. Then, with the
SDF representation of 3D objects, we can use these estimates as the sphere centers when initializing object SDFs u(i)(p) to
specify more accurately the spatial relationships of the objects, and thus to make the generated 3D scene better match the given
image. We expect that the inverse semantics paradigm could be of general interest to the community, and our GPT4V-guided
GraphDreamer serves as an important stepping stone towards this direction.



Nodes (Objects):
- Man
- Hat
- Shotgun

Edges (Relationships):
- Man -> wearing (on head) -> Hat
- Man -> holding with both hands -> Shotgun

Attributes:
- Man: elderly, grey bearded, long grey hair
- Hat: wide-brimmed, pointed top, grey
- Shotgun: automatic, curved magazine, metallic

ChatGPT

Please generate a scene graph that best 
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Visual Genome dataset, restricting to 
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User
Man

Hat

elderly

Shotgun

grey 
bearded

long
grey hair

wide-brimmed

pointed
top

grey automatic
metallic

wearing
on head

holding
with both hands

curved 
magazine

Figure 9. A qualitative example of the inverse semantics paradigm. We generate a scene graph directly from an input image with GPT4V and restrict the
nodes present to the most salient ones. GPT4V identifies the objects and provides with proper attributes and edges for each object. This makes it possible to
inverse modeling the semantics of a given scene image and extends the potential applications of GraphDreamer.

…

Nodes (Objects):
- Kirby (Character)
- Table
- Lamp
- Bookshelf
- Cushion (Soft Surface)

Edges (Relationships):
- Kirby -> resting on -> Cushion
- Lamp -> place on -> Table
- Lamp -> casting light on -> Kirby
- Bookshelf -> standing beside -> Table
- Cushion -> positioned in front of -> Table

Attributes:
- Kirby (Character): pink, sleeping, round
- Table: wooden, sturdy, low
- Lamp: yellow light, illuminating, bright
- Bookshelf: organized, stocked with books, holding plant
- Cushion (Soft Surface): soft, plush, comfortable

ChatGPT

Please generate a scene graph that best describes 
the image, in the style of the Visual Genome 
dataset, restricting to the most salient 5 nodes.

User

User

Can you try to estimate the center coordinates of the objects in 
the scene graph? Try your best to give me a rough estimate.
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Figure 10. An example of more complex semantics represented with more nodes. ChatGPT structures the semantics in this complex image into a scene graph
using the most salient node. To inverse such semantics and generated the scene in 3D, one may further ask GPT to provide with center coordinates for each
node, which can make the semantic inverse more precise in terms of spatial relations.

D. Failure Cases and Limitations

GraphDreamer still has some limitations. First, the generation quality of a single object is still largely limited by the SDS
optimization. The commonly observed multi-head problems (i.e., Janus problem) may also appear in GraphDreamer. See
Figure 11(a) for an example. The “piglet” in the generated results exhibits multiple heads from different viewpoints. Second,
the decomposition of different objects may sometimes fail. See Figure 11(b) for an example. We observe that the disentangled
“astronaut” still looks like a reasonable astronaut, but the disentangled violin is affected by some parts of the astronaut. Third,
the semantic meaning of some object in the scene may be incomplete. See Figure 11(c) for an example. The hero character
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Playing
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"an piglet playing the piano"
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Figure 11. Examples of some failure cases. (a) In some cases, results of GraphDreamer may come with the Janus problem. (b) GraphDreamer failed to
separate the violin from the astronaut’s left hand, which is closely held by that hand. (c) One leg of the Hero is missing. Part of these problems may stem from
the SDS loss which only offers an approximate gradient (the Jacobian of Stable Diffusion is set to identity) and the known challenges when diffusion models
deal with detailed parts. Optimizing multiple SDS losses Eq. (16) at the same time can also affect disentanglement. Enhanced supervision on object parts and
improved prompts could help.

lacks a leg in the generated result.
We believe that part of these problems stem from the SDS loss which only offers an approximate gradient (the Jacobian of

Stable Diffusion is set to identity) and the known challenges when diffusion models deal with detailed parts. We also suspect
that optimizing multiple SDS losses Eq. (16) at the same time may affect disentanglement, and thus enhanced supervision on
object parts and improved prompts could help.


