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PanopticNeRF-360: Panoramic
3D-to-2D Label Transfer in Urban Scenes

Xiao Fu, Shangzhan Zhang, Tianrun Chen, Yichong Lu, Xiaowei Zhou, Andreas Geiger, Yiyi Liao B

Abstract—Training perception systems for self-driving cars requires substantial 2D annotations that are labor-intensive to manual
label. While existing datasets provide rich annotations on pre-recorded sequences, they fall short in labeling rarely encountered
viewpoints, potentially hampering the generalization ability for perception models. In this paper, we present PanopticNeRF-360, a novel
approach that combines coarse 3D annotations with noisy 2D semantic cues to generate high-quality panoptic labels and images from
any viewpoint. Our key insight lies in exploiting the complementarity of 3D and 2D priors to mutually enhance geometry and semantics.
Specifically, we propose to leverage coarse 3D bounding primitives and noisy 2D semantic and instance predictions to guide geometry
optimization, by encouraging predicted labels to match panoptic pseudo ground truth. Simultaneously, the improved geometry assists
in filtering 3D&2D annotation noise by fusing semantics in 3D space via a learned semantic field. To further enhance appearance, we
combine MLP and hash grids to yield hybrid scene features, striking a balance between high-frequency appearance and contiguous
semantics. Our experiments demonstrate PanopticNeRF-360’s state-of-the-art performance over label transfer methods on the
challenging urban scenes of the KITTI-360 dataset. Moreover, PanopticNeRF-360 enables omnidirectional rendering of high-fidelity,
multi-view and spatiotemporally consistent appearance, semantic and instance labels.

Index Terms—3D-to-2D Label Transfer, Panoptic Labeling, Semantic Labeling, Neural Rendering, Urban Scene Understanding
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1 INTRODUCTION

IN autonomous driving, large-scale semantic instance an-
notations of real-world scenes are foundational for boot-

strapping perception models [17], [27], [72]. Manually anno-
tation of semantic and instance masks at the pixel level is
recognized to be labor-intensive and costly. For example,
a single street scene image demands approximately 1.5
hours for comprehensive instance annotation [15]. Further-
more, going beyond the traditional task of annotating pre-
recorded data from fixed viewpoints, offering RGB images
and annotations from various new viewpoints carries sig-
nificant value. This augmentation of viewpoint diversity
holds the potential to enhance the generalization capabilities
of perception models. Therefore, in this paper, we aim to
devise a semi-automated framework that involves relatively
low-cost human labor for generating high-fidelity labels and
RGB images from both pre-recorded and novel viewpoints.

3D-to-2D label transfer has great potential in this
area [32], [43], [77]. By annotating coarse bounding primi-
tives in 3D space and propagating these manually annotated
coarse 3D primitives to dense and multi-view consistent 2D
semantic and instance annotations, it significantly reduces
the labeling time to 0.75 minutes per image [43], yielding
a ∼120x speedup compared to 2D per-pixel labeling [15].
Existing methods [43], [77] automatically infer dense 2D
labels leveraging 3D annotations, 2D pre-trained models
(e.g., noisy 2D semantic predictions) and 2D image cues via
conditional random fields (CRF). This CRF-based method-
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ology necessitates intermediary 3D reconstructions for the
projection of non-occluded 3D points. A limitation lies in
the fact that the 3D reconstruction cannot be collaboratively
and jointly optimized within the CRF framework, and as a
consequence, any inaccuracies in the reconstruction phase
propagate to the label transfer outputs. Besides, these meth-
ods are incapable of transferring labels to novel viewpoints.

In this paper, we introduce PanopticNeRF-360, a
novel method that utilizes a 360◦ Neural Radiance Field
(NeRF) [52] to estimate geometry and semantics in a joint
and differentiable manner. PanopticNeRF-360 takes as input
a set of sparse forward-facing stereo images and two side-
facing fisheye images, as well as coarse 3D annotations and
noisy 2D semantic predictions. By inferring semantic and
instance labels in 3D space, the model renders dense 2D
semantic and instance labels, i.e., panoptic segmentation
labels [36], at novel viewpoints (see Fig. 1). Note that our
model enables rendering images from diverse viewpoints
and even panoramic images, by incorporating the fisheye
images of a large field of view. However, obtaining accurate
geometry and semantics is non-trivial in urban scenes. In
driving scenarios, where we have sparse input views with
frequent over-exposure (particularly common for fisheye
views due to directly facing of the sun), reconstructing
high-quality geometry using NeRF is challenging. More-
over, inferring precise semantics in 3D space is also difficult
given imprecise geometry and coarse 3D annotations with
many overlapping regions. Errors in geometric reconstruc-
tion (e.g., 3D floaters enclosed by a 3D bounding primitive)
and label ambiguity of the 3D coarse annotations (e.g.,
overlapping regions of car and road) can negatively impact
the label transfer step, leading to incorrect 2D semantic and
instance labels. While several prior works have modeled 3D
semantic fields [73], [78], [83], we make a surprising key ob-
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Fig. 1: PanopticNeRF-360 takes as input a set of sparse forward-facing stereo images and two side-facing fisheye images,
coarse 3D bounding primitives and noisy 2D semantic predictions (yellow boxes highlight inaccurate predictions). By
inferring in 3D space, our model generates multi-view consistent semantic and instance labels in 2D image space via
volume rendering. Our holistic formulation allows for rendering panoramic appearance and label maps (output).

servation: As illustrated in Fig. 2, naı̈ve joint optimization of
geometry and semantics does not necessarily yield mutual
improvements in our setting.

To tackle these challenges, we aim for mutual enhance-
ment of geometry and semantics by introducing two auxiliary
parameter-free semantic and instance fields to regularize
density estimation, followed by joint optimization of geom-
etry and semantics to resolve label ambiguity, as illustrated
in Fig. 3. The results of our model are shown at the bottom
of Fig. 2, demonstrating higher accuracy and consistency
than the baseline. Firstly, we propose label-guided geom-
etry optimization, utilizing coarse 3D bounding primitives
and 2D pseudo labels to guide geometry optimization. In
particular, we render panoptic labels utilizing the deter-
ministic 3D bounding primitives (which we refer to as a
fixed semantic/instance field as it provides non-trainable
semantic and instance logits) and learned density fields,
and encourage the rendered labels to match a 2D panoptic
pseudo ground truth. As evidenced by our experiments,
this leads to significant improvements of the density field
despite the pseudo ground truth being noisy. This pseudo
ground truth consists of semantic predictions from pre-
trained 2D segmentation models and instance labels derived
from a simple geometric prior1. Secondly, we propose a
joint geometry and semantic optimization strategy to im-
prove semantics. Specifically, conditioned on the improved
geometry, we learn to predict semantic categorical 3D logits

1. For label-guided geometry optimization, we only consider instance
labels of buildings, as buildings are the most frequently connected class
that may yield wrong geometry at the adjacent boundary.

to match semantic points in 3D bounding primitives and
its corresponding 2D distribution via volume rendering
to match the 2D noisy predictions. This enables resolving
label ambiguity of the 3D bounding primitives between
different semantic classes and substantially mitigates noise
in the 2D predictions. Note that depsite that 2D semantic
predictions of fisheye images may be of low quality due
to the lack of training data, our method resolves the noise
thanks to the holistic design of utilizing the weak 3D labels
and the 2D noisy predictions, enabling rendering improved
panoptic labels at arbitrary viewpoints. Despite rendering
satisfactory panoptic labels, attaining high-quality appear-
ance remains a problem, as the semantic label is contiguous
across the same object/stuff while the corresponding ap-
pearance can contain high-frequency details. To tackle this
problem, PanopticNeRF-360 combines features of a deep
MLP and multi-resolution hash grids to model semantics
and appearance. This allows us to leverage the smooth in-
ductive bias of MLPs for semantics and the expressive local
hash features for appearance, enabling rendering panoptic
labels and photorealistic RGB images from arbitrary novel
viewpoints.

We conduct extensive experiments on the KITTI-360
dataset and showcase that our generalization ability on the
Waymo dataset. As evidenced by our experimental results,
PanopticNeRF-360 showcases state-of-the-art performance
and outperforms existing 3D-to-2D and 2D-to-2D label
transfer methods and demonstrates a promising path to-
ward the efficient generation of densely annotated datasets
that are pivotal for the advancement of autonomous driv-
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Fig. 2: Comparison of Different Geometry and Semantic Optimization Methods. Compared to the naı̈ve joint
optimization of geometry and semantics (top), ours leads to mutual enhancement of geometry and semantics (bottom).

ing systems. In summary, our contributions are as fol-
lows: (1) We present the first model that tackles 3D-to-
2D label transfer via neural rendering. Towards this goal,
we unify easy-to-obtain 3D bounding primitives and noisy
2D semantic predictions in a single model, yielding high-
quality panoptic labels and high-frequency imagery. (2)
We propose novel optimization strategies to enable mutual
improvement of geometry and semantics. Our label-guided
geometry optimization shows that the underlying geometry
can be effectively improved by leveraging noisy 3D and
2D panoptic labels. (3) PanopticNeRF-360 achieves state-
of-the-art performance compared to existing label transfer
methods in terms of both semantic and instance predictions
in challenging urban scenes. Further, PanopticNeRF-360 en-
ables omnidirectional rendering of high-fidelity appearance
and spatio-temporally consistent panoptic labels, providing
labeled data from novel viewpoints to potentially enhance
the generalization ability of perception models.

Relation to PanopticNeRF [19]: This paper is an extension
of our earlier conference paper PanopticNeRF [19]. We im-
prove upon [19] in several aspects: We (1) extend perspec-
tive label transfer to omnidirectional 360◦ label transfer, (2)
incorporate instance labels into label-guided geometry op-
timization, thus achieving panoptic label-guided geometry
optimization, (3) achieve higher quality semantics (0.8 on
forward-facing mIoU) and instances (2.3 on forward-facing
PQ), (4) improve scene features from pure MLPs to a hybrid
of MLPs and grids for improved appearance (∼4dB) in less
training time (∼2.5x speedup), and (5) extensively enrich the
experimental section by including new label transfer results
on fisheye views and comparison to more recent baselines.

2 RELATED WORK

Urban Scene Segmentation: Semantic instance segmen-
tation is a critical task for autonomous vehicles [58], [84].
Learning-based algorithms have achieved compelling per-
formance [12], [42], [82], but rely on large-scale training data.
Unfortunately, annotating images at the pixel level is ex-
tremely time-consuming and labor-intensive, especially for
instance-level annotation. SAM [37] demonstrates extraor-
dinary generalizable ability in zero-shot object boundary
segmentation, but it lacks an understanding of high-level
semantics. While most urban datasets provide labels in 2D

image space [4], [15], [34], [56], [75], autonomous vehicles
are usually equipped with 3D sensors [6], [21], [22], [32],
[43], allowing to exploit 3D information for labeling. KITTI-
360 [43] demonstrates that annotating the scene in 3D can
significantly reduce annotation time. However, transferring
coarse 3D labels to 2D remains challenging. In this work, we
focus on developing a novel 3D-to-2D label transfer method
exploiting recent advances in neural scene representations.

Label Transfer: Several prior works have investigated
how to label individual frames more efficiently [1], [2],
[8], [25], [45], [46]. In this paper we focus on efficient
labeling of video sequences. Existing works in this area
fall into two categories: 2D-to-2D and 3D-to-2D. 2D-to-2D
label transfer approaches reduce the workload by propa-
gating labels across 2D images [20], [29], [59], [60], [61] or
transferring labels from frontal views to Bird’s-Eye-View
(BEV) maps [23], [24], whereas 3D-to-2D methods exploit
additional information in 3D for efficient labeling [5], [32],
[49], [50], [55], [76], [85]. To obtain dense labels in 2D
image space, one line of 3D-to-2D methods requires tedious
preprocessing in the 3D space [31]. Another line of methods
instead projects coarse 3D labels to the 2D image space and
manually refines the labels in 2D [32], [70]. The state-of-the-
art works [43], [77] perform per-frame inference jointly over
the 3D point clouds and 2D pixels using a non-local multi-
field CRF model, avoiding manual pre- or post-processing.
However, these methods require reconstructing a 3D mesh
to project 3D point clouds to 2D. The mesh reconstruction
is not jointly optimized in the CRF model as it is treated
as a pre-processing step, leading to inaccurate reconstruc-
tion that hinders label transfer performance. In contrast,
PanopticNeRF-360 provides a novel end-to-end method for
3D-to-2D label transfer where geometry and semantics are
jointly optimized.

Semantic-informed NeRFs: Recently, NeRF [52] emerged
as a novel powerful representation for novel view synthesis.
Semantic NeRF [83] initially augments NeRF [52] with a
semantic branch to encode multi-view consistent semantics
from noisy 2D semantic segmentations. However, Semantic
NeRF takes as input ground truth 2D labels or synthetic
noisy labels (test denoising ability), and faces difficulties
generating accurate labels given real-world predictions from
pre-trained 2D models. Additionally, Semantic NeRF oper-
ates in indoor scenes with dense RGB inputs and degen-
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Fig. 3: Challenges and Solutions. We propose semantic and
instance label-guided geometry optimization to improve the
underlying geometry. This allows for rendering accurate se-
mantic and instance labels when coarse 3D bounding prim-
itives correctly enclose the corresponding target without
ambiguity. We further resolve label ambiguity at intersection
regions of the 3D bounding primitives via joint geometry
and semantic optimization.

erates in challenging outdoor driving scenarios with sparse
input views [40], as also shown in our experiments. Jacobian
NeRF [78] further enhances semantic synergies of correlated
entities via contrastive learning on self-supervised visual
features for more effective label propagation. In contrast,
NeSF [73] emphasizes generalizable semantic field learning
via a feed-forward 3D U-Net supervised by 2D GT labels,
whereas we concentrate on the 3D-to-2D label transfer task
without access to 2D GT. Another line of work distills [38],
[68], [69] abstract visual features from zero-shot vision en-
coders (e.g., [7], [41]) into 3D space for scene editing but
does not render precise semantic labels. While semantic-
enabled NeRFs [53], [79], [83] are limited to the semantic do-
main, a natural extension is to explore fine-grained instance
information. PNF [40] extracts things with the aid of an
off-the-shelf object detector. DM-NeRF [74] requires ground
truth instance annotations for 3D geometry decomposition.
Panoptic Lifting [65], Nerflets [81], PCFF [14], and Instance
NeRF [30] leverage predicted instance/panoptic labels for
a compositional panoptic scene representation. SUDS [69]

uses geometric clustering to label instances and assign se-
mantic labels based on DINO features. However, this simple
clustering framework leads to unsatisfying instance results.
While these works mainly focus on scene parsing in close-
domain classes (e.g., Cityscapes [15] encompasses only 30
classes), our goal is to transfer 3D annotations of arbitrary
classes to 2D image space to foster the development of new
datasets, e.g., providing instance labels for buildings that
are not available in Cityscapes [15]. Furthermore, we are the
first to study 360◦ outward panoptic urban scene under-
standing through the powerful lens of neural rendering.

3 METHODOLOGY

3.1 Problem Formulation
As shown in Fig. 1, PanopticNeRF-360 aims to transfer
coarse 3D bounding primitives to dense panoramic 2D
semantic and instance labels, utilizing reconstructed geom-
etry for 3D-2D transfer guidance. We follow the hardware
and annotation setup of KITTI-360 [43]: In addition to a
pair of perspective stereo images and two-sided fisheye
images sparsely collected at urban scenes, we assume a
set of coarse 3D bounding primitives β = {Bk}Kk=1 to be
available. These 3D bounding primitives cover the full scene
in the form of cuboids, ellipsoids and extruded polygons.
Each 3D bounding primitive Bk has a “stuff” or “thing”
label. For “thing” classes (e.g., “building” and “car”), Bk

is additionally associated with a unique instance ID. We
further apply a pre-trained semantic segmentation model to
the RGB images to obtain 2D semantic predictions for each
image. Given this input, our goal is to generate multi-view
consistent panoptic labels and high-fidelity appearance for
all input frames. Moreover, our method allows for rendering
RGB images and panoptic labels from a wide range of novel
viewpoints, even including 360◦ omnidirectional views.

PanopticNeRF-360 provides a novel method for label
transfer from 3D to 2D. Fig. 4 provides an overview of
our method. We first build a 360◦ scene representation (Sec-
tion 3.2) using both perspective and fisheye views, mapping
a 3D point x to a density σ and a color value c along with
two semantic categorical logits ŝ and s based on our dual
semantic fields. Here, ŝ is a deterministic semantic logit
derived from a fixed semantic field sβ defined by the 3D
bounding primitives, and s is learned semantic logit queried
from a learned semantic field sϕ. Accordingly, for each camera
ray, two semantic categorical distributions Ŝ and S in 2D
image space are obtained via volume rendering π. Using
the labeled 3D bounding primitives, we further define a
deterministic fixed instance field tβ which divides “thing”
classes in the fixed semantic field into distinct instances,
allowing for rendering panoptic labels T̂ when combined
with the learned semantic field. The fixed semantic field sβ
and the fixed instance field tβ together serve to improve the
underlying scene geometry (Section 3.3). Furthermore, by
using semantic losses in 3D and 2D space (Section 3.4), the
learned semantic field sϕ results in improved semantics in
overlapping regions based on refined underlying geometry.

3.2 360◦ Scene Representation

Hybrid Scene Feature: We seek to represent the 360◦

scene with both high-fidelity semantics and appearance. We
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Fig. 4: Method Overview. At each 3D location xi, i = {1 · · ·N}, we combine scene features obtained from a deep MLP
fθ and multi-resolution hash grids hθ to jointly model geometry, appearance and semantics. We leverage dual semantic
fields to obtain two semantic categorical logits: ŝi is obtained from a fixed semantic field sβ determined by the bounding
primitives and si is predicted by a learned semantic field sϕ. The 3D semantic logits are accumulated along the ray and
projected to 2D image space via volume rendering π, resulting in Ŝ and S. Our method allows for rendering panoptic labels
T̂ by combining the learned semantic field sϕ and a fixed instance field tβ determined by the 3D bounding primitives.
During training, we leverage label-guided geometry optimization. Here, L2D

Ŝ
and L2D

T̂
serve as semantic and instance

guidance to improve volume density σi guided by Ŝ and T∗, respectively, where T∗ is obtained by performing line
regression on the building class in T̂. Furthermore, we use L3D

ŝ and L2D
S to train the learned semantic field, yielding joint

optimization of geometry and semantics. This allows for resolving label ambiguity at the intersections of the fixed semantic
field. The final panoptic segmentation result of our method is denoted by T̂.

Fig. 5: Qualitative Geometric Comparison of feature aggre-
gation operators, “concatenation” and “product” [10]. The
latter introduces jagged geometric errors on the road.

empirically observe that the inductive bias of the MLP is
a desirable property for smoothing noise in the semantic
prediction, yet it is inferior in reconstructing high-fidelity
urban scene appearance. On the other hand, existing local
feature-based methods like Instant-NGP result in superior
appearance in a short time but noisy semantics. There-
fore, we fuse features of a deep MLP fθ [52] and multi-
resolution hash grids hθ [54] to form a joint representa-
tion. This simple representation allows us to combine the
inductive smoothness bias of the MLP and the expressive
representation power of local features, yielding high quality
appearance and semantics jointly. Formally, a 3D coordinate
x is mapped to two feature vectors as follows:

fθ : γ(x) ∈ RLx 7→ f1 ∈ RD, hθ : x ∈ R3 7→ f2 ∈ RD (1)

where γ(·) denotes the positional encoding, f1 and f2 denote
MLP-based and grid-based output features respectively. We
obtain a unified scene feature f via concatenation, f =
[f1; f2], f ∈ R2D . DiF [10] introduces the inner product as a
general form to unify different basis functions. However, we
find that this element-wise “product” results in erroneous

geometry, and we instead choose “concatenation” as shown
in Fig. 5. We hypothesize this is due to the fact that the
MLP and grid branches operate less entangled during the
gradient backpropagation, making it simpler for optimiza-
tion. Along with a viewing direction d and a frame-based
trainable embedding z for modeling varying exposure, we
map f to a volume density σ and an RGB color value c with
a projection function Pθ that consists of shallow MLPs:

Pθ : (f ∈ R2D, z ∈ Rn, γ(d) ∈ RLd) 7→ (σ ∈ R+, c ∈ R3)
(2)

Let r(k) = o+ kd denote a camera ray. The color at the cor-
responding pixel can be obtained by volume rendering [52]

C(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci , Ti = exp

−
i−1∑
j=1

σjδj


(3)

where σi and ci are density and color value at point i
sampled along the ray, Ti denotes the transmittance at the
sample point, and δj = ki+1−ki is the distance between ad-
jacent samples. Let π denote the volume rendering process
of a ray r, Eq. 3 can be rewritten as C(r|θ) = π(c).

While the appearance embedding z is shared across all
points of the same frame during training, we use a different
z̃ for each ray when rendering labels from omnidirectional
novel viewpoints. This allows us to find the optimal z for
each ray and avoids stitching artifacts. Specifically, z̃ is
determined based on its relative viewing direction d with
respect to the left and right fisheye cameras :

z̃ = α ∗ zl + (1− α) ∗ zr (4)

where α = cos−1 (d · dr) /
(
cos−1 (d · dl) + cos−1 (d · dr)

)
with dl and dr denoting unit viewing directions in the
center of the left & right fisheye cameras, respectively, and
zl and zr are corresponding latent codes.
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Dual Semantic Fields: To jointly optimize the under-
lying geometry and semantics for mutual improvement,
we define dual semantic fields, one is determined by the
3D bounding primitives β and the other is learned by a
semantic head ϕ

sβ : x ∈ R3 7→ ŝ ∈ RMs , sϕ : f ∈ R2D 7→ s ∈ RMs (5)

where Ms denotes the number of semantic classes. In combi-
nation with the volume density, two semantic distributions
Ŝ(r) and S(r) can be obtained at each camera ray r via
accumulating the pre-softmax logits ŝ(x) and s(x) through
the volume rendering operation π:

Ŝ(r|θ, β) = π(ŝ), S(r|θ,ϕ) = π(s) (6)

Note that both Ŝ(r) and S(r) are multi-class normalized
distributions through an extra softmax layer. We apply
losses to both semantic distributions for training. During
inference, the semantic label is determined as the class of
maximum probability in Ŝ(r) or S(r).
Fixed Semantic Field: If x is uniquely enclosed by a 3D bound-
ing primitive Bk, ŝ is a fixed one-hot categorical logit vector
of the category of Bk. For a point x enclosed by multiple 3D
bounding boxes of different semantic categories, we assign
equal probability to all enclosed categories and 0 to the
others. As explained in Section 3.4, the fixed semantic field
sβ is able to improve geometry but cannot resolve label
ambiguity in overlapping regions.
Learned Semantic Field: We add a semantic head parameter-
ized by ϕ to learn the semantic logits s(x). Following [65],
we choose to perform softmax on 2D class logits after
alpha compositing to obtain the class distribution S(r). We
empirically observe that this leads to better performance
than performing softmax on all 3D logits.

Fixed Instance Field: Based on our learned semantic field
sϕ and the 3D bounding primitives β with instance IDs,
we can easily render a panoptic segmentation mask. Specif-
ically, for a camera ray r, the panoptic label directly takes
the class with maximum probability in S(r) if it is a “stuff”
class. For “thing” classes, we render an instance distribution
T̂(r) based on the bounding primitives β to replace S with
T̂. Our instance field is defined as follow

tβ : x ∈ R3 7→ t̂ ∈ RMt (7)

where Mt is the number of the things in the scene and t̂
denotes categorical logits indicating which thing it belongs
to. Here, t̂ is determined by the bounding primitives and is
a one-hot vector if x is uniquely enclosed by a bounding
primitive of a thing. In case x is enclosed by multiple
bounding primitives of different things, equal probabilities
are assigned to each of them. To ensure that the instance
label of this ray is consistent with the semantic class defined
by S, we mask out instances belonging to other semantic
classes by setting their probabilities to 0 in T̂.

We observe that optimizing an additional learned in-
stance field is not required. As shown in Fig. 6, overlap often
occurs at the intersection regions of stuff and thing regions,
and the bounding primitives of things rarely overlap with
each other (the number of overlapping regions accounts for
only 1.5% of the total number of pixels and their combined
volume is only 1.6%). Thus, the deterministic instance field

inst.-inst.
1.5%

inst.-inst.
1.6%

sem.-inst.
16.1%

sem.-inst.
4.2%

sem.-sem.
82.4%

sem.-sem.
94.2%

Number Volume

Fig. 6: Cross-semantics Bounding Primitve Intersec-
tion. We calculate the number of intersected bounding
primitives (left) and their corresponding intersected vol-
ume (right) in the entire driving sequence. Here, ‘sem.-
sem.’ denotes semantic-semantic intersection, ‘sem.-inst.’
denotes semantic-instance intersection, and ‘inst.-inst.’ de-
notes instance-instance intersection, respectively.

can lead to reliable performance when the underlying ge-
ometry is correctly estimated.

3.3 Label-Guided Geometry Optimization
In the driving scenario considered in our setting, the RGB
images are sparsely captured with many textureless and
overexposed regions. We observe that a vanilla NeRF model
fails to recover reliable geometry in this setting. Therefore,
we propose to leverage a fixed semantic field and a fixed
instance field to guide the optimization of scene geometry.

Semantic Label-Guided Geometry Optimization: We find
that leveraging noisy 2D semantic predictions as pseudo
ground truth can substantially boost density prediction
when applied to the fixed semantic fields sβ

L2D
Ŝ
(θ, β) = − 1

|R|
∑
r∈R

Ms∑
k=1

S∗
k(r) log Ŝk(r) (8)

where Ŝk(r) denotes the probability of the camera ray r
belonging to the class k, and S∗

k(r) denotes the correspond-
ing 2D pseudo ground truth. As illustrated in Fig. 7, the
key to improving density is to directly apply the semantic
loss to the fixed semantic field sβ , where L2D

Ŝ
can only be

minimized by updating the density σ. Fig. 7 shows that
a correct S∗ increases the volume density of 3D points
inside the respective bounding primitive and suppresses the
density of others. When S∗ is wrong, the negative impact
can be mitigated: 1) If S∗ does not match any bounding
primitive along the ray, it has no impact on the radiance field
fθ . 2) If S∗ exists in one of the bounding primitives along
the ray, this indicates that S∗ corresponds to an occlud-
ing/occluded bounding primitive with the wrong depth.
To compensate for this, we introduce a weak depth loss
Ld based on stereo matching to alleviate the misguidance
of L2D

Ŝ
. Although Ld improves the overall geometry as

shown in our ablation study, it fails to produce accurate
object boundaries when used alone (see supplementary).
In contrast, adding our semantic label-guided geometry
optimization yields more accurate density estimation as
pre-trained segmentation models usually perform well on
frequently occurring classes, e.g., cars and roads.

Instance Label-Guided Geometry Finetuning: We further
develop a simple but effective approach to improve the
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Fig. 7: Semantic Label Guided Geometry Optimization.
The top row illustrates a single ray of the fixed semantic
field sβ , where L2D

Ŝ
can only update the underlying geome-

try as the semantic logits ŝ is fixed. The second row shows a
single ray of the learned semantic field sϕ. In this case, the
network can “cheat” by adjusting the semantic prediction s
to satisfy L2D

S instead of updating the density σ.

geometry of adjacent instances. We observe that the class
building is the only “thing” class where two instances of
the same semantic class are frequently spatially adjacent,
which implies that their boundaries remain unchanged in
the semantic label-guided geometry optimization. Further,
the geometry of buildings is often negatively impacted by
overexposure and low texturedness. Therefore, we propose
to use pseudo-GT derived from a simple geometric prior to
guide the density field optimization, assuming that neigh-
boring buildings have a line-shaped boundary. Here, we do
not use pre-trained segmentation models for two reasons: 1)
existing pre-trained instance segmentation models are only
applicable to a set of known classes, thus are not suited
for unseen thing classes, e.g., buildings; 2) open-set seg-
mentation models such as SAM [37] lead to unsatisfactory
boundaries in our challenging setting (see Supplementary).

Let us consider a simple case where two neighboring
buildings have a 2D boundary l. As buildings usually have
cuboid-like shapes, l can be approximated by a straight line.
However, the rendered boundary is typically noisy and non-
straight when the density field predicts wrong geometry.
Thus, we construct pseudo-GTs by applying line regres-
sion to rendered 2D boundaries and utilize the pseudo-
GTs to optimize the density field. While the pseudo-GTs
independently generated across different views may not
be multi-view consistent, we fuse them in 3D space to
render consistent labels. Specifically, we first render an
initial instance boundary based on the fixed instance field
and the learned imprecise density. As shown in Fig. 17 (b),
the naive boundaries can be jagged. Given the initial noisy
boundary, we sample a set of points on the boundary of two
adjacent buildings, ignoring the upper and lower regions
which may contain unexpected irregular objects (e.g., eave,
fence, vegetation) that violate the line prior. Next, we apply
linear regression on this set of sampled points to obtain a
pseudo-GT of the boundary. Based on the regressed bound-
ary formulation, we remap the instance labels on both sides
to obtain a pseudo-GT panoptic label of two neighboring
buildings. After refining all boundaries, we obtain pseudo
panoptic label T∗:

T∗ = fχ(T̂) (9)

where fχ(·) maps the initial instance label to a refined
pseudo instance GT and χ denotes all the fitted lines be-
tween the buildings.

Then, we leverage T∗ to guide the underlying scene
optimization. Similar to Eq. 8, we apply an instance loss
based on the fixed instance field tβ on T∗ to improve
boundary geometry:

L2D
T̂
(θ, β) = − 1

|Rk|
∑
r∈Rk

T∗
k(r) log T̂k(r) (10)

where k denotes the “building” class. The instance loss is
weighted by λT̂.

3.4 Joint Geometry and Semantic Optimization

While enabling improved geometry, the 3D label of over-
lapping regions remains ambiguous in the fixed semantic
field. We leverage sϕ to address this problem by jointly
learning the semantic and the radiance fields. Towards this
goal, we apply a modified cross-entropy loss L2D

S to each
camera ray based on the filtered 2D pseudo ground truth,
where 1(r) is set to 1 if S∗(r) matches the semantic class
of any bounding primitive along the ray and otherwise
0. Due to the imbalanced categorical distribution nature
of pseudo semantic labels, we modify the softmax cross-
entropy operator by introducing a weight w(k) for each
class k, which is distributed between [0,1] determined on
the semantic class frequency [51]. We do not use w(k) in L2D

as we experimentally observe that the category distribution
prior does not additionally help to improve geometry. To
further suppress noise in the 2D predictions, we add a
per-point semantic loss L3D

s based on the 3D bounding
primitives

L2D
S (θ,ϕ) = − 1

|R|
∑
r∈R

1(r)
Ms∑
k=1

w(k)S∗
k(r) logSk(r)

L3D
s (θ,ϕ, β) = − 1

|R|
∑
r∈R

N∑
i=1

1(x)
Ms∑
k=1

ŝki log s
k
i

(11)
where 1(x) is a per-point binary mask. 1(x) is set to 1 if
(1) xi has a unique 3D semantic label and (2) the density σ
is above a threshold σth to focus on the object surface. As
illustrated in Fig. 7, L2D

S (θ,ϕ) does not necessarily improve
the underlying geometry as the network can learn a simple
shortcut and adjust the semantic head sϕ to satisfy the
loss. This behavior is also observed in novel view synthesis
where NeRF does not necessarily recover good geometry
when optimized for image reconstruction alone, specifically
given sparse input views [16], [57].

3.5 Implementation Details

Loss: We train our model in two stages. In the first stage
without instance finetuning, the total loss takes the follow-
ing form

L = λŜL
2D
Ŝ

+ λSL2D
S + λsL3D

s + λCLp + λdLd (12)

where Lp = 1
|R|

∑
r∈R ∥C∗(r)−C(r)∥22 and Ld =

1
|R|

∑
r∈R ∥D∗(r)−D(r)∥22 denote the photometric loss
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Fig. 8: Qualitative Comparison of Perspective Semantic Label Transfer. Our method achieves superior performance in
challenging regions compared to the baselines, e.g. in under- or over-exposed regions, by recovering the underlying 3D
geometry, see wall (left, middle) and regions where vegetation and building intersect (right).

and the depth loss, respectively. λŜ, λS, λs, λC, and λd

are constant weighting parameters. C∗(r) and C(r) are the
ground truth and rendered RGB colors for ray r. D∗(r) and
D(r) are pseudo ground truth depth generated by stereo
matching and rendered depth, respectively. Please refer to
the supplementary for more details about D∗.

We activate instance label-guided geometry optimization
in the second stage, leading to the overall loss Lf :

Lf = L+ λT̂L
2D
T̂

(13)

As depicted in Fig. 17, the fine-tuning stage significantly
improves the network’s ability to produce smoother and
more accurate geometry for adjacent buildings.

Training: We optimize one PanopticNeRF-360 model per
scene, using a single NVIDIA RTX 3090. For each scene, we
set the origin to the center of the scene. We use Adam [35]
with a learning rate of 5e-4 to train our models. We set the
latent appearance code length to n = 12, and loss weights to
λŜ = 2, λS = 1, λs = 1, λT̂ = 2, λC = 1, λd = 0.1, and the
density threshold to σth = 0.1. We optimize the total loss L
for 30,000 iterations. For the stage of refining instances, we
further fine-tune the model for 4,000 iterations.

Sampling Strategy and Sky Modeling: With the 3D bound-
ing primitives covering the full scene, we sample points
inside the bounding primitives to skip empty space. For
each ray, we optionally sample a set of points to model

the sky after the furthest bounding primitive. More details
regarding our sampling strategy can be found in the sup-
plementary. Our sampling strategy allows the network to
focus on non-empty regions. As evidenced by our experi-
ments, this is particularly beneficial for unbounded outdoor
environments.

4 EXPERIMENTS

Dataset: We conduct our main experiments on the KITTI-
360 [43] dataset, which is collected in suburban areas and
provides 3D bounding primitives covering the full scene.
Following [43], we evaluate PanopticNeRF-360 on manually
annotated frames from 5 static suburbs. We split these 5
suburbs into 10 scenes, each comprising 64 consecutive
frames with 4 cameras each with an average travel distance
of 0.8m between frames. We leverage these 64 pairs of posed
stereo perspective and fisheye images for training. KITTI-
360 provides a set of manually labeled frames sampled in
equidistant steps of 5 frames on perspective views. Follow-
ing [43], we use half of the manually labeled frames for
evaluation and provide the other half as input to 2D-to-2D
label transfer baselines. We further improve the quality of
the manually labeled ground truth which is inaccurate in
ambiguous regions, see supplementary for details. In order
to quantitatively evaluate our label transfer performance
on side-facing viewpoints, we manually annotate fisheye
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Input J-NeRF [78] Panoptic Lifting [65] 3D-2D CRF [43] Ours GT Label

Fig. 9: Qualitative Comparison of Fisheye Semantic Label Transfer. Our method consistently achieves the best results. In
the third row, ours can generate robust construction semantics under unexpected over-exposure, while the others can not.

Method Road Park Sdwlk Terr Bldg Vegt Car Trler Crvn Gate Wall Fence Box Sky mIoU Acc MC

Forward-facing

FC CRF + Manual GT [39] 90.3 49.9 67.7 62.5 88.3 79.2 85.6 48.9 78.1 23.4 35.3 46.5 42.0 92.7 63.6 89.1 85.41
S-NeRF + Manual GT [83] 87.0 35.8 64.7 58.2 83.4 76.3 70.3 93.5 76.5 41.4 44.0 52.6 29.0 92.0 64.6 86.8 88.98
Pseudo GT (PSPNet*) [82] 95.5 49.7 77.5 66.7 88.9 82.4 91.6 46.5 83.1 24.2 43.3 51.3 51.1 89.3 67.2 90.7 91.79
S-NeRF + Pseudo GT [83] 94.5 52.7 78.0 64.8 88.5 81.7 89.0 43.9 81.1 35.2 45.6 57.2 43.8 91.0 67.7 90.4 92.76
J-NeRF + Pseudo GT [78] 94.8 49.7 80.2 65.3 86.2 83.1 91.0 45.4 80.6 32.5 48.1 58.1 52.3 91.2 68.5 90.8 92.88

Panoptic Lifting [65] 94.8 57.6 75.0 58.6 83.1 82.9 89.4 68.7 84.1 38.4 54.4 49.4 48.8 88.6 69.6 90.5 93.12
3D Primitives + GC 81.7 31.0 45.6 22.5 59.6 56.7 63.0 61.7 37.3 61.6 28.8 50.6 39.5 50.3 49.3 73.4 86.56

3D Mesh + GC 91.7 53.1 67.2 31.4 81.3 72.1 85.2 93.5 86.0 65.2 40.7 59.7 54.4 65.6 67.7 86.0 94.99
3D Point + GC 93.5 59.0 76.1 37.2 82.0 74.1 87.5 94.7 85.7 66.7 59.4 65.9 58.6 68.0 72.0 87.9 96.51
3D-2D CRF [43] 95.2 64.2 83.8 67.9 90.3 84.2 92.2 93.4 90.8 68.2 64.5 70.0 55.8 92.8 79.5 92.8 94.98

Ours 95.4 70.0 83.6 70.9 91.5 85.3 94.2 95.0 94.4 69.4 65.2 72.2 68.2 91.7 81.9 93.4 94.82

Fisheye

Pseudo GT (Tao et al.) [66] 84.8 0.0 56.2 57.5 89.5 84.5 77.7 0.0 0.0 0.0 39.3 60.0 0.0 98.0 46.3 91.0 -
S-NeRF + Pseudo GT [83] 86.2 18.2 59.4 57.6 88.0 81.0 76.5 14.0 33.8 0.0 42.1 53.7 13.4 97.0 51.5 90.7 -
J-NeRF + Pseudo GT [78] 86.3 17.2 61.2 58.4 87.1 81.9 78.1 17.3 30.6 0.0 44.3 55.3 15.2 96.8 52.1 91.1 -

Panoptic Lifting [65] 88.2 20.9 64.3 61.9 85.0 79.1 80.8 13.1 32.6 0.0 46.4 53.3 15.0 95.0 52.5 91.3 -
3D-2D CRF [43] 87.1 56.2 66,4 39.0 88.5 80.8 86.3 77.1 75.8 44.3 41.8 61.1 0.0 97.7 64.4 92.2 -

Ours 93.7 73.7 81.9 66.0 90.0 83.6 88.2 84.0 89.7 51.3 61.1 66.8 40.1 98.3 76.3 95.0 -

TABLE 1: Quantitative Comparison of Semantic Label Transfer on 10 scenes of KITTI-360.

images sampled in equidistant steps of 10 frames and use
all of them for evaluation. We additionally showcase the
generalization ability of our method on the Waymo dataset.

Baselines: We compare against several competitive base-
lines in two categories: (1) 2D-to-2D label transfer base-
lines, including Fully Connected CRF (FC CRF) [39], Se-
mantic NeRF (S-NeRF) [83], JacobiNeRF (J-NeRF) [78], and
Panoptic Lifting [65]. We provide manually annotated 2D
frames as input, sparsely sampled at equidistant steps
of 10 frames. Note that labeling these 2D frames takes
similar or longer compared to annotating 3D bounding
primitives [77]. As these 2D annotations are extremely
sparse, we further provide the same pseudo-2D labels
used by our method to Semantic NeRF, JacobiNeRF and
Panoptic Lifting. For Panoptic Lifting, We additionally run
Mask2Former [13] to generate instance masks, and then

fuse them with 2D semantic maps to obtain the final input
panoptic masks. For JacobiNeRF, we follow [78] to extract
DINO features from the images for its similarity prior.
(2) 3D-to-2D label transfer baselines, including PSPNet*, 3D
Primitives/Meshs/Points+GC [43], and 3D-2D CRF [43]. All
these baselines leverage the same 3D bounding primitives to
transfer labels to 2D. Here, PSPNet* is considered 3D-to-2D
as it is pre-trained on Cityscapes and fine-tuned on KITTI-
360 based on the 3D sparse label projections. The second
set of baselines first project 3D primitives/meshes/points to
2D and then apply Graph Cut to densify the label. The 3D-
2D CRF densely connects 2D image pixels and 3D LiDAR
points, performing inference jointly on these two fields with
a set of consistency constraints.

Pseudo 2D GT: For pseudo ground truth, we use PSPNet*
for perspective views and Tao et al. [66] that has a stronger
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Fig. 10: Qualitative Comparison of Perspective Panoptic Label Transfer. Our method is capable of distinguishing instances
as it infers in 3D space. In contrast, 3D-2D CRF struggles in far and overexposed regions. Panoptic Lifting falls short in
rendering 1) car instances in far regions and 2) building instances.

Forward-facing PQ SQ RQ PQ† Fisheye PQ SQ RQ PQ†

Building as stuff

Panoptic Lifting [65]
All 52.3 69.4 68.2 54.9 All 42.6 68.5 56.6 44.7

Things 56.5 76.3 70.4 57.8 Things 37.2 64.7 55.8 38.5
Stuff 53.9 68.9 75.3 55.7 Stuff 49.3 70.5 61.6 51.6

Ours*
All 66.7 80.6 81.7 68.4 All 54.2 77.6 67.6 56.5

Things 65.3 83.6 77.2 65.3 Things 44.6 75.4 56.7 44.6
Stuff 67.8 79.6 84.0 69.3 Stuff 58.9 78.2 72.8 61.9

Building as thing

3D-2D CRF [43]
All 62.2 79.1 76.9 64.9 All 47.5 72.2 60.1 50.9

Things 60.7 79.5 75.2 60.7 Things 42.9 68.3 54.3 42.9
Stuff 63.0 78.9 77.9 67.3 Stuff 50.1 74.6 63.5 55.3

Ours
All 66.7 80.6 81.7 69.3 All 54.2 77.6 67.6 58.3

Things 64.9 83.7 76.9 64.9 Things 46.5 77.2 59.3 46.5
Stuff 67.7 78.9 84.3 71.8 Stuff 58.5 77.8 72.2 64.9

TABLE 2: Quantitative Comparison of Panoptic Label over all 10 test scenes on KITTI-360. We consider building as stuff
when comparing our method (Ours*) to Panoptic Lifting which can not render construction instances, where building is
considered as thing in our default setting.

generalization ability for fisheye views to supervise our dual
semantic fields. This ensures a fair comparison to the 3D-
2D CRF, which takes the predictions of PSPNet* and Tao
et al. as unary terms on perspective views and fisheye views,
respectively. Note that PSPNet* is fine-tuned on KITTI-360.
In our ablation study we investigate the performance of our
method using pre-trained models on Cityscape without any
fine-tuning, including PSPNet [82], Deeplab [12] and Tao et
al. [66]. We also involve SSA [11], a variant of SAM for zero-
shot semantic prediction.

Metrics: Following [19], we evaluate semantic labels via
the mean Intersection over Union (mIoU) and the average
pixel accuracy (Acc) metrics. To quantitatively evaluate
multi-view consistency (MC), we utilize LiDAR points to
retrieve corresponding pixel pairs between two consecutive
evaluation frames. The MC metric is then calculated as the
ratio of pixel pairs with consistent semantic labels over
all pairs. For evaluating panoptic segmentation, we report
Panoptic Quality (PQ) [36], which can be decomposed into

Segmentation Quality (SQ) and Recognition Quality (RQ).
We additionally adopt PQ† [62] as PQ over-penalizes errors
of stuff classes. To evaluate perspective and fisheye labels
in a unified manner, we design metric∗ (e.g., mIoU* and
PQ*) that reports the average of the perspective metric
and fisheye metric. To verify that PanopticNeRF-360 is able
to improve the underlying geometry, we further evalu-
ate on perspective views the rendered depth compared to
sparse depth maps obtained from LiDAR using Root Mean
Squared Error (RMSE) and the ratio of accurate predictions
(δ1.25) [3], [18].

4.1 Label Transfer on KITTI-360 Dataset
As most baselines are not designed for panoptic label trans-
fer, we first compare the semantic predictions, and then
compare the panoptic predictions to 3D-2D CRF.

Semantic Label Transfer: As shown in Table 1, Fig. 8 and
Fig. 9, our method achieves the highest mIoU and Acc
quantitatively and qualitatively. Specifically, compared to
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Fig. 11: Qualitative Comparison of Fisheye Panoptic Label Transfer. Our method outperforms 3D-2D CRF not only in
near-field regions but also in far regions where instances are harder to distinguish. Compared to perspective views, the
performance on panoptic labels of 3D-2D CRF and Panoptic Lifting declines more on fisheye views.

3D-2D CRF, we obtain an absolute mIoU improvement of
2.4% on perspective views and 11.9% on fisheye views.
The performance gap widens on the fisheye view as the
pseudo-GT is less accurate on fisheye imagery. This ob-
servation also highlights the value of our method which
is able to provide RGB images and semantic labels at
novel viewpoints to enhance the generalization ability of
2D perception models. Despite PSPNet* being finetuned on
KITTI-360 which reduces the performance gap, our method
outperforms PSPNet* by a large margin. Supervised by the
extremely sparse manually annotated GT, Semantic NeRF
struggles to produce reliable performance. Using pseudo
labels of PSPNet* and Tao et al., JacobiNeRF and Panoptic
Lifting are capable of denoising and thus improving perfor-
mance (67.2% → 68.5%/69.6%, 46.3% → 52.1%/52.5%).
However, both JacobiNeRF and Panoptic Lifting are inferior
in urban scenarios when the input views are sparse. In
terms of perspective MC, ours is comparable to 3D-2D CRF
and significantly surpasses 2D-to-2D label transfer methods.
While our method slightly lags behind 3D Point + GC in
terms of MC, this can be explained as label consistency is
evaluated on sparsely projected 3D points which GC takes
as input to generate a dense label map.

Panoptic Label Transfer: We compare against Panoptic
Lifting and 3D-2D CRF for panoptic label transfer, as the
other baselines do not support distinguishing instances.
As Panoptic Lifting is limited to segment instance classes

known to pre-trained 2D panoptic segmentation models, it
is not capable of segmenting the “building” class. Therefore,
we consider two settings for quantitatively measuring the
panoptic segmentation metrics: “building” as stuff when
comparing with Panoptic Lifting, and “building” as thing
when comparing with 3D-2D CRF. Table 2 shows that
PanopticNeRF-360 outperforms the baselines in both cases.
As shown in Fig. 10, Panoptic Lifting can not reconstruct
instances well in far regions where Mask2Former and their
instance assignment strategy perform poorly, yielding a
larger gap in terms of the panoptic segmentation metrics. In
contrast, PanopticNeRF-360 avoids this issue by leveraging
weak 3D labels, consistently producing good performance
in both near and far regions. Our proposed method also
outperforms the 3D-2D CRF in both things and stuff classes,
despite that 3D-2D CRF leverages the same weak 3D labels
as input. Visual comparisons are shown in Fig. 10 and
Fig. 11. As can be seen, our method gracefully handles over-
and under-exposure at buildings, which is a challenge for
the 3D-2D CRF, as it projects LiDAR points to reconstruct
the intermediate meshes whose quality suffers in these
scenarios (see Supplementary).

Panoramic Label Synthesis: PanopticNeRF-360 can render
RGB images and panoptic labels at omnidirectional novel
viewpoints, whereas 3D-2D CRF is not capable of doing
so. We therefore show qualitative panoramic results of our
methods in Fig. 12.
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Panoramic Semantic Maps Panoramic Panoptic Maps
Fig. 12: Panoramic Label Rendering. We enable omnidirectional panoptic label inference in real-world driving scenarios.
4.2 Label Transfer on Waymo Dataset

We additionally conduct experiments on the Waymo
dataset [50] to showcase PanopticNeRF-360’s generalization
ability. We choose two scenes, each consisting of 198 con-
secutive frames with the front-view camera. During data
preparation, we use the KITTI-360 annotation toolkit to label
3D bounding primitives and generate 2D pseudo semantic
labels with Mask2Former [13]. This annotation takes around
2 hours for each scene, i.e., the average per-frame labeling
time takes only 0.6 minutes. We illustrate the entire set of
labeled bounding boxes and camera trajectory in Fig. 13.
Ours not only renders high-fidelity appearance (28.28 dB
on test views), but also generates high-quality semantic and
instance masks on both pre-recorded and novel viewpoints.
This demonstrates the applicability of our method.
4.3 Neural Scene Representation

We further compare iNGP [54], Tri-planes [9] (TensoRF-VM),
and MLP [52] as scene representation. Towards this goal, we
analyze the results over 4 scenes where ambient conditions
vary between each other. For a fair comparison, we run
each scene for 30,000 iterations. Please refer to the supple-
mentary for implementation details. Table 4 indicates that

while the pure MLP demonstrates superior label quality, it
falls short in appearance reconstruction. On the other hand,
iNGP excels in novel view synthesis (∼3.5dB higher than
MLP) and convergence, albeit at the cost of subpar semantic
label quality in comparison to the MLP. Our proposed
scene feature, a hybrid of MLP and hash grids, achieves
a tradeoff between label quality and appearance. Tri-planes
fail to represent high-fidelity scene structure both in terms
of semantic labels and appearance, especially at boundaries
between foreground and background (sky) and in over-
exposed regions as grid-based methods are not robust to
filter noise and tend to suffer from local minimum. While
iNGP is also grid-based, it conditions features on multi-scale
levels, thereby potentially aggregating global information,
and employs a hash function for non-periodic signal em-
bedding. As depicted in Fig. 15, iNGP contains more noise
than ours, and Tri-planes fail to reconstruct the overall label,
especially at buildings over-exposed by sunlight.

4.4 Synthesized Labels for Perception Models

To validate that the synthesized novel view labels are impor-
tant for autonomous driving and robotics applications, we
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Fig. 13: Qualitative Label Transfer Results on Waymo. Our method can render high-quality panoptic label maps as well
as high-frequency appearance on the Waymo dataset.

Method Test View F.T. Data Road Sdwlk Terr Bldg Vegt Car Wall Fence Sky mIoU Acc

Mask2Former

Persp.

- 93.1 61.3 37.0 88.7 87.7 92.3 31.8 61.4 94.8 72.0 89.3
Mask2Former-ft (coarse) (a) 94.2 66.2 37.5 90.1 89.6 92.8 35.7 63.1 94.3 73.7 90.2
Mask2Former-ft (coarse+ours) (a)+(b) 94.5 71.3 37.9 90.3 89.5 93.3 38.2 64.7 94.5 74.9 90.7
Mask2Former-ft (ours) (b) 94.6 72.1 38.4 90.9 89.3 93.4 40.9 66.8 94.6 75.7 91.1

Mask2Former

Fisheye

- 84.5 60.7 20.5 80.9 77.1 60.9 26.5 42.3 98.4 61.3 89.1
Mask2Former-ft (coarse) (a) 87.9 64.7 25.3 83.7 89.1 62.3 33.9 43.7 98.1 65.4 89.8
Mask2Former-ft (coarse+ours) (a)+(b) 88.3 68.4 26.5 83.5 88.9 61.9 40.3 44.5 97.7 66.7 90.4
Mask2Former-ft (ours) (b) 88.4 70.3 27.2 84.9 88.4 62.3 43.1 45.8 98.3 67.6 90.8

TABLE 3: Quantitative Comparison of Semantic Label on Test Scenes of KITTI-360. (a): 512 coarse pseudo 2D labels
(PSPNet*); (b): 1,536 synthesized labels using our method.

Forward-facing Fisheye

Method mIoU ↑ PQ ↑ PSNR ↑ mIoU ↑ PQ ↑ PSNR↑

MLP [52] 81.2 69.5 23.78 68.2 55.8 24.47
iNGP [54] 79.0 67.9 27.22 67.0 54.6 28.14
Tri-planes [9] 75.1 62.1 23.25 60.2 50.2 23.32
Ours 80.9 68.7 27.25 67.6 55.4 28.05

TABLE 4: Neural Scene Representation Study over 4
scenes. We bold and underline the two best performing
methods, respectively.

fine-tune Mask2Former [13] pre-trained on CityScape [15]
using our synthesized semantic labels on the KITTI-360. We
fine-tune it using our synthesized semantic labels on the
KITTI-360. Specifically, we divide 10 test scenes into 8 for
training and 2 for test. For each scene, we render 3 semantic
maps at each of 64 trajectory points using the left perspec-
tive camera: one in the original direction, one rotated hori-
zontally 30° to the left, and another rotated horizontally 30°

to the right, resulting in a total of 1,536 training samples. We
further compare Mask2Former-ft (ours) with two additional
variants: one fine-tuned solely on coarse semantic labels
that we use as pseudo 2D GTs (coarse), and another trained
on a combination of coarse and synthesized images (coarse
+ ours). During fine-tuning, we format the data to match
CityScape’s and exclude categories not present in CityScape.
We fine-tune all the models for 5 epochs with a batch size of
8, using a learning rate of 0.0001 and AdamW optimizer. As
illustrated in Table 3 and Fig. 14, Mask2Former-ft (ours) sig-
nificantly outperforms the original (+3.7 mIoU on perspec-
tive views, and +6.3 mIoU on fisheye views), especially on
Sidewalk and Wall. It is also reasonable that Mask2Former-ft
(ours) outperforms the other two finetuning baselines as our
synthesized labels significantly surpass the base 2D pseudo
labels. This improvement demonstrates the effectiveness of
our synthesized labels in enhancing the perception model’s
performance. Moreover, the larger improvement on the fish-
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Fig. 14: Qualitative Comparison of Semantic Prediction on Perspective and Fisheye Views.

eye views further verifies that existing perception models
degenerates on unseen viewpoints and demonstrates the
importance of being able to synthesizing labels with large
viewpoint changes.

4.5 Ablation Study
We validate our pipeline’s design modules with extensive
ablations in Table 5 by removing one component at a time.
We perform label evaluation on joint perspective & fisheye
views and estimate scene geometry on perspective views on
one scene.

Geometric Reconstruction: 1) Semantic Label Guidance:
We now verify that our method effectively improves the
underlying geometry by leveraging semantic information.
We first remove all the other losses except for Lp, leading
to a baseline, NeRF-360*, which still employs a hybrid of
MLP and grids and uses our proposed sampling strategy.
In this case, we render a semantic map based on the fixed

Depth (0-100m) Eval. Perspective & Fisheye
RMSE↓ δ1.25 ↑ Label mIoU* Acc* PQ*

3D-2D CRF - - - 69.7 94.1 57.6

NeRF-360* 19.11 75.5 Ŝ(sβ) 64.6 88.9 54.6
w/o L2D

Ŝ
16.90 78.4 S(sϕ) 71.3 93.8 61.6

w/o L2D
S 7.57 94.7 S(sϕ) 74.6 94.9 64.0

w/o L2D
S 7.57 94.7 Ŝ(sβ) 73.4 94.8 62.3

w/o L3D
s 7.53 94.7 S(sϕ) 75.0 95.0 65.3

w/o Ld 8.36 93.4 S(sϕ) 74.4 94.9 63.8
w/o 1(r) 8.29 94.5 S(sϕ) 75.1 95.0 65.4

Uniform S. 9.52 93.5 S(sϕ) 67.3 92.2 56.7
S. points↓ 7.36 94.6 S(sϕ) 75.3 95.1 65.4
w/o w(k) 7.12 94.8 S(sϕ) 75.6 95.1 66.2

w/o fisheye* 7.90 92.5 S(sϕ) 74.8 94.7 64.0

Complete 7.27 94.7 S(sϕ) 76.1 95.2 66.6

TABLE 5: Ablation Study over one scene.

semantic field sβ . As can be seen from Table 5 and Fig. 16,
the underlying geometry of NeRF-360* drops significantly
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Input iNGP [54] Tri-planes [9] Ours GT Label

Fig. 15: Qualitative Comparison of Neural Scene Representations on Fisheye. Ours generates smoother labels than others.

GT Complete w/o L2D
Ŝ

NeRF-360*
Fig. 16: Ablation Study. Top: LiDAR depth map and rendered depth maps. Middle: RGB input and normal maps computed
as the gradient of the volume density with respect to 3D position. Bottom: Semantic GT and predictions. Note that removing
L2D
Ŝ

leads to severely impaired geometry, and inaccurate boundary and semantic segmentation.
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Fig. 17: Qualitative Ablations of Fine-tuning Stage. (a)
full model (b) w/o finetuning instance (c) w/o fisheye,
w/o finetuning instance. Zoom in the visualization of the
overexposed area between adjacent “building”s and the
corresponding depth. The red lines mark the GT boundaries.

with only using Lp. More importantly, the depth prediction
also degrades considerably when removing L2D

Ŝ
(w/o L2D

Ŝ
,

RMSE: 7.27→16.90), indicating the importance of the fixed
semantic field in improving the underlying geometry to ren-
der accurate semantic boundaries. This can also be verified
by removing fisheye semantic predictions from the input
(w/o fisheye*), which results in more inaccurate geometry

(δ1.25: 94.7→92.5) and semantics (mIoU*: 76.1→74.8).
2) Instance Label Guidance: To illustrate the effectiveness of
L2D
T̂

(Eq. 10), we present Fig. 17 for qualitative comparision.
In the marked region with overexposure, the full model
achieves more accurate boundaries and smoother geome-
try than the model without the fine-tuning stage (w/o ft.
instance).
3) Others: For the hybrid scene features, as shown in Fig. 5,
“concatenation” performs better than “product” in merging
MLP and hash features, leading to smoother and less erro-
neous geometry. We further show that eliminating Ld (w/o
Ld), replacing the sampling strategy with standard uniform
sampling (Uniform S.), or removing ray masking (w/o 1(r))
all impair the geometric reconstruction, and consequently
the semantic estimation.

Panoptic Segmentation: When removing L2D
S (w/o L2D

S ),
the performance also drops as the learned semantic field sϕ
is only supervised by weak 3D supervision. Interestingly,
this baseline still outperforms the semantic map rendered
by the fixed semantic field despite that they share the
same geometry. This observation suggests that the weak
3D supervision provided by L3D

s also allows us to address
label ambiguity in overlapping regions to a certain extent.
Therefore, it is not surprising that removing L3D

s (w/o L3D
s )

worsens the label prediction compared to the full model.
Discarding w(k) (w/o w(k)) causes worse label quality
by sacrificing geometry (RMSE:7.27→7.12) to model imbal-
anced label distribution.

2D Pseudo GT: Finally, we evaluate how the quality of
the pseudo 2D ground truth affects our method in Ta-
ble 6. As some classes are not considered during training
in Cityscapes, we additionally report mIoUsub over the
remaining classes. It is worth noting that using models



16

Method mIoU* mIoUsub* Acc* PQ*

SSA [11] - 67.4 86.0 -
Deeplab [12] - 73.3 91.0 -
Tao et al. [66] - 75.9 92.5 -
PSPNet [82] - 71.4 90.4 -
PSPNet* [82] 67.0 74.7 92.0 -

Ours w/ [11] 65.2 71.6 90.9 58.6
Ours w/ [12] 73.3 78.6 94.5 63.6
Ours w/ [66] 73.9 78.4 95.1 64.9
Ours w/ [82] 70.7 74.3 92.3 62.5

Ours 76.1 79.6 95.2 66.6

TABLE 6: Quantitative Comparison using different 2D
Pseudo GTs on one scene. We keep the pesudo labels for the
two side-view fisheye cameras and only change the pseudo
labels on the forward-facing views.

pre-trained on Cityscapes without any fine-tuning leads to
promising results, where Ours w/ Deeplab [12] and Ours
w/ Tao et al. [66] are very close to Ours + PSPNet* in terms
of mIoUsub. More importantly, our method consistently out-
performs the corresponding 2D pseudo GT by leveraging
the 3D bounding primitives. We additionally incorporate
SSA, a SAM-based semantic variant to demonstrate the
inefficiency of SAM [37] despite its unprecedented zero-shot
mask generation ability.

5 CONCLUSION

We present PanopticNeRF-360 that infers in 3D space and
renders omnidirectional per-pixel semantic and instance
labels for 3D-to-2D label transfer. By unifying coarse 3D
bounding primitives and noisy 2D semantic predictions,
PanopticNeRF-360 is capable of performing mutual en-
hancement of geometry and semantics compared to naı̈ve
joint optimization of geometry and semantics. Specifically,
it improves the underlying scene geometry given sparse
input views leveraging label-guided geometry optimization,
while concurrently resolving label noise based on improved
geometry. Moreover, it enables label synthesis at a large
range of novel viewpoints, including panoramic perspec-
tives. We posit that our method marks a significant step
towards improving data annotation efficiency while deliv-
ering a consistent, continuous 3D panoptic representation.

5.1 Limitations

Our method has several limitations: (1) We perform per-
scene optimization. To further shorten the time for label
transfer, future works might explore how to endow the
model with training-free inference abilities on novel sce-
narios. This can be potentially realized by pretaining on
a large number of urban scenes of diverse environments.
(2) In cases where there are missing bounding boxes in
distant regions, our method cannot accurately recover the
correct labels and typically categorizes these areas as ”sky.”
However, the impact of this on image-based models is
usually negligible since the very distant regions represent
only a small portion of the 2D image space. (3) We focus on
label transfer of static scenes. It will be interesting to extend
our method to dynamic scenes given annotated bounding
primitives of the dynamic objects.

Potential Improvement on Backbone: 3D Gaussian Splat-
ting [33] has demonstrated remarkable training and ren-
dering efficiency in comparison to NeRF-like architectures.
It is indeed a very interesting future direction to be ex-
plored such efficient representations to scaling the proposed
method to large-scale scenes [44], [47], [48]. With the 3D
bounding primitives, we can seamlessly employ the points
within them for initial setup. With the 3D bounding primi-
tives, we can seamlessly employ the points within them for
initial setup. Besides, the explicit representation of gaussian
splatting is more suitable for modeling and visualizing
semantic occupancy compared to NeRF (implicit function).
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computer vision matter for action? Science Robotics, 2019.

[85] Walter Zimmer, Akshay Rangesh, and Mohan Trivedi. 3d bat:
A semi-automatic, web-based 3d annotation toolbox for full-
surround, multi-modal data streams. In IEEE Intelligent Vehicles
Symposium (IV), pages 1816–1821. IEEE, 2019.

Xiao Fu received bachelor degree in Information
Engineering at Zhejiang University in 2022, ad-
vised by Prof. Yiyi Liao. His research interest lies
in 3D computer vision and machine learning, in-
cluding neural rendering, 3D/4D reconstruction,
generation and scene editing.

Shangzhan Zhang is a highly motivated mas-
ter’s student in Computer Science at Zhejiang
University, where he is advised by Professor Xi-
aowei Zhou. He received his bachelor’s degree
from the same university in 2022.

Tianrun Chen received the bachelor’s degree
in College of Information Science and Electronic
Engineering, Zhejiang University and is persuing
Ph.D. degree in Computer Science and Technol-
ogy at Zhejiang University. He is also the founder
and the technical director of Moxin Technology
(KOKONI) Co., LTD. His research interest in-
cludes computer vision and its enabling applica-
tions.

Yichong Lu is a senior undergraduate student
in College of Information Science and Electronic
Engineering, Zhejiang University. His research
interest includes 3D reconstruction, generation
and editing.

Xiaowei Zhou is a Research Professor of Com-
puter Science at Zhejiang University, China. He
obtained his Ph.D. degree from The Hong Kong
University and Science and Technology, after
which he was a postdoctoral researcher at the
GRASP Lab, University of Pennsylvania. His re-
search interests include 3D reconstruction and
scene understanding.

Andreas Geiger received his Diploma in com-
puter science and his Ph.D. degree from Karl-
sruhe Institute of Technology in 2008 and 2013.
Currently, he is leading the Autonomous Vision
Group at the University of Tubingen. He is also a
core faculty member of the Tübingen AI Center.
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APPENDIX

Overview: In this supplementary document, we first give
a detailed overview of our network architecture, sampling
strategy, far-class fusing strategy, evaluation metrics, and
training and inference procedure in Section A. Next, we
describe our data preparation process in Section B, including
the stereo depth maps for supervision, LIDAR depth maps,
semantic labels for evaluation, and Acquirement of Weak
3D&2D Labels. Then, we provide additional experiments,
including quantitative evaluation of bbox intersection, more
label transfer results, novel label synthesis at 360◦ outward
rotated viewpoints and panoramic viewpoints, qualitative
comparison of label transfer and neural scene represen-
tations, weak depth supervision, analysis of 3D-2D CRF,
and attempt in generating self-distilled pseudo instance GT
using SAM in Section C. Finally, we provide failure cases,
including far-region label synthesis and fisheye geometric
reconstruction in Section D.

APPENDIX A
IMPLEMENTATION DETAILS

A.1 Network Architecture
Fig. S1 shows the trainable part of our PanopticNeRF-
360 model. We adopt the same network architecture in all
experiments.

For radiance field, we map x to a higher dimensional
space using positional encoding (PE): γ(p) =
(sin(20πp), cos(20πp), · · · , sin(2L−1πp), cos(2L−1πp)).
Note that we also apply PE in d to produce a view-
dependent effect. To learn high-frequency components in
unbounded outdoor environments, we set L = 15 for γ(x)
and L = 4 for γ(d).

For hash encoding, we use multi-resolution grids [54],
with each grid cell vertice mapped to a hash entry: h(x) =(⊕3

i=1 xiπi

)
mod T . Each hash entry stores a trainable

feature. We set the number of levels 16 and grid resolutions
Nmin = 16 ∼ Nmax = 524, 288 with hash table size
T = 219. We query features via trilinear interpolation and
concatenate the features at all spatial resolutions as input to
a shallow MLP.

Our learned semantic field is conditioned only on the
3D location x rather than the viewing direction d in order
to predict view-independent semantic logits. The logits are
then transformed into categorical distributions through a
softmax layer.

Biased Density Initialization: To accelerate convergence
when sampling points from coarse annotated bounding
primitives, we set the bias of the density layer to 0.2,
irrespective of whether the primitives belong to the “thing”
or “stuff” categories.

A.2 Sampling Strategy
We sample points within the bounding primitives to skip
empty space. As our bounding primitives are convex2, each
ray intersects a bounding primitive exactly twice which

2. The cuboids and ellipsoid are both convex. The extruded 3D plane
is convex in a local region.
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Fig. S1: Network Architecture. PanopticNeRF-360 takes as
input the 3D location x (each element normalized to [−1, 1]),
the viewing direction d, and outputs radiance c and se-
mantic logits s. Scene feature f is the concatenation of MLP
features f1 and hash encoding features f2. z is the per-frame
latent embeddings.

determines the sampling interval. For each camera ray, we
sort all bounding primitives that the ray hits from near to
far and save the intersections offline. To save storage and
to speed up training, we keep the first 10 sorted bounding
primitives as the rest are highly likely to be occluded. If
a camera ray intersects less than 10 bounding primitives,
we additionally sample a set of points to model the sky in
[tmax, tmax+tint], where tmax denotes the distance from the
origin to the furthest bounding primitive in the 360◦ scene
and tint is a constant distance interval.

A.3 Fusing Far-region Class

Urban scenes often contain objects that are located in far
regions, resulting in missing bounding boxes in the corre-
sponding images and misclassification as “sky” class. For
pixels that have been identified as belonging to foreground
classes within the 2D pseudo semantic label map, but which
do not intersect bounding primitives along the correspond-
ing ray, we replace these with available pseudo labels.

A.4 Training and Inference

As mentioned in Section 4.4 of the main paper, our total
loss function comprises six terms, including three semantic
losses L2D

Ŝ
, L2D

S , L3D
s , the instance loss L2D

T̂
, the photometric

loss Lc and the weak depth loss Ld. During per-scene op-
timization, we resize perspective images to 704×188 pixels
and fisheye images to 350×350 pixels. We further mask out
invalid regions in the fisheye, including the periphery re-
gion and the ego-vehicle. The photometric loss Lc is defined
on the stereo images and two-side fisheye images. We apply
the 2D semantic losses L2D

Ŝ
, L2D

S to the left perspective
images and fisheye images and the 3D semantic loss L3D

s

directly on 3D points sampled along the camera rays of
these images. The instance loss L2D

T̂
is applied to buildings

on stereo perspective views as line regression is not appli-
cable on distorted fisheye label maps. The weak depth loss
Ld is defined only on the left images as the information
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gain is marginal on the right views and monocular depth
estimation on fisheye views is struggling.

For inference, we compare our method to the base-
lines on the left perspective views and two-side fisheye
views of which the manually labeled 2D Ground Truth is
defined. Note that our method is not constrained to the
fixed viewpoints during inference. We show label transfer
results on the 360◦ outward rotated views in Section C.3
and panoramic views in Section C.4.

A.5 Evaluation Metric
We evaluate mIoU and pixel accuracy following standard
practice [15], [43]. Here, we provide more details of the
multi-view consistency and panoptic quality metrics.

Multi-view Consistency: To evaluate multi-view consis-
tency, we use depth maps obtained from LiDAR points to
retrieve matching pixels across two consecutive frames. A
similar multi-view consistency metric is considered in [67]
where optical flow is used to find corresponding pixel
pairs. We instead use LiDAR depth maps as they are more
accurate compared to optical flow estimations. The details
of generating the LiDAR depth maps will be introduced in
Section B.2. Given LiDAR depth maps at two consecutive
test frames, we first unproject them into 3D space and find
matching points. Two LiDAR points are considered matched
if their distance in 3D is smaller than 0.1 meters. For each
pair of matched points, we retrieve the corresponding 2D
semantic labels and evaluate their consistency. The MC
metric is evaluated as the number of consistent pairs over
all matched pairs. Despite being not 100% accurate as the
3D points may not match exactly in 3D space, we find this
metric meaningful in reflecting multi-view consistency.

Panoptic Quality: Following [36], we use the PQ metric to
evaluate the performance of panoptic segmentation. PQ can
be seen as the multiplication of a segmentation quality (SQ)
term and a recognition quality (RQ) term. To mitigate the
over-penalization errors related to stuff classes in PQ, we
further involves PQ† [62] for comprehensive evaluation. As
the ground truth panoptic labels are not precise in distant
areas and have a lot of small noises of things, we set ground
truth labels of areas less than 100 pixels to “void”. Cor-
respondingly, segment matching will not be performed in
void regions. In addition, Panoptic maps of the 3D-2D CRF
and our method contain very small-region objects that are
usually less than 100 pixels. To avoid being biased by those
extremely small-region objects in the segment matching, we
omit them by setting the predicted labels of the areas less
than 100 pixels to the sky class. To ensure a fair comparison
across all methods, we adopt the same evaluation protocol
for all baselines and our method.

APPENDIX B
DATA PREPARATION

B.1 Stereo Depth for Weak Depth Supervision
To provide weak depth supervision to PanopticNeRF-360,
we use Semi-Global Matching (SGM) [28] to estimate depth
given a stereo image pair on perspective views. We perform
a left-right consistency check and a multi-frame consistency

check in a window of 5 consecutive frames to filter inconsis-
tent predictions. We further omit depth predictions further
than 15 meters in each frame as disparity is better estimated
in nearby regions, see Fig. S2.

B.2 LiDAR Depth for Evaluation

We evaluate the rendered depth maps against the LiDAR
measurements. We refrain from using LiDAR as input as
1) this allows us to evaluate our depth prediction against
LiDAR and 2) it makes our method more flexible to work
with settings without any LiDAR observations. As LiDAR
observations at each frame are sparse, we accumulate mul-
tiple frames of LiDAR observations and project the visible
points to each frame similar to [71].

B.3 Manually Annotated 2D GT

The manually annotated 2D ground truth of KITTI-360 [43]
is inferior at some regions. For a fair comparison, we im-
prove the label quality by manually relabeling ambiguous
classes, see Fig. S3 for illustrations.

B.4 Acquirement of Weak 3D&2D Labels

We use the bounding primitives provided by the KITTI-360.
As for the acquirement of these 3D labels, Liao et al. [43] first
capture 3D point clouds utilizing LiDAR and stereo sensors.
Next, using the KITTI-360 annotation toolkit3, the 3D point
clouds are annotated in the form of bounding primitives,
i.e., by placing cuboids and ellipsoids to enclose objects in
3D and assigning a semantic label to each of them. The
3D scene is annotated with 37 label classes, including 24
“thing” classes and 13 “stuff” classes. Labels are defined in
accordance with the Cityscapes. To obtain more 3D bound-
ing primitives in other scenarios, we may also utilize tools
like the KITTI-360 annotation toolkit, as demonstrated in the
experiments on Waymo. Besides, it is promising to leverage
off-the-shelf 3D understanding algorithms [26], [63], [64],
[80] to reduce the cost of labeling. We believe improving
the labeling efficiency augmented by these 3D perception
methods is an interesting yet orthogonal direction for fu-
ture work. As for coarse 2D semantic segmentation, state-
of-the-art models have intensively investigated semantic
segmentation of self-driving scenarios [12], [13], [37], [66],
[82]. Applying these models to obtain coarse 2D semantic
segmentation masks is cost-effective.
APPENDIX C
ADDITIONAL EXPERIMENTAL RESULTS

C.1 Quantitative Evaluation of Bbox Intersection

We provide quantitative bbox intersection evaluation in
correspondence to Fig. 5 in the main paper. We evalu-
ate on two sequences (“2013 05 28 drive 0000 sync” and
“2013 05 28 drive 0004 sync”) that contain the 10 test
scenes in KITTI-360. As shown in Table R1, the intersection
between different semantic class (“sem.-sem.” and “sem.-
inst.”) accounts to 98.5% in number and 98.4% in volume.
Thus the learned semantic field is crucial to resolve label

3. https://github.com/autonomousvision/kitti360labeltool

https://github.com/autonomousvision/kitti360labeltool
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Fig. S2: Depth Maps for Weak Depth Supervision. Each group shows the RGB image (top) and the corresponding depth
maps (bottom) used for supervision.

Fig. S3: Examples of Modified Ground Truth. We correct some GT pixels that were incorrectly labeled in the KITTI-360
dataset. Top: Input RGB images. Middle: Original ground truth. Bottom: Modified ground truth. In the first column, we
add the “box” class. In the second column, we correct the “parking” area.

ambiguity using pre-trained semantic prior transferred from
other datasets. As the “inst-inst” intersection is small (1.5%
in number and 1.6% in volume), we ignore resolving in-
stance intersection in our experiments. From the distribution
of volume, we find that the intersected volume size and
quantity of intersection numbers are inversely proportional.

C.2 More Panoptic Label Transfer Results

We provide visualization of more panoptic label transfer
results both on perspective views (see Fig. S4) and fisheye
views (see Fig. S5).

C.3 360◦ Outward Rotated Label Synthesis

PanopticNeRF-360 enables omnidirectional rendering of la-
bel and appearance. In Fig. S6, we showcase sampling at
360◦ rotated viewpoints around the z-axis in a scene. The

angle between adjacent images is 24◦. Please refer to te
website for videos with 64 frames.

C.4 Panoramic Synthesis

In Fig. 11 of main paper, we show examples of panoramic
semantic/instance labels at the resolution of 960×540 pixels
but crop the regions that are too high and too low (50
marginal pixels). In Fig. S7, we visualize panoramic panop-
tic label and depth map synthesis at full-resolution.

C.5 Qualitative Comparison of Label Transfer

Fig. S8 shows additional qualitative perspective compar-
isons corresponding to the Table 1 of the main paper. Consis-
tent with the quantitative results, our method outperforms
all baselines qualitatively. We further show qualitative com-
parisons to 3D-2D CRF in terms of panoptic label transfer on
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Fig. S4: More Perspective Panoptic Label Transfer Results overlaid with GT RGBs and predicted panoptic labels.

Number Volume (m3)

Cross-semantics Statistic

sem.-sem. 140,229 (82.4%) 2,557,030.10 (94.2%)
sem.-inst. 27,345 (16.1%) 112,805.18 (4.2%)
inst.-inst. 2,561 (1.5%) 43,313.79 (1.6%)

Distribution of Volume (m3)

0-1 100,864 (59.3%) 23,028.01 (0.8%)
1-5 35,498 (20.9%) 85,393.67 (3.1%)
5-10 11,604 (6.8%) 82,593.65 (3.0%)

10-100 19,341 (11.4%) 557,977.52 (20.6%)
>100 2,828 (1.7%) 1,964,156.23 (72.4%)

TABLE R1: Evaluation of Bbox Intersection. ‘sem.-sem.’
for semantic-semantic intersection, ‘sem.-inst.’ for semantic-
instance intersection, and ‘inst.-inst.’ for instance-instance
intersection, respectively.

a set of unlabeled 2D perspective frames (see Fig. S9) and
fisheye frames (see Fig. S10).

C.6 Qualitative Comparison of Scene Representations

We study the influence of different scene representations
based on pure MLP [52], iNGP [54], and Tri-planes [9].
MLP conditions on official 8 fully-connected ReLU layers as
the scene feature. iNGP adopts the lower branch of Our’s
network architecture in Fig. S1, and the network param-
eters also follows the implementation in A.1. Tri-planes
takes TensoRF-VM-192 (Rσ = 16, Rc = 48) architecture
with 5123 grid voxels. We also involve the total variation
(TV) loss to avoid high-frequency noise. The comparison is
shown in Fig. S11. In label synthesis, iNGP generates more
undesired noise and ours is comparable to MLP. The in-
ductive smoothness bias benefits MLP to produce smoother
boundaries across frequency-varying regions. For rendering
appearance, Ours and iNGP are able to reconstruct high-
frequency imagery, while MLP is inferior to them. Tri-planes
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Fig. S5: More Fisheye Panoptic Label Transfer Results overlaid with GT RGBs and predicted panoptic labels.

struggles when scaled to larger scenes, while it is excellent
at small-scale objects.

C.7 Weak Depth Supervision
We show that using the depth loss Ld alone is not able
to recover accurate object boundaries in Fig. S12. In con-
trast, adding the semantic loss L2D

Ŝ
to the fixed semantic

field further improves the object boundary. These improve-
ments can be explained as follows: Firstly, the weak stereo
depth supervision is not fully accurate, especially at far
regions. Furthermore, even with perfect depth supervision,
the model receives very small penalty if the predicted depth
is close to the GT depth. In contrast, the cross entropy loss

L2D
Ŝ

defined on the fixed semantic field provides a strong
penalty as small errors in depth lead to wrong semantics.

C.8 Analysis of 3D-2D CRF
The 3D-2D CRF performs inference based on a multi-field
CRF which reasons jointly about the labels of the 3D points
and all pixels in the image. To obtain dense 3D points, it
accumulates LiDAR observations over multiple frames and
project visible 3D points to the image based on a recon-
structed mesh. Fig. S13 shows depth maps of the recon-
structed mesh corresponding to Fig. 5 of the main paper. As
can be seen, the side of the building can hardly be scanned
by the LiDAR, leading to incomplete mesh reconstruction.
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Fig. S6: Panoptic Label Transfer Results on 360 Outward Rotated Viewpoints. The frames are overlaid with predicted
panoptic labels and rendered appearance. The rotation can be recognized in the image groups from left to right, from top
to down.

Consequently, 3D-2D CRF lacks 3D information in these
regions and needs to distinguish building instances mainly
based on 2D image cues. It is not surprising that the 3D-2D
CRF fails at overexposed image regions in this case.

C.9 Generating Self-distilled Pseudo GT Using SAM

SAM [37] has extraordinary performance on object segmen-
tation and supports multi-forms of input. We try to utilize
it to generate general self-distilled pseudo panoptic GT.

However, we find its open source code can not support
panoptic masks as input and we have to transform them
into panoptic 2D bounding boxes before sending them to the
network. As shown in Fig. S14, the pseudo GTs generated by
SAM have some flaws in buildings. We suppose that SAM
tends to segment some components of the buildings (like
doors and windows) separately instead of regarding them
as part of the buildings and the performance of SAM can be
deteriorated by over-exposure.
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APPENDIX D
FAILURES

D.1 Far-Region Label Synthesis
As there are missing bounding boxes in far-regions, labels
rendered at novel viewpoints at these areas will be classified
to “sky” as shown in Fig. S15. Although we can improve
the label quality via pseudo label fusion in overfitted views
in A.3, the ability to render precise labels in regions with
arbitrary distances at omnidirectional viewpoints remains a
problem.

D.2 Fisheye Geometric Reconstruction
In our experiments, we find that the geometric reconstruc-
tion in two-side fisheye is unstable though perspective infor-
mation could serve as a complementation. As illustrated in
S16, there are irregular holes in the reconstructed geometry
especially in low-texture and over-exposed regions.
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Fig. S7: Panoramic Label & Depth Synthesis at 960×540 pixels.
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Fig. S8: Qualitative Comparison of Perspective Semantic Label Transfer on frames with manually labeled ground truth.
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Fig. S9: Qualitative Comparison of Perspective Panoptic Label Transfer on frames without manually labeled ground
truth. Each group shows the prediction of ours (top) and 3D-2D CRF [43] (bottom).

Fig. S10: Qualitative Comparison of Fisheye Panoptic Label Transfer on frames without manually labeled ground truth.
Each group shows the prediction of ours (top) and 3D-2D CRF [43] (bottom). We can infer from groups 2 and 4 that Ours
is superior to 3D-2D CRF on over-exposed areas on buildings.
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Fig. S12: Qualitative Comparison of Ablation Study. We visualize the semantic map and depth map of the complete
model (top) and the model without fixed semantic field (bottom).

Fig. S13: Qualitative Results of 3D-2D CRF. Top: Input RGB images. Middle: 3D-2D CRF mesh depth. Bottom: Panoptic
label transfer results of the 3D-2D CRF method.

Fig. S14: Self-distilled Pseudo GT Using SAM. Top: Input RGB images. Middle: Middle results generated by our method.
Bottom: Pseudo GT generated by SAM.
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Fig. S15: Failure in Label Synthesis in Far-Region at Novel Viewpoints.

Fig. S16: Failure in Geometric Reconstruction on Fisheye Views. Each group contains a fisheye RGB input (upper) and
reconstructed depth map (bottom).
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