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Abstract

Large-scale training data with high-quality annotations
is critical for training semantic and instance segmenta-
tion models. Unfortunately, pixel-wise annotation is labor-
intensive and costly, raising the demand for more efficient
labeling strategies. In this work, we present a novel 3D-to-
2D label transfer method, Panoptic NeRF, which aims for
obtaining per-pixel 2D semantic and instance labels from
easy-to-obtain coarse 3D bounding primitives. Our method
utilizes NeRF as a differentiable tool to unify coarse 3D
annotations and 2D semantic cues transferred from exist-
ing datasets. We demonstrate that this combination allows
for improved geometry guided by semantic information, en-
abling rendering of accurate semantic maps across multiple
views. Furthermore, this fusion process resolves label am-
biguity of the coarse 3D annotations and filters noise in the
2D predictions. By inferring in 3D space and rendering to
2D labels, our 2D semantic and instance labels are multi-
view consistent by design. Experimental results show that
Panoptic NeRF outperforms existing label transfer methods
in terms of accuracy and multi-view consistency on chal-
lenging urban scenes of the KITTI-360 dataset.

1. Introduction

Semantic instance segmentation is an important percep-
tion task for autonomous driving. It is widely acknowledged
that large-scale training data with high-quality annotations
is critical to propel the performance of segmentation mod-
els. However, manual annotation of pixel-accurate segmen-
tation masks is highly expensive and time-consuming. For
example, annotating all instances in a single street scene
image requires up to 1.5 hours [31]. Recently, a few ur-
ban datasets propose to annotate in 3D space using coarse
bounding primitives (e.g., cuboids and ellipsoids) and trans-
fer 3D labels to 2D [59, 31, 22], significantly reducing the
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annotation time to 0.75 minutes per image [31]. Besides, it
is often easier to separate instances in 3D rather than in 2D
image space (e.g., pedestrian in front of building). Thus,
there is an increasing demand for accurately transferring
coarse 3D annotations to 2D semantic and instance labels.

There are only a few existing attempts in this direction.
Huang et al. [22] perform manual post-processing to obtain
accurate 2D labels based on 3D coarse annotations. An-
other line of work additionally leverages 2D image cues
(e.g., noisy 2D semantic predictions) to avoid human inter-
vention, achieved by combining 3D annotations and 2D im-
age cues based on conditional random fields (CRF) [59, 31].
This CRF-based approach relies on intermediate 3D recon-
structions for projecting non-occluded 3D points to 2D, and
then performs inference in 2D image space. The 3D re-
construction cannot be jointly optimized in the CRF model
and thus erroneous reconstruction leads to inaccurate la-
bel transfer results. To alleviate this problem, we pro-
pose Panoptic NeRF, a novel label transfer method built on
NeRF [38] that infers geometry and semantic jointly in 3D
space to render dense 2D semantic and instance labels, i.e.,
panoptic segmentation labels [27] (see Fig. 1).

A naı̈ve solution is to first train a vanilla NeRF model,
and then render segmentation maps based on seman-
tic/instance labels determined by the 3D bounding primi-
tives. However, as illustrated in Fig. 1, inaccurate geomet-
ric reconstruction leads to wrong semantic/instance maps,
yet it is hard to obtain accurate geometry using the vanilla
NeRF in the driving scenario where input views are sparse.
Furthermore, label ambiguity at overlapping regions of the
3D bounding primitives also yields inaccurate 2D labels.

In this work, we aim to tackle both challenges. In-
spired by [59, 31], we combine 3D annotations and noisy
2D semantic predictions transferred from existing datasets
to fully automate the label transfer process. Specifically, our
method consists of a radiance field and dual semantic fields,
supervised by 3D and 2D weak semantic information as
well as posed 2D RGB images. To improve the underlying
geometry, we propose a semantically-guided geometry opti-
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Figure 1: Panoptic NeRF takes as input a set of sparse images, coarse 3D bounding primitives and noisy 2D predictions
(yellow boxes highlight inaccurate predictions). By inferring in 3D space, it generates semantic and instance labels in the 2D
image space via volume rendering. We propose semantically-guided geometry optimization to improve the underlying ge-
ometry. We further resolve label ambiguity at intersection regions of the 3D bounding primitives intersect via joint geometry
and semantic optimization, enabling rendering consistent and accurate panoptic labels at multiple views.

mization strategy based on a fixed semantic field determined
by the 3D bounding primitives. With the semantic field
fixed, we demonstrate that the geometry can be improved
guided by noisy 2D semantic predictions. The semantic ren-
dering is then further refined by joint geometry and seman-
tic optimization, where a learned semantic field is adopted
to fuse information of the 3D bounding primitives and the
2D noisy predictions. As evidenced by our experiments,
this fusion procedure is able to resolve the label ambiguity
of the 3D bounding primitives and largely eliminate noise
in the 2D predictions. Furthermore, Panoptic NeRF enables
rendering globally consistent 2D instance maps across mul-
tiple frames, where each object has a unique instance in-
dex determined by the 3D bounding primitives. Utilizing
3D bounding primitives of the recently released KITTI-360
dataset, Panoptic NeRF outperforms existing 3D-to-2D and
2D-to-2D label transfer methods, providing a promising ap-
proach to efficiently develop large-scale and densely labeled
datasets for autonomous driving.

We summarize our contributions as follows: 1) We pro-
pose to perform 3D-to-2D label transfer by inferring in the
3D space. This allows us to unify easy-to-obtain 3D bound-
ing primitives and noisy 2D semantic predictions in a single
model, yielding high-quality panoptic labels. 2) By leverag-
ing a novel dual formulation of the semantic fields, Panop-
tic NeRF effectively improves the geometric reconstruction
given sparse views, yielding accurate object boundaries.
Moreover, it is able to resolve label ambiguities and elimi-
nates label noise based on the improved geometry. 3) Our

Panoptic NeRF achieves superior performance compared to
existing label transfer methods in terms of both semantic
and instance predictions. Furthermore, our 2D semantic and
instance labels are multi-view and spatio-temporally consis-
tent by design. Finally, our method enables rendering RGB
images and semantic/instance labels at novel viewpoints.

2. Related Work

Urban Scene Segmentation: Semantic instance segmen-
tation is a critical task for autonomous vehicles [45, 64].
Learning-based algorithms have achieved compelling per-
formance [9, 30, 62], but rely on large-scale training
data. Unfortunately, annotating images at pixel level is
extremely time-consuming and labor-intensive, especially
for instance-level annotation. While most urban datasets
provides labels in 2D image space [5, 11, 41, 25, 57],
autonomous vehicles are usually equipped with 3D sen-
sors [15, 7, 17, 22, 31]. KITTI-360 [31] demonstrates that
annotating the scene in 3D can significantly reduce the an-
notation time. However, transferring coarse 3D labels to 2D
remains challenging. In this work, we focus on developing
a novel 3D-to-2D label transfer method, exploiting recent
advances in neural scene representations.

Label Transfer: There have been several attempts at im-
proving label efficiency for individual frames [33, 20, 8, 1,
32, 2]. In this paper we focus on efficient labeling of video
sequences. Existing works in this area can be divided into
two categories: 2D-to-2D and 3D-to-2D. 2D-to-2D label



transfer approaches reduce the workload by propagating la-
bels across 2D images [49, 21, 47, 51, 14], whereas 3D-to-
2D methods exploit additional information in 3D for effi-
cient labeling [22, 35, 40, 58, 6]. To obtain dense labels in
2D image space, some works [31, 59] perform per-frame
inference jointly over the 3D point clouds and 2D pixels
using a non-local multi-field CRF model. However, these
methods require reconstructing a 3D mesh to project 3D
point clouds to 2D. As it is treated as a pre-processing step,
the mesh reconstruction is not jointly optimized in the CRF
model. Thus, inaccurate reconstruction hinders label trans-
fer performance. In contrast, Panoptic NeRF provides a
novel end-to-end method for 3D-to-2D label transfer where
geometry and semantic estimations are jointly optimized.

Coordinate-based Neural Representations: Recently,
coordinate-based neural representations has received wide
attention. in many areas, including 3D reconstruction [48,
23, 16, 37, 43, 60, 18, 44, 50, 54], novel view synthe-
sis [38, 3, 24, 34], and 3D generative modeling [19, 36, 53].
In this paper, we focus on utilizing coordinate-based rep-
resentations to estimate the semantics of the scene. To-
wards this goal, NeSF [56] focuses on generalizable se-
mantic field learning from density grids supervised by 2D
GT labels, but we concentrate on the 3D-to-2D label trans-
fer task without access to 2D GT. A closely related work
Semantic NeRF [63] explores NeRF for semantic fusion.
However, Semantic NeRF takes as input ground truth 2D
labels or synthetic noise labels, which struggles to pro-
duce correct labels given real-world predictions from pre-
trained 2D models. Moreover, Semantic NeRF operates
in indoor scenes with dense RGB inputs and degenerates
in challenging outdoor driving scenarios with sparse input
views. Finally, Semantic NeRF is limited to rendering se-
mantic labels, whereas our method can render panoptic la-
bels. A concurrent work PNF [29] allows for rendering
papotic labels. While PNF focuses on parsing the scene
using known classes of the Cityscapes dataset [11] based
on pre-trained segmentation and detection models, we aim
to transfer 3D annotations to 2D image space for arbitrary
classes to enable the development of new datasets, e.g., pro-
viding instance labels for buildings that are not available in
Cityscapes.

3. Background

NeRF: NeRF [38] models a 3D scene as a continuous neu-
ral radiance field fθ. Specifically, it maps a 3D coordinate
x and a viewing direction d to a volume density σ and an
RGB color value c:

fθ : (x ∈ R3,d ∈ S2) 7→ (σ ∈ R+, c ∈ R3) (1)

Let r(t) = o+ td denote a camera ray. The color at the

corresponding pixel can be obtained by volume rendering

C(r) =

N∑
i=1

Ti(1−exp(−σiδi))ci , Ti = exp

−
i−1∑
j=1

σjδj


(2)

where σi and ci denote the density and color value at a point
i sampled along the ray, Ti denotes the transmittance at the
sample point, and δk = ti+1 − ti is the distance between
adjacent samples. Let π denote the volume rendering pro-
cess of one ray. Enabled by volume rendering, NeRF learns
fθ from a set of 2D RGB images with known camera poses.

Problem Formulation: As shown in Fig. 1, Panoptic NeRF
aims to transfer coarse 3D bounding primitives to dense 2D
semantic and instance labels. In addition to a sparse set of
posed RGB images, we assume a set of 3D bounding prim-
itives β = {Bk}Kk=1 to be available. These 3D bounding
primitives cover the full scene in the form of cuboids, el-
lipsoids and extruded polygons. Each 3D bounding primi-
tive Bk has a semantic label, belonging to either “stuff” or
“thing”. For “thing” classes, Bk is additionally associated
with a unique instance ID. We further apply a pre-trained
semantic segmentation model to the RGB images to ob-
tain a 2D semantic prediction for each image. With this in-
put information, our primary goal is to generate multi-view
consistent, semantic and instance labels at the input frames,
whereas rendering RGB images and panoptic labels at novel
viewpoints is also enabled by inferring in the 3D space.

4. Methodology
Panoptic NeRF provides a novel method for label trans-

fer from 3D to 2D. Fig. 2 gives an overview of our method.
We first map a 3D point x to a density σ and a color value
c using a radiance field, as well as two semantic categorical
distributions ŝ and s based on our dual semantic fields (Sec-
tion 4.1). Correspondingly, for each camera ray, two seman-
tic categorical distributions Ŝ and S in 2D image space via
volume rendering π are obtained. Based on semantic losses
in both 3D and 2D space (Section 4.2), the fixed semantic
field sβ serves to improve geometry, while the learned se-
mantic field sϕ results in improved semantics. With the 3D
bounding primitives, we further define a fixed instance field
tβ that allows for rendering panoptic label T when com-
bined with the learned semantic field (Section 4.3).

4.1. Dual Semantic Fields

To jointly improve geometry and semantics, we define
dual semantic fields, one is determined by the 3D bounding
primitives β and the other is learned by a semantic head ϕ

sβ : x ∈ R3 7→ ŝ ∈ RMs sϕ : x ∈ R3 7→ s ∈ RMs (3)

where Ms denotes the number of semantic classes. In com-
bination with the volume density of the radiance field fθ,
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Figure 2: Method Overview. Left (Semantic Segmentation): At each 3D location xi, i = {1 · · ·N}, sampled along a ray,
we leverage dual semantic fields to obtain two semantic categorical distributions, ŝi and si. The 3D semantic distributions
are accumulated along the ray and projected to 2D image space via volume rendering, resulting in Ŝ and S. The semantic
losses applied to both semantic fields improve 1) the volume density σi and 2) the 3D semantic predictions si. Right (Panoptic
Segmentation): Our method allows for rendering panoptic labels by combining the learned semantic field and a fixed instance
field determined by the 3D bounding primitives.

two semantic distributions Ŝ(r) and S(r) can be obtained
at each camera ray r via the volume rendering operation π:

Ŝ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ŝi

S(r) =

N∑
i=1

Ti(1− exp(−σiδi))si

(4)

Note that Ŝ(r) and S(r) are both normalized distribu-
tions when

∑N
i=1 Ti(1 − exp(−σiδi)) = 1. We set the

background class to sky if
∑N

i=1 Ti(1 − exp(−σiδi)) < 1.
We apply losses to both Ŝ(r) and S(r) for training. During
inference, the semantic label is determined as the class of
the maximum probability in S(r).

Fixed Semantic Field: If x is uniquely enclosed by a 3D
bounding primitive Bk, ŝ is a fixed one-hot categorical dis-
tribution of the category of Bk. For a point x enclosed
by multiple 3D bounding boxes of different semantic cat-
egories, we assign equal probability to these plausible cate-
gories and 0 to the others. As explained in Section 4.2, the
semantic field sβ is able to improve the geometry but cannot
resolve the label ambiguity at the overlapping region.

Learned Semantic Field: We add a semantic head param-
eterized by ϕ to NeRF to learn the semantic distribution s.
We apply a softmax operation at each 3D point to ensure
that s is a categorical distribution. The detailed network
structure can be found in the supplementary material.

4.2. Loss Functions

Semantically-Guided Geometry Optimization: In the
driving scenario considered in our setting, the RGB images

are sparse and the depth range is infinite. We observe that
the vanilla NeRF fails to recover reliable geometry in this
setting. However, we find that leveraging noisy 2D semantic
predictions as pseudo ground truth is able to boost density
prediction when applied to the fixed semantic fields sβ

L2D
Ŝ
(θ) = −

∑
r∈R

Ms∑
k=1

S∗
k(r) log Ŝk(r) (5)

where Ŝk(r) denotes the probability of the camera ray r be-
longing to the class k, and S∗

k(r) denotes the corresponding
pseudo-2D ground truth. As illustrated in Fig. 3, the key
to improve density is to directly apply the semantic loss to
the fixed semantic field sβ , where L2D

Ŝ
can only be mini-

mized by updating the density σ. Fig. 3 shows that a cor-
rect S∗ increases the volume density of 3D points inside
the correct bounding primitive and suppresses the density
of others. When S∗ is wrong, the negative impact can be
mitigated: 1) If S∗ does not match any bounding primitive
along the ray, it has no impact on the radiance field fθ. 2) If
S∗ exists in one of the bounding primitives along the ray, it
means S∗ corresponds to an occluding/occluded bounding
primitive with wrong depth. To compensate, we introduce
a weak depth supervision Ld based on stereo matching to
alleviate the misguidance of L2D

Ŝ
. Although Ld improves

the overall geometry as shown in our ablation study, it fails
to produce accurate object boundaries when used alone (see
supplementary). Adding our semantically-guided geome-
try optimization yields more accurate density estimation as
pre-trained segmentation models usually perform well on
frequently occurring classes, e.g., cars and roads.

Joint Geometry and Semantic Optimization: While en-
abling improved geometry, the 3D label of the overlapping
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Figure 3: Semantically-Guided Geometry Optimization.
The top row illustrates a single ray of the fixed semantic
field sβ , where L2D

Ŝ
can only update the underlying geom-

etry as the semantic distribution ŝ is fixed. The second row
shows a single ray of the learned semantic field sϕ. In this
case, the network can “cheat” by adjusting the semantic pre-
diction s to satisfy L2D

S instead of updating the density σ.

regions remains ambiguous in the fixed semantic field. We
leverage sϕ to address this problem by jointly learning the
semantic and the radiance fields. We apply a cross-entropy
loss L2D

S to each camera ray based on the filtered 2D pseudo
ground truth, where u(r) is set to 1 if S∗(r) matches the se-
mantic class of any bounding primitive along the ray and
otherwise 0. To further suppress noise in the 2D predic-
tions, we add a per-point semantic loss L3D

s based on the
3D bounding primitives

L2D
S (θ, ϕ) = −

∑
r∈R

u(r)

Ms∑
k=1

S∗
k(r) logSk(r)

L3D
s (ϕ) = −

∑
r∈R

N∑
i=1

ui

Ms∑
k=1

ŝki log s
k
i

(6)

where ui is a per-point binary mask. ui is set to 1 if (1)
xi has a unique 3D semantic label and (2) the density σ is
above a threshold σth to focus on the object surface. As il-
lustrated in Fig. 3, L2D

S (θ, ϕ) does not necessarily improve
the underlying geometry as the network can simply adjust
the semantic head sϕ to satisfy the loss. This behavior is
also observed in novel view synthesis where NeRF does
not necessarily recover good geometry when optimized for
image reconstruction alone, specifically given sparse input
views [12, 42].

Total Loss: Together, the total loss takes the form as

L = λŜL
2D
Ŝ

+ λSL2D
S + λsL3D

s + λCLp + λdLd (7)

where Lp =
∑

r∈R ∥C∗(r)−C(r)∥22 and Ld =∑
r∈R ∥D∗(r)−D(r)∥22 denote the photometric loss and

the depth loss, respectively. λŜ, λS, λs, λC, and λd are con-
stant weighting parameters. C∗(r) and C(r) are the ground
truth and rendered RGB colors for ray r. D∗(r) and D(r)
are pseudo ground truth depth generated by stereo matching

and rendered depth, respectively. Please refer to the supple-
mentary for more details of D∗.

4.3. Rendering of Panoptic Labels

Based on our learned semantic field sϕ and the 3D
bounding primitives β with instance IDs, we can easily ren-
der a panoptic segmentation map. Specifically, for a camera
ray r, the panoptic label directly takes the class with maxi-
mum probability in S(r) if it is a “stuff” class. For “thing”
classes, we render an instance distribution T(r) based on
the bounding primitives β to replace S with T. Our instance
field is defined as follow

tβ : x ∈ R3 7→ t ∈ RMt (8)

where Mt is the number of the things in the scene and t
denotes a categorical distribution indicating which thing it
belongs to. Note that t is determined by the bounding prim-
itives and is a one-hot vector if x is uniquely enclosed by a
bounding primitive of a thing. As overlap often occurs at the
intersection of stuff and thing region, the bounding primi-
tives of things rarely overlap with each other. Thus, this
deterministic instance field leads to reliable performance in
practice. To ensure that the instance label of this ray is con-
sistent with the semantic class defined by S, we mask out in-
stances belonging to other semantic classes by setting their
probabilities to 0 in T.

4.4. Implementation Details

Sampling Strategy and Sky Modeling: With the 3D
bounding primitives covering the full scene, we sample
points inside the bounding primitives to skip empty space.
For each ray, we optionally sample a set of points to model
the sky after the furthest bounding primitive. More details
regarding the sampling strategy can be found in the sup-
plementary. Our sampling strategy allows the network to
focus on the non-empty region. As evidenced by our exper-
iments, this is particularly beneficial in unbounded outdoor
environments.

Training: We optimize one Panoptic NeRF model per
scene, using a single NVIDIA 3090. For each scene, we
set the origin to the center of the scene. We use Adam [26]
with a learning rate of 5e-4 to train our models. We set loss
weights to λŜ = 1, λS = 1, λs = 1, λC = 1, λd = 0.1, and
the density threshold to σth = 0.1. We optimize the total
loss L for 80,000 iterations.

5. Experiments

Dataset: We conduct experiments on the recently released
KITTI-360 [31] dataset. KITTI-360 is collected in subur-
ban areas and provides 3D bounding primitives covering the
full scene. Following [31], we evaluate Panoptic NeRF on
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Figure 4: Qualitative Comparison of Semantic Label Transfer. Our method achieves superior performance in challenging
regions compared to the baselines, e.g. in under- or over-exposed regions, by recovering the underlying 3D geometry, see
box next to the building (left) and building above the caravan (right).

Method Road Park Sdwlk Terr Bldg Vegt Car Trler Crvn Gate Wall Fence Box Sky mIoU Acc MC
FC CRF + Manual GT [28] 90.3 49.9 67.7 62.5 88.3 79.2 85.6 48.9 78.1 23.4 35.3 46.5 42.0 92.7 63.6 89.1 85.41
S-NeRF + Manual GT [63] 87.0 35.8 64.7 58.2 83.4 76.3 70.3 93.5 76.5 41.4 44.0 52.6 29.0 92.0 64.6 86.8 88.98

S-NeRF + PSPNet* [63] 94.6 52.9 77.7 65.0 88.0 80.8 87.9 58.3 86.0 36.0 44.1 56.8 42.2 90.9 68.6 90.5 93.42
PSPNet* [62] 95.5 49.7 77.5 66.7 88.9 82.4 91.6 46.5 83.1 24.2 43.3 51.3 51.1 89.3 67.2 90.7 91.79

3D Primitives + GC 81.7 31.0 45.6 22.5 59.6 56.7 63.0 61.7 37.3 61.6 28.8 50.6 39.5 50.3 49.3 73.4 86.56
3D Mesh + GC 91.7 53.1 67.2 31.4 81.3 72.1 85.2 93.5 86.0 65.2 40.7 59.7 54.4 65.6 67.7 86.0 94.99
3D Point + GC 93.5 59.0 76.1 37.2 82.0 74.1 87.5 94.7 85.7 66.7 59.4 65.9 58.6 68.0 72.0 87.9 96.51

3D-2D CRF [31] 95.2 64.2 83.8 67.9 90.3 84.2 92.2 93.4 90.8 68.2 64.5 70.0 55.8 92.8 79.5 92.8 94.98
Ours 95.6 68.4 84.1 69.5 91.0 84.4 93.0 94.8 93.7 71.6 63.1 74.4 59.7 91.7 81.1 93.2 95.02

Table 1: Quantitative Comparison of Semantic Label Transfer over the 10 scenes on KITTI-360.

manually annotated frames from 5 static suburbs. We split
these 5 suburbs into 10 scenes, comprising 128 consecu-
tive frames each with an average travel distance of 0.8m
between frames. We leverage all 128 pairs of posed stereo
images for training. KITTI-360 provides a set of manually
labeled frames sampled in equidistant steps of 5 frames. We
use half of the manually labeled frames for evaluation and
provide the other half as input to 2D-to-2D label transfer
baselines. We improve the quality of the manually labeled
ground truth which is inaccurate at ambiguous regions, see
supplementary for details.

Baselines: We compare against top-performing baselines
in two categories: (1) 2D-to-2D label transfer baselines,
including Fully Connected CRF (FC CRF) [28] and Se-
mantic NeRF [63]. For both baselines, we provide man-
ually annotated 2D frames as input, sparsely sampled at
equidistant steps of 10 frames. Note that labeling these

2D frames takes similar or longer compared to annotat-
ing 3D bounding primitives [59]. As these 2D annota-
tions are extremely sparse, we further provide the same
pseudo-2D labels used in our method to Semantic NeRF. (2)
3D-to-2D label transfer baselines, including PSPNet*, 3D
Primitives/Meshs/Points+GC [31], and 3D-2D CRF [31].
All these baselines leverage the same 3D bounding prim-
itives to transfer labels to 2D. Here, PSPNet* is consid-
ered 3D-to-2D as it is pre-trained on Cityscapes and fine-
tuned on KITTI-360 based on the 3D sparse label projec-
tions. The second set of baselines first project 3D primi-
tives/meshes/points to 2D and then apply Graph Cut to den-
sify the label. The 3D-2D CRF densely connects 2D image
pixels and 3D LiDAR points, performing inference jointly
on these two fields with a set of consistency constraints.

Pseudo 2D GT: We use PSPNet* to provide pseudo ground
truth in our main experiment to supervise our dual seman-



Input 3D-2D CRF [31] Ours GT Label
Figure 5: Qualitative Comparison of Panoptic Label Transfer. Our method is capable of distinguishing instances based
on inferring in 3D space. In contrast, 3D-2D CRF struggles at far and overexposed areas.

Method PQ SQ RQ PQ† Method PQ SQ RQ PQ†

3D-2D CRF
All 62.2 79.1 76.9 64.9

Ours
All 64.4 79.3 79.6 66.9

Things 60.7 79.5 75.2 60.7 Things 61.9 80.7 75.2 61.9
Stuff 63.0 78.9 77.9 67.3 Stuff 65.8 78.6 82.0 69.8

Table 2: Quantitative Comparison of Panoptic Label
Transfer over all 10 test scenes on KITTI-360.

tic fields. This ensures fair comparison to the 3D-2D CRF,
which takes the predictions of PSPNet* as unary terms.
Note that PSPNet* is fine-tuned on KITTI-360. To further
simplify the entire process, in the ablation study we investi-
gate the performance of our method using pre-trained mod-
els on Cityscape without any fine-tuning, including PSP-
Net [62], Deeplab [9] and Tao et al. [55].

Metrics: We evaluate semantic labels by the mean Inter-
section over Union (mIoU) and the average pixel accuracy
(Acc) metrics. To quantitatively evaluate multi-view con-
sistency (MC), we utilize LiDAR points to retrieve corre-
sponding pixel pairs between two consecutive evaluation
frames. The MC metric is then calculated as the ratio of
pixels pairs with consistent semantic labels over all pairs.
For evaluating panoptic segmentation, we report Panoptic
Quality (PQ) [27], which can be decomposed into Segmen-
tation Quality (SQ) and Recognition Quality (RQ). We ad-
ditionally adopt PQ† [52] as PQ over-penalizes errors of
stuff classes. To verify that Panoptic NeRF is able to im-
prove the underlying geometry, we further evaluate the ren-
dered depth compared to sparse depth maps obtained from
LiDAR using Root Mean Squared Error (RMSE) and the
ratio of accurate predictions (δ1.25) [4, 13].

5.1. Label Transfer

We evaluate our model and compare it to our baselines
on KITTI-360. As most baselines are not designed for
panoptic label transfer, we first compare the semantic pre-
dictions of all methods and then compare our panoptic pre-
dictions to the 3D-2D CRF.

Semantic Label Transfer: As evidenced by Table 1, our
method achieves the highest mIoU and Acc over a line of
baselines. Specifically, compared to 3D-2D CRF, we ob-
tain an absolute improvement of 1.6% (79.5% → 81.1%)

on mIoU. Despite PSPNet* being finetuned on KITTI-360
which reduces the performance gap, our method outper-
forms PSPNet* by a significant margin. Supervised by the
extremely sparse manually annotated GT, Semantic NeRF
struggles to produce reliable performance. Using pseudo
labels of PSPNet*, Semantic NeRF is capable of denoising
and thus improving performance (67.2% → 68.6%). How-
ever, both variants of Semantic NeRF are inferior in the ur-
ban scenario when the input views are sparse. Moreover,
in terms of MC, our method slightly outperforms the 3D-
2D CRF and significantly surpasses 2D-to-2D label transfer
methods. While our method slightly lags behind 3D Point +
GC in terms of MC, it is reasonable as the label consistency
is evaluated on the sparsely projected 3D points which GC
takes as input to generate a dense label map.

Panoptic Label Transfer: We split the instance labels
into things and stuff classes in KITTI-360. As the class
“building” is classified as thing in KITTI-360 but stuff in
Cityscapes, our 2D baselines [10] are not suitable for test-
ing performance on KITTI-360. Therefore, we ignore pre-
trained 2D SOTA baselines. As shown in Table 2, our pro-
posed method outperforms the 3D-2D CRF in both things
and stuff classes. A visual comparison is shown in Fig. 5.
As can be seen, we can deal well with overexposure at
buildings, which is a challenge for the 3D-2D CRF, as
it projects LiDAR points to reconstruct the intermediate
meshes whose quality suffers on building class.

Novel View Label Synthesis: Panoptic NeRF can ren-
der RGB images and panoptic labels at novel viewpoints,
whereas 3D-2D CRF is not capable of doing so. Please re-
fer to the supplementary material for details.

5.2. Ablation Study

We validate our pipeline’s design modules with an ex-
tensive ablation in Table 3 by removing one component at
a time. As there is a positive correlation between semantic
labels and panoptic labels, we focus on semantic segmenta-
tion for this experiment on one scene.

Geometric Reconstruction: We now verify that our
method effectively improves the underlying geometry lever-



GT Complete w/o L2D
Ŝ

NeRF*
Figure 6: Ablation Study. Top: LiDAR depth map (visually enhanced) and rendered depth maps. Middle: Normal maps
obtained from depth maps. Bottom: Semantic GT and predictions. Note that removing L2D

Ŝ
leads to over-smooth object

boundaries and inaccurate semantic segmentation.

Depth(0-100m) Evaluated Semantic
RMSE↓ δ1.25 ↑ Label mIoU Acc

3D-2D CRF - - - 79.4 93.7
NeRF* 10.71 78.4 Ŝ (fixed sβ) 67.2 88.6
w/o L2D

Ŝ
6.28 93.1 S (learned sϕ) 76.9 93.1

w/o Ld 6.15 94.0 S (learned sϕ) 79.1 94.1
Uniform S. 6.28 91.1 S (learned sϕ) 73.5 92.2

w/o L2D
S 6.01 95.0 S (learned sϕ) 80.8 94.2

w/o L2D
S 6.01 95.0 Ŝ (fixed sβ) 79.4 94.0

w/o L3D
s 5.74 95.0 S (learned sϕ) 70.7 92.8

w/o u(r) 5.84 94.8 S (learned sϕ) 80.8 94.4
Complete 5.23 95.1 S (learned sϕ) 81.4 94.5

Table 3: Ablation Study over 1 test scene on KITTI-360.

aging semantic information. We first remove all the other
losses except for Lp, leading to a baseline similar to NeRF
but uses our proposed sampling strategy (NeRF*). In this
case we render a semantic map based on the fixed semantic
field sβ . As can be seen from Table 3 and Fig. 6, the under-
lying geometry of NeRF* drops significantly with only Lp.
More importantly, the depth prediction also degrades con-
siderably when removing L2D

Ŝ
(w/o L2D

Ŝ
), indicating the im-

portance of the fixed semantic field in improving the under-
lying geometry. Fig. 6 shows that the full model has sharper
edges while removing the fixed semantic fields leads to
over-smooth object boundaries. We further show that elim-
inating Ld (w/o Ld) or replacing the sampling strategy with
standard uniform sampling (Uniform S.) both impair the ge-
ometric reconstruction, and consequently the semantic esti-
mation as well.

Semantic Segmentation: When removing L2D
S (w/o L2D

S ),
the performance also drops as the learned semantic field
sϕ is only supervised by weak 3D supervision. Interest-
ingly, this baseline still outperforms the semantic map ren-
dered by the fixed semantic field despite that they share the
same geometry. This observation suggests that the weak
3D supervision provided by L3D

s also allows to address the
label ambiguity of the overlapping region to a certain ex-
tent. Therefore, it is not surprising that removing L3D

s (w/o
L3D
s ) worsens the semantic prediction compared to the full

model. We observe that the performance is also deteriorated
without ray masking (w/o u(r)).

Method mIoU mIoUsub Acc Method mIoU mIoUsub Acc
Deeplab [9] - 74.7 88.1 Ours w/ [9] 79.3 86.3 94.0

Tao et al. [55] - 79.9 91.2 Ours w/ [55] 79.8 86.1 94.5
PSPNet [62] - 70.9 87.0 Ours w/ [62] 75.9 81.7 91.6
PSPNet* [62] 62.0 77.5 90.1 Ours 81.4 87.3 94.5

Table 4: Quantitative Comparison using different 2D
Pseudo GTs.

2D Pseudo GT: Finally, we evaluate how the quality of
the pseudo 2D ground truth affects our method in Ta-
ble 4. As some classes are not considered during train-
ing in Cityscapes, we additionally report mIoUsub over the
remaining classes. It is worth noting that using models
pre-trained on Cityscapes without any fine-tuning leads to
promising results, where Ours w/ Deeplab [9] and Ours w/
Tao et al. [55] are very close to Ours + PSPNet* in terms of
mIoUsub. More importantly, our method consistently out-
performs the corresponding pseudo GT leveraging the 3D
bounding primitives.

5.3. Limitations

Our method performs per-scene optimization and train-
ing takes 4 hours on one scene. Training time needs
to be reduced to scale our method to large-scale scenes,
e.g., by adopting improvements in speeding up NeRF train-
ing [39, 61]. In addition, we consider label transfer on static
scenes in this work. We plan to extend our method to dy-
namic scenes leveraging recent advances in dynamic radi-
ance field estimation [46].

6. Conclusion
We present Panoptic NeRF that infers in 3D space and

renders per-pixel semantic and instance labels for 3D-to-2D
label transfer. By combining coarse 3D bounding primitives
and noisy 2D predictions using our dual semantic fields,
Panoptic NeRF is capable of improving the underlying ge-
ometry given sparse input views and resolving label noise.
Moreover, it enables label synthesis at novel view points.
We believe that our method is a step towards more efficient
data annotation, while simultaneously providing a 3D con-
sistent continuous panoptic representation of the scene.
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