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Abstract— Detecting the road area and ego-lane ahead of a
vehicle is central to modern driver assistance systems. While
lane-detection on well-marked roads is already available in
modern vehicles, finding the boundaries of unmarked or weakly
marked roads and lanes as they appear in inner-city and rural
environments remains an unsolved problem due to the high
variability in scene layout and illumination conditions, amongst
others. While recent years have witnessed great interest in this
subject, to date no commonly agreed upon benchmark exists,
rendering a fair comparison amongst methods difficult.

In this paper, we introduce a novel open-access dataset and
benchmark for road area and ego-lane detection. Our dataset
comprises 600 annotated training and test images of high
variability from the KITTI autonomous driving project, cap-
turing a broad spectrum of urban road scenes. For evaluation,
we propose to use the 2D Bird’s Eye View (BEV) space as
vehicle control usually happens in this 2D world, requiring
detection results to be represented in this very same space.
Furthermore, we propose a novel, behavior-based metric which
judges the utility of the extracted ego-lane area for driver
assistance applications by fitting a driving corridor to the road
detection results in the BEV. We believe this to be important
for a meaningful evaluation as pixel-level performance is of
limited value for vehicle control. State-of-the-art road detection
algorithms are used to demonstrate results using classical pixel-
level metrics in perspective and BEV space as well as the novel
behavior-based performance measure. All data and annotations
are made publicly available on the KITTI online evaluation
website in order to serve as a common benchmark for road
terrain detection algorithms.

I. INTRODUCTION

Recent years have witnessed a strong increase of image
processing functions in Advanced Driver Assistance Systems
(ADAS) for passenger cars. While holistic traffic scene
understanding might still be a dream of the future [1],
specialized systems such as lane keeping assistance have
become a standard ADAS component that is available in
most new car models. While such systems are already
commercially available [2], they are targeted at marked
roads with smooth curvatures, limiting their applicability to
highways and highway-like roads.

In order to provide support on unmarked roads that are
common in rural areas and inner-city, a number of publica-
tions have proposed road detection algorithms that avoid the
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need for lane marking detection. Early works focused on the
overall road area as it is more easy to extract. For example,
the physical property of the road being flat has been used in a
variety of approaches [3], [4]. However, this requires the road
area to be limited by sufficiently elevated structures as well as
accurate depth information which for stereo cameras is only
available in the close range. Consequently, many approaches
put higher emphasis on appearance cues such as the color
and texture of the road area [5], [6], [7], [8], [9], [10], [11],
[12]. These visual properties of the road area have been used
for estimating the overall road shape [12] or for segmenting
the complete road area [5], [6], [8], [10].

Unfortunately, most of the existing approaches have been
evaluated on different datasets, prohibiting a fair performance
comparison. Furthermore, most of the existing work does not
distinguish road areas on a semantic level, e.g., ego-lane vs.
opposing lane, which is crucial for ADAS and autonomous
driving. Only recently, methods for detecting lane markings
and curbstones have been combined explicitly [13], [14], [15]
or implicitly [16] to achieve city lane detection. The final
target of such approaches is the identification of the ego-
lane, independent of the boundary type or lane shape.

In order to turn research efforts into actual driver assis-
tance systems, their performance has to be evaluated and
the strengths and weaknesses of the approaches have to
be clearly identified, requiring suitable evaluation measures.
Often, pixel-based evaluation measures, inspired from the
vision community, have been directly applied in the image
domain. We believe that the evaluation of road detection
algorithms requires a stronger focus on the target application:
Any driving maneuver or vehicle control is performed in
the metric 2D space on the road. Consequently, the result
of any road detection algorithm will need to be provided
or transformed into such a spatial representation which is
appropriate for vehicle control. The metric road space can
be represented in the so-called Bird’s Eye View (BEV) [17]
by assuming a flat world for the transformation from the
perspective image to the BEV space. We argue that any
road detection algorithm should be evaluated in the BEV.
While previous attempts at pixel-based evaluation [18] could
be configured to mimic this requirement by weighting the
pixels in the perspective image, the weighting would need
to be adaptive as the 2D world position of a pixel varies
non-linearly with its location in the image.

Instead, in this paper we apply classical pixel-based
evaluation measures directly in the BEV. Furthermore, as
pixel-level annotation does not provide suitable answers
to questions like ’Where are the ego-lane boundaries?’ or



’Can the driver safely continue driving?’, we additionally
fit a hypothesis for a possible driving path to the road
detection result in the BEV. This driving corridor hypothesis
represents an abstraction from the pixel level and allows for
a behavior-based evaluation of road detection algorithms.

A second contribution of this paper is the introduction
of a benchmark for the evaluation of road detection al-
gorithms. We present three novel and highly challenging
datasets derived from the KITTI autonomous driving project
[19], capturing a variety of inner city scenarios including
unmarked and marked lanes, as illustrated in Fig. 2. Our
KITTI-ROAD dataset and benchmark are made publicly
available together with the proposed behavior-based per-
formance measure, classical pixel-level evaluation metrics
as well as an automatic evaluation service on the KITTI
website1. We believe this to be an important step towards
investigating the pros and cons of different approaches on
the same basis and to foster novel research and progress in
this field.

The outline of this paper is as follows: Section II re-
views existing evaluations measures. The new KITTI-ROAD
benchmark dataset is introduced in Section III. Section IV
reviews classical pixel-based performance metrics and in-
troduces the proposed behavior-based performance measure.
Evaluation results for the pixel-based and behavior-based
performance measures using a simple baseline and several
road detection algorithms are presented in Section V. The
paper concludes in Section VI.

II. RELATED WORK

For evaluating road area and ego-lane detection ap-
proaches a variety of evaluation measures have been used.
They can be partitioned into two groups, metrics that directly
operate on the perspective image pixels and metrics that are
applied in the BEV (see also Fig. 1).

Segmentation-based approaches (Fig. 1a) usually perform
pixel-level evaluation in the perspective space. Metrics in-
clude the classical true positive (TP) and false positive (FP)
rates on the pixel/patch level [20], [21], [22], the accuracy
[6] as well as precision/recall and the derived F-measure
[7], [10], [18]. In order to capture also traffic participants,
Alvarez et al. [18] propose to incorporate vehicle detections
into the evaluation measure. More recently, also the evalu-
ation of pixel-level correctness in the BEV space has been
carried out [16].

Approaches providing lane boundaries [23], [24], see
Fig. 1b, are traditionally evaluated via the distance of the esti-
mated lane marking to the ground truth borders in the image.
By allowing a flexible margin for counting successful border
candidates, TP and FP rates can be obtained [24], [25], [26],
[27]. The metric deviations of the borders of the road using
a segmentation approach in the BEV space are evaluated in
[8]. Besides the lane boundaries, the unoccupied lane length
(Fig. 1c) is important for ADAS and has been evaluated in
[9], where the distance to the preceding vehicle is combined

1http://www.cvlibs.net/datasets/kitti/

Fig. 1: Visualization of state-of-the-art evaluation metrics.

with lane information. Another way of measuring the road
detection performance is the overall corridor width (Fig. 1d).
While the boundary positions provide the width only implic-
itly and might be subject to some underlying lane model,
the width is especially relevant for inner-city driving with
sudden congestions. Evaluation measures that focus on the
lane width have been presented in [8], [16].

Each of the outlined evaluation measures has its advan-
tages. Especially the pixel-level measures on the perspective
image domain are intensively used to evaluate and improve
image processing algorithms. While this results in a direct
mapping between pixel processing and pixel evaluation,
pixel-based evaluation in the BEV space is much more
suitable for any type of driver warning or vehicle control.

Consequently, we propose to focus on evaluations in the
BEV domain. Towards this goal, we also present a novel
behavior-based measure (Section IV-B) that better accounts
for the ultimate task of navigation. We further present a
large dataset of challenging scenarios with accurately labeled
ground truth for road area and ego-lane detection. While ex-
isting approaches are often evaluated on different (often non-
public) datasets, we make our data and evaluation methodol-
ogy public and target a fair and comprehensive comparison of
state-of-the-art methods that can be permanently accessed via
our evaluation server. We bootstrap our benchmark with three
recent approaches and draw initial conclusions. We believe
that our efforts will spur novel interest on this subject and
motivate researchers to evaluate their methods on a common
basis.

III. THE KITTI-ROAD DATASET

The KITTI-ROAD dataset consists of 600 frames (375 ×
1242 px) extracted from the KITTI dataset [19] at a minimum
spatial distance of 20m. The recordings stem from five
different days and contain relatively low traffic density, i.e.,
the road is often completely visible. All data (color stereo
images, Velodyne laser scans and GPS information) is made
available on the KITTI website. We split the data into
three sets (see Table I), each representing a typical road
scene category in inner city. Fig. 2 depicts some example
images. For each category we created a training set of ∼100
annotated images and a test set of ∼100 images with held-
out annotations for evaluation via our website. Results on the
test set can be evaluated using the KITTI evaluation server.



TABLE I: Dataset statistics of the KITTI-ROAD dataset.

abbreviation # train # test description
UU 98 100 urban unmarked
UM 95 96 urban marked two-way road
UMM 96 94 urban marked multi-lane road
URBAN 289 290 all three urban subsets

Fig. 2: Example test images from the different categories of
the KITTI-ROAD dataset. Note the high variability in our
dataset.

Fig. 3: Example polygonal annotation of road area (blue)
and ego-lane (green) in an image from the UM dataset.

For each image we manually annotate the road area. In
addition, for the UM dataset we also annotate the ego-lane1.
Initial annotation has been carried out in the perspective view
(see Fig. 3). We have further refined all annotations in the
BEV space, which allows for a higher precision, e.g., by
considering a constant road width for distant locations that
differ only by a couple of pixels in the perspective image.
Note, however, that obtaining an exact pixel-level annotation
is a difficult task as many ambiguities remain such as road
area which is visible underneath a car or leaves covering
the road. For easy access, the annotation files are made
available as label images in BEV space (see Section V).
A development kit containing functions to map between the
BEV space and the perspective image is available on the
website.

IV. PERFORMANCE EVALUATION

In order to judge the quality of road detection algorithms
for use in automotive applications, we propose to carry out
all evaluations in the BEV. In this paper we also provide
evaluations in the perspective space in order to illustrate the

1For the other datasets no ego-lane annotation could be provided as in UU
no objective annotation guidelines could be identified and UMM contains
many ambigous situations due to ongoing lane changes when approaching a
crossing with multiple turn lanes. Especially for UU, we expect that vehicle
control has to operate directly on an abstraction of the road area detection.

differences stemming from the choice of evaluation space.
We assume that detection results are available as confidence
maps (or binary maps) in either space. The transformation
between image domain and BEV is obtained by fitting a
road plane to the disparity maps via RANSAC2. The pixel-
based evaluation is carried out for both road area and ego-
lane detection results while the proposed behavior-based
performance metric is only applicable to ego-lane detection
results.

A. Classical Pixel-based Metrics

Similar to [7], [10], [18], we employ the F-measure
derived from the precision and recall values (Eq. 1-3) for
the pixel-based evaluation. We make use of the harmonic
mean (F1-measure, β = 1), while an unbalanced F-measure
using a different weighting of precision and recall could also
be applied. In addition, we evaluate accuracy [6].

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F -measure = (1 + β2)
Precision Recall

β2 Precision + Recall
(3)

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

For methods that output confidence maps (in contrast to
binary road classification), the classification threshold τ is
chosen to maximize the F-measure, yielding Fmax:

Fmax = argmax
τ

F -measure (5)

Furthermore, in order to provide insights into the perfor-
mance over the full recall range, the average precision (AP)
as defined in [28] is computed for different recall values r:

AP =
1

11

∑
r∈0,0.1,...1

max
r̃:r̃>r

Precision(r̃) (6)

Considering both measures provides insights into an al-
gorithm’s optimal (Fmax) and average (AP) performance.
Precision-recall curves are employed to compare different
algorithms over the complete range of confidence values.

Note that we explicitly refrain from any weighting of
boundary pixels, as we consider the pixel-based metric to
give only a rough indication of performance. Depending
on the targeted application, we expect that other metrics,
like the one proposed in the next section, capture the actual
performance much better.

B. Behavior-based Metrics

Classical pixel-based metrics measure the quality for all
pixels of a class. As discussed earlier, this might not be
adequate if we are interested in the performance with respect
to the relevant goals (behavior) of a road vehicle, e.g.,
following the lane. While lane keeping assistance systems

2The development kit contains a conversion tool to map perspective
results into BEV for upload to the webserver.



Fig. 4: Evaluation of a single track model for one time step
∆t with driven corridor depicted in gray. Note that we rep-
resent the road coordinate system using (x, z)-coordinates,
similar to the coordinate system of a forward facing camera
when viewed from above.

require a very detailed lane shape detection due to the high
velocities on highways, in this paper, we argue that for
supporting lane keeping behavior in city traffic it is sufficient
if an algorithm provides an driving corridor hypothesis
within the annotated ground truth boundaries.

The basic concept for the behavior-based metric is to fit
a number of corridor hypotheses to the lane confidence map
in BEV. A single track model is used to generate differ-
ent driving corridor hypotheses. The area underneath each
corridor hypothesis is used to calculate a fitness value by
integrating the covered continuous-valued confidence values.
The corridor hypothesis with the highest fitness value, i.e.
covering the most confident ego-lane area, is selected as
driving corridor hypothesis for comparison with the ego-
lane ground truth. The next paragraphs describe this process
in detail.

We generate a spatial corridor hypothesis as follows: A
single track model (see Fig. 4) is initialized at time t = 0
with vehicle speed v0 and wheel angle ρ0. The initial vehicle
orientation α is assumed to be α0 = 0. With the distance
between the axles of the vehicle Lvehicle and using the single
track model, we can calculate the vehicle’s yaw rate ωt using
Eq. (7) and the turn radius R using Eq. (8). The yaw angle θt
after ∆t can be computed using Eq. (9) and the movement
in longitudinal (∆z) and lateral (∆x) direction using Eq.
(10). The overall vehicle orientation angle αt+1 is updated
by adding the yaw angle θt in Eq. (11).

ωt = (vt/Lvehicle) sin(ρt) (7)
R = Lvehicle/ tan(ρt) (8)
θt = ωt∆t (9)(

∆x
∆z

)
=

(
R(1 − cos(θ))
R sin(θ)

)
(10)

αt+1 = αt + θt (11)

The absolute vehicle location (Xvehicle,t+1, Zvehicle,t+1) is
obtained from Eq. (10) via integration. Given the single track
model we represent the area covered by a vehicle with width
W when moving forward using two polygons Pl/r with

points Pl/r = (Xl/r,i, Zl/r,i), representing the left and right
corridor boundary. They are derived as:

(
Xvehicle,t+1

Zvehicle,t+1

)
=

(
cos(αt) sin(αt) Xvehicle,t
− sin(αt) cos(αt) Zvehicle,t

)∆x
∆z
1


(
Xl,t+1

Zl,t+1

)
=

(
Xvehicle,t+1 −W/2 · cos(αt)
Zvehicle,t+1 +W/2 · sin(αt)

)
(
Xr,t+1

Zr,t+1

)
=

(
Xvehicle,t+1 +W/2 · cos(αt)
Zvehicle,t+1 −W/2 · sin(αt)

)
Note that by providing a behavior model consisting of a

sequence of velocity values vt and wheel angle values ρt
we are able to generate arbitrary vehicle corridor hypothesis
in the BEV space. A simple behavior model would be the
assumption of constant velocity and wheel angle. While ap-
plicable to highway scenarios, inner city behaviors are much
more diverse. This rises the question of how many different
corridor hypotheses should be generated and matched to the
confidence map. Allowing arbitrary parameters results in an
exponential number of hypotheses rendering the evaluation
intractable. On the other hand, choosing just a few elemen-
tary behaviors is not appropriate for city traffic maneuvers
as S-curves cannot be represented, for example. Instead,
we propose a multi-stage process for generating corridor
hypotheses and matching them iteratively to the confidence
map of an ego-lane detection algorithm.

We start with 2N+1 hypotheses representing basic models
for N steering curves of increasing curvature to the left/right
or for driving straight. The behavior models are predicted
only for a short duration of S∆t time steps, mimicking
the minimal duration of a steering maneuver. The area of a
hypothesis is used to integrate all covered confidence values,
providing the fitness of this behavior model. At the end
of each iteration, a new set of 2N+1 hypotheses is started,
incorporating the vehicle orientation in the starting condition.
This results in a total of (2N+1)(2N+1) hypotheses after
2S∆t. Based on the accumulated fitness for each of these
models, we prune the hypotheses and keep only the 2N+1
best ones. From the corridor hypothesis end points, the next
iteration of hypothesis generation and pruning is carried out.
Hypothesis matching is continued as long as at least one
corridor element of the current iteration contains a sufficient
percentage of successful detections ( detections

area > DETMin) and
the end of the BEV space has not been reached. Finally,
from all 2N + 1 hypotheses, we select the hypothesis with
the highest overall fitness as driving corridor detection.
This hypothesis is then compared to the ground truth using
the standard evaluation metrics introduced in (1)-(5) (see
Section V-C). An example result is depicted in Fig. 5 (d/D).

It should be noted that the granularity of maneuvers S∆t
influences the quality of the corridor hypotheses. If the
granulariy is too small, ’holes’ in the confidence maps due
to, e.g., pot holes result in a curvy track around these. On
the other hand, if the granularity is too large, the corridor
hypothesis does not follow curvy roads such as S-curves.



Fig. 5: Example of input image (a) and ground truth an-
notation in perspective (b) and BEV (B) space. The ego-
lane confidence map (c/C) is the basis for fitting a track
hypotheses (d/D). (Note: map in (c) is thresholded for better
visualization). For a behavior-based evaluation, the hypothe-
sis (D) is compared to the ground truth (B) in Section V-C.

V. EXPERIMENTAL RESULTS

In order to demonstrate the different metrics, we provide
pixel-based road area evaluation results on the complete
URBAN KITTI-ROAD dataset using four different methods.
The proposed behavior-based evaluation metric is demon-
strated on the UM subset, with two ego-lane detections
methods trained on this subset only.

A BEV representation covering −10m to 10m in lateral
(x) direction and 6m to 46m in longitudinal (z) direction is
used for evaluation. Per frame we recover the homography
between the image and the road plane using RANSAC plane
fitting on the 3D measurements of a Velodyne laser scanner
which has been calibrated with respect to the cameras [29].
Using a resolution of 0.05m/px, this results in evaluation
BEV ’images’ of size 800 × 400 pixels.

A. Evaluated Methods

1) Baseline (BL): In order to provide a lower bound
for the performance any road detection algorithm should
achieve, we extract baselines for road area and ego-lane
by averaging all ground truth road maps from the training
set. This results in confidence maps indicating for each
perspective/BEV location the confidence for beeing road
area or ego-lane. These baselines can be viewed as scene
priors similar to the one used as input to [10].

2) Geometric Context (GC): The first method we evaluate
is geometric context from Hoiem et al. [30], which segments
the image into superpixels and estimates a distribution over a
set of discrete surface orientations for each superpixel from a
single image using a sophisticated set of features, capturing
local appearance, but also global cues such as vanishing
points. We use the probability map for ’ground’ to evaluate
road detection performance.

3) Spatial Ray Classification (SPRAY): The second algo-
rithm we evaluate is a two-stage approach that incorporates
the spatial layout of the scene [16]. In a first stage, the system
represents visual properties of the road surface, the boundary,
and lane marking elements in confidence maps based on
analyzing local visual features. From the confidence maps

Baseline
SPRAY 

segmentation
Geometric 

context
Convolutional 

neural network

Fig. 6: Classification results for road area from Fig. 5.
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Ground 

truth
Baseline 

segmentation
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segmentation

Fig. 9: Classification results for challenging ego-lane image.

which are converted into BEV space, SPatial RAY (SPRAY)
features that incorporate spatial properties of the overall
scene are computed. A boosting classifier trained using the
KITTI-ROAD training set provides confidence values. The
approach can learn the spatial layout of driving scenes as
the features implicitly represent both local visual properties
as well as their spatial layout. The method can be trained on
both road terrain categories road area and ego-lane.

4) Convolutional Neural Network (CNN): The fourth
method applies a convolutional neural network to label road
scene images [6]. It includes a texture descriptor that learns a
linear combination of color planes to obtain maximal unifor-
mity in road areas in the test image. The final classification is
obtained by combining acquired (offline) and current (online)
image information. Note that this algorithm has not been re-
trained on the KITTI-ROAD dataset but uses the classifier
trained on the original dataset [6], resulting in non-optimal
performance. Finally, the weights of the color planes for each
image have been obtained using the quadratic formulation
detailed in [31].

Example processing results for the different evaluated
methods for road area are depicted in Fig. 6-8 and for ego-
lane in Fig. 9.

B. Classical Pixel-based Evaluation

The pixel-based evaluation is applicable to both classes,
road area and ego-lane. Table II and Fig. 10 depict the road
area evaluation results for the URBAN dataset in perspective
and BEV space. For the UM dataset, Table III and Fig. 11
depict the ego-lane evaluation results (algorithms GC and
CNN do not provide this result type).
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Fig. 7: Classification results for challenging UU road area image (Fig. 2 top left).
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Fig. 8: Classification results for challenging UM road area image (Fig. 2 top right).

TABLE II: Results [%] of pixel-based road area evaluation.

URBAN - Perspective space
AP Fmax Prec. Recall Acc FPR

BL 86.0 77.8 78.1 77.6 80.1 17.9
GC[30] 66.9 68.8 58.2 84.1 65.6 49.7

SPRAY[16] 92.7 88.5 88.5 88.4 89.6 9.4
CNN[6] 82.4 83.4 76.1 92.1 83.4 23.8

URBAN - Metric space
AP Fmax Prec. Recall Acc FPR

BL 76.0 70.1 67.6 72.7 77.3 20.1
GC[30] 65.3 64.2 53.1 81.1 67.0 41.1

SPRAY[16] 90.9 86.3 86.7 85.8 90.0 7.6
CNN[6] 78.9 78.9 76.1 81.8 84.0 14.8

(a) Perspective evaluation (b) Metric evaluation

Fig. 10: Precision-Recall curves for URBAN road area.

TABLE III: Results [%] of pixel-based ego-lane evaluation.

UM - Perspective space
AP Fmax Prec. Recall Acc FPR

BL 89.7 88.9 87.3 90.6 95.3 3.5
SPRAY[16] 90.5 88.3 90.7 86.0 95.2 2.3

UM - BEV space
AP Fmax Prec. Recall Acc FPR

BL 78.1 74.4 72.6 76.2 92.5 4.8
SPRAY[16] 87.1 83.9 84.0 83.8 95.4 2.7

(a) Perspective evaluation (b) Metric evaluation

Fig. 11: Precision-Recall curves for UM ego-lane.

Note that the presented results are obtained on isolated
images. While temporal information and context from, e.g.,
digital map data will lead to improved detection quality, here



we target at evaluating a very diverse set of challenging
images. Note that improving detection on single images will
automatically lead to improved performance in the presence
of a tracking stage as well.

C. Behavior-based Evaluation

The behavior-based evaluation (see Section IV-B) is per-
formed for N=2 maneuvers (ρ0 = [0.05, 0.1], v0 = 10m/s)
to each side and straight driving. It uses a maneuver duration
of S∆t = 300ms (∆t = 50ms), resulting in prototypical
corridor primitives for urban driving. We require a corridor
area of 50% of each primitive to be covered by positive
detections (DETMin = 50%). The detections are determined
with the threshold used for Fmax in Table III. We use a track
width of 2.2m (typical car width including safety margin)
for evaluating the fitness of the individual hypotheses. An
example corridor hypothesis is depicted in Fig. 12.

Crucial information for judging the applicability of this
concept is the distance up to which corridor detection can
be achieved reliably. This information can be extracted by
comparing the corridor with the ego-lane ground truth and in-
tegrating all evaluation results (TP, FP) in the BEV space up
to a certain distance3. This allows to calculate the precision,
which drops if the FP number rises due to a corridor hypoth-
esis leaving the ground truth. This captures mainly lateral
deviations but also penalizes hypotheses extending beyond
the ground truth. Table IV provides the precision values for
different distances (measured from the camera position) that
might be relevant for city safety applications. The precision
is intended to capture the correctness of the driving width
(see Fig. 1d). Fig. 13 (left) depicts the precision over the
full distance range, revealing how the integrated precision
drops for increasing distances. Note that the baseline ends
at roughly 39m while the integrated precision is not affected
by the many FNs beyond this distance.

In order to capture the longitudinal aspects (see Fig. 1c),
the corridor and ground truth are laterally shrinked to result
in a single path line. The line encodes whether there is a
corridor / ground truth at a certain distance. Note that for
calculating TP, we still require the matched corridor to have
an overlap of 2.0m with the ground truth, i.e., we allow
for 10% lateral mismatch in the longitudinal evaluation (FP
otherwise). We use the F1 measure (3) as it balances between
FP (too long corridor) and FN (too short corridor). Again, the
values for relevant city distances are listed in Table IV and
Fig. 13 (right) depicts the F1-measure over the full distance
range, revealing how it drops for increasing distances.

Successful corridor matching is also captured in the hi-
trate, i.e., the percentage of corridors matched correctly up
to the selected distance. The values in Table IV represent the
fraction of corridors correctly matched to the ground truth
ego-lane up to that distance, i.e., with less than 10% lateral
mismatch over the complete distance range.

3In order to cope with invalid BEV cells close to the vehicle due to
the imprecise annotation of the road area and ego-lane bottom points at
the border of the perspective/BEV space and distortions from the dynamic
transformation, the integration starts at 9m only.
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Fig. 12: Example of a corridor hypothesis result.

TABLE IV: Results of behavior-based ego-lane evaluation.

Precisionlat [%] F1long [%] Hitrate [%]
20m 30m 40m 20m 30m 40m 20m 30m 40m

BL 93.9 88.9 82.8 93.4 89.0 82.6 84.0 66.7 0.0
SPRAY 97.9 97.0 97.0 94.1 91.8 88.8 83.0 75.9 47.4

Fig. 13: Integrated lateral precision and longitudinal F1
measure over complete distance range.

D. Discussion

For all algorithms, the pixel-based evaluation results in
perspective space are generally higher than in BEV. This is
caused by the fact that the near range is more homogenous,
i.e., easier to classify, and covers a larger area of the
evaluated perspective pixels. In essence, this implies that the
evaluation in perspective space is biased and does not reflect
the actual performance at regions far away adequately. This
is especially prominent in the UM ego-lane results in Fig. 11
where BL and SPRAY algorithm deliver rather similar results
in perspective space but exhibit strong differences in BEV.

Another important issue is the influence of an unbalanced
number of Positives and Negatives in the ground truth. The
accuracy measure (Eq. 4) is dominated by the larger group
and for the ego-lane BEV evaluation this results in extremely
high accuracy values of 92.5% (BL) and 95.4% (SPRAY).
The high accuracy is due to the large number of correctly
classfied TNs, while the precision values have a similar range
as for the road area on the URBAN dataset.

Using the concept of a driving corridor hypothesis in the
behavior-based evaluation achieves higher precision values
for both, BL and SPRAY. However, the BL precision drops
much quicker over distance (see Fig. 13 left), indicating that
the exact lateral ego-lane shape is missed in far distances.
The F1 measure shows that both, BL and SPRAY, reach
similar performance in estimating the length of the ego-lane
in near distances but with stronger decrease for BL at far



distances. However, the hitrate indicates that a substantial
number of corridors is missed in both (>0.2m lateral de-
viation). For BL these are obviously curvy roads and all
corridors extending beyond the BL corridor length (∼39m).
It is interesting to note that the SPRAY algorithm is capable
of extracting the correct corridor in half of the cases (47.4%)
while reaching an integrated precision of 97% even at 40m.

An important characteristic of the KITTI-ROAD dataset is
that it captures a uniform distribution across scenes, resulting
in relatively low traffic density and roads that are mostly
straight. Therefore, the baseline often achieves good results
compared to the algorithms that have to cope with images
containing strong sunlight and shadows. Especially for the
UM evaluation, the SPRAY algorithm can consistently out-
perform the baseline only in the BEV space. As the SPRAY
algorithm performs road detection based on features repre-
sented in BEV space, we believe its superior performance
emphasizes the need for a stronger incorporation of spatial
characterstics in road detection algorithms.

VI. CONCLUSION AND FUTURE WORKS

In order to stimulate further research, this paper proposes
the KITTI-ROAD dataset with images of three challenging
real-world city road types derived from the KITTI dataset.
We argued for a pixel-based evaluation of road area and
ego-lane in the BEV space in order to capture the fact
that vehicle control happens in the 2D road environment.
Furthermore, we introduced a novel behavior-based perfor-
mance metric targeted at evaluating the quality of a highly
relevant sub-class of road terrain, the ego-lane. The behavior-
based measure gives an indication of the usefulness of an
ego-lane detection approach and is not restricted to classic
lane-marking detection methods. The KITTI-ROAD dataset
as well as the classic and novel performance measures are
made available on the KITTI website. A web interface
enables other researchers to benchmark their road detection
approaches on any one (or all) of the subsets, advancing the
application of road and lane detection algorithms for future
driver assistance systems.
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