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1University of Tübingen 2Meta Reality Labs

a) PermutoSDF

b) Ours (7-Mesh) c) 3DGS d) Ours (7-Mesh)

Figure 1. Our Volumetric Surfaces representation (b) consists of k lightweight, semi-transparent mesh shells that efficiently render fuzzy
geometries with a limited number of samples (3≤k≤9) via rasterization. Our image quality surpasses that of surface-based methods (a)
and approaches the quality of 3D Gaussian splatting (c). Unlike splatting methods, our sorting-free representation enables faster rendering,
particularly on low-power or mobile graphics hardware. Project page: https://autonomousvision.github.io/volsurfs.

Abstract

High-quality view synthesis relies on volume rendering, splat-
ting, or surface rendering. While surface rendering is typi-
cally the fastest, it struggles to accurately model fuzzy geom-
etry like hair. In turn, alpha-blending techniques excel at rep-
resenting fuzzy materials but require an unbounded number
of samples per ray (P1). Further overheads are induced by
empty space skipping in volume rendering (P2) and sorting
input primitives in splatting (P3). We present a novel repre-
sentation for real-time view synthesis where the (P1) number
of sampling locations is small and bounded, (P2) sampling
locations are efficiently found via rasterization, and (P3)
rendering is sorting-free. We achieve this by representing
objects as semi-transparent multi-layer meshes rendered in
a fixed order. First, we model surface layers as signed dis-
tance function (SDF) shells with optimal spacing learned
during training. Then, we bake them as meshes and fit UV
textures. Unlike single-surface methods, our multi-layer rep-
resentation effectively models fuzzy objects. In contrast to
volume and splatting-based methods, our approach enables
real-time rendering on low-power laptops and smartphones.

1. Introduction
Real-time rendering on mobile devices is challenging due to
limited processing power, memory, and thermal constraints.
Recent methods for real-time view synthesis can be cate-
gorized according to their rendering paradigm. On the one
hand, we have surface-based methods like BakedSDF [60]
or BOG [43], where rendering a pixel requires only read-
ing appearance data from a single sampling location along
the ray. On the other hand, we have volume-based methods
like SMERF [10] or 3DGS [24], where rendering a pixel re-
quires reading data from multiple sample locations along the
ray. As a result, surface-based methods are generally faster
than volume-based techniques, which struggle to achieve
interactive frame rates on mobile devices [43]. While re-
cent surface-based methods are also capable of representing
thin structures like individual strands of grass [43, 64], they
still lag behind volume-based methods, especially when it
comes to reconstructing highly fuzzy geometry like hair or
plush. Even if possible from a reconstruction perspective, a
purely surface-based representation might be too memory-
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inefficient for representing extremely fuzzy objects [4]. To-
wards our goal of real-time view synthesis of fuzzy objects
on mobile devices, we therefore focus on finding a more effi-
cient volumetric formulation. A key factor in the efficiency
of volumetric representations is the number of samples re-
quired along a ray. State-of-the-art methods, such as SMERF
and 3DGS, often require tens or even hundreds of samples
per ray. Additionally, the intrinsic characteristics of the ren-
dering algorithm impact performance. In volume rendering,
traversing an extra data structure to skip empty space in-
creases memory bandwidth usage and results in suboptimal
thread coherence. For splatting, primitives must be sorted by
their distance from the camera, a task that is challenging to
implement efficiently on platforms with limited GPGPU ca-
pabilities. For these reasons, such approaches are not suited
for current mobile hardware, e.g. low-cost smartphones. To
address these limitations, we propose a differentiable rep-
resentation that bounds the number of sampling points per
ray to a small range (three to nine) and is sorting-free. This
allows us, unlike 3DGS or SMERF, to achieve real-time
rendering on low-cost smartphones.

Textured shells [23, 26, 27] have long been used in com-
puter graphics to simulate fuzzy surfaces while minimizing
geometric complexity. These are modeled as concentric, uni-
formly spaced, semi-transparent layers, and are still widely
used in modern game production. Inspired by these tech-
niques, our representation learns adaptively spaced layers
around a reconstructed object via gradient-based optimiza-
tion. This allows for rasterization in a fixed order, from out-
ermost to innermost, without the need for expensive empty
space skipping or sorting during rendering. However, it is
non-trivial to learn the optimal spacing between individual
layers; we tackle this by representing them as separate signed
distance functions (SDFs) during training. Before training
all layers, we start by training a single opaque SDF that pre-
vents degenerate solutions. We then add the additional layers,
constraining them from intersecting one another. To further
increase the expressivity of our representation, while keeping
a low number of layers, we make each layer’s transparency
depend on the viewing direction. All layers are optimized
toward smooth solutions so that each can be baked into a
lightweight mesh for efficient hardware-accelerated raster-
ization. The simplicity of our meshes enables computing a
high-quality UV parameterization, which is often problem-
atic for highly complex, monolithic meshes [43]. Finally, we
optimize UV textures of spherical harmonics (SH) coeffi-
cients on the fixed geometry defined by our meshes.

We demonstrate how our approach renders significantly
faster than volume-based and splatting-based methods, en-
abling high frame rates on a wide range of commodity de-
vices, while simultaneously being more capable at represent-
ing fuzzy objects than single-surface approaches.

2. Related Work

Real-Time View Synthesis: Neural radiance fields (NeRFs)
achieved an impressive leap of quality by fitting a 3D scene
representation via differentiable volume rendering to multi-
view images [34]. NeRFs represent the scene implicitly as
a multi-layer perceptron (MLP) [6, 33, 39]. Evaluating an
MLP is arithmetically intensive, leading to slow inference.
To overcome this, a number of works explore faster repre-
sentations based on 3D grids [12, 14, 19, 29, 41, 62], tri-
planes [5, 10, 42], hash grids [35, 49], or explicit primitives
[2, 8, 24, 45, 57]. 3D Gaussians have gained traction lately
due to their fast training and rendering [24]. While these
representations enhanced efficiency, rendering each pixel
may still require a large number of samples per ray.

DONeRF reduces sample count by only sampling around
depth values predicted by a separate MLP, which, how-
ever, requires access to ground-truth depth maps [36]. Ada-
NeRF explicitly introduces sampling sparsity during the
course of training [25]. HybridNeRF introduces a hybrid
surface–volume representation that encourages surfaces over
volumetric rendering [51]. AdaptiveShells restrict sampling
to a small shell around the surface [56]. This shell is repre-
sented by a triangle mesh, rasterized to find the sampling
range. Unlike AdaptiveShells, which uses volume rendering,
our method finds all sampling locations via rasterization, en-
abling the use of 2D textures instead of 3D volume textures.
Additionally, while AdaptiveShells learns a single SDF with
a spatially-varying kernel, we learn multiple SDFs. NDRF
[53] extracts two mesh layers via marching cubes with vary-
ing density thresholds and rasterizes them to feature vectors
that are decoded by a convolutional neural network (CNN).
In turn, we store view-dependent opacities and colors as SH
textures. Similar to us, QuadFields also aggregate opacities
and view-dependent colors from multiple ray-triangle inter-
sections [47]. However, these methods require significantly
larger meshes, intersection calculations for all triangles along
a ray, and a costly sorting process. In contrast, our formula-
tion enables blending in a fixed order.

Another line of work aims for a single sample per ray. Mo-
bileNeRF [7] represents the scene with a coarse proxy mesh
equipped with a binary opacity mask to increase expressivity.
BakedSDF [60], NeRF2Mesh [50], NeRFMeshing [40] and
BOG [43] first perform a 3D reconstruction of the scene, con-
vert their respective training-time representation into a mesh,
and then fit an appearance model to the mesh. While these
single-surface approaches are faster, they struggle to recon-
struct fuzzy geometries. Even with accurate reconstruction
from multi-view data, representing individual hairs explicitly
would require substantial memory [4].

Gaussian frosting [18] anchors Gaussians on a tight sur-
face shell to enhance editability. Like our approach, Gaus-
sianShellMaps [1] utilize a multi-layer mesh representation.
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However, unlike our approach, GaussianShellMaps uses
fixed shells rather than adaptively learning them, and predicts
per-shell Gaussians. Further these methods still fall short of
achieving real-time rendering on budget smartphones due to
their reliance on splatting techniques.

3D Reconstruction: Earlier methods for 3D reconstruction
were often based on image matching [13, 46]. More recent
works directly fit level-set representations via differentiable
rendering [37, 38, 52, 58]. To improve convergence, many
approaches convert an SDF to a volumetric density on-the-
fly, which is then used for standard volume rendering [28, 44,
54, 55, 59, 63]. Recent methods demonstrate converting 2D
or 3D Gaussians into high-quality surface representations,
either through volumetric fusion [9, 20, 64, 65], or using a
Poisson reconstruction algorithm [17].

3. Preliminaries
In this section, we provide a brief introduction to volume-
and surface-based representations and related notations.

Rendering Equation: A ray r in 3D space is parameterized
by its origin o ∈ R3 and unit direction v ∈ S2. A 3D point
at distance t along ray r is given by r(t) = o + vt. Let σ
denote a density field, which assigns a nonnegative density
value σ(x) ∈ R+ to each 3D point x ∈ R3, and let ξ be a
vector field providing an RGB color ξ(x,v) for each point
x ∈ R3 and direction v ∈ S2. We can render ξ along ray r
for a given density field σ using the following equation [34]:

R(r | σ, ξ) =
∫ ∞

0

σ(r(t)) ξ(r(t),v)wr(t) dt , (1)

where wr(t) = exp
[
−
∫ t

0
σ(r(s)) ds

]
.

Volume-Based Representations (NeRF): NeRF models a
scene as a volume – with absorption and emission but with-
out scattering effects [48] – parametrized as (σ, ξ). NeRF
numerically approximates Equation (1) with quadrature [32],
densely sampling rays to render each pixel (Figure 2a).

Surface-Based Representations (NeuS): Many surface-
based representations have been proposed [33, 58, 59]; our
work is built upon NeuS [54], as its densities weighting
function – for which we refer to the original paper – is
unbiased and occlusion-aware. In short, NeuS represents
a surface implicitly by modeling it through a neural SDF,
trained with differentiable volumetric rendering. A logistic
distribution function ϕβ maps distance values d to densities
as follows:

ϕβ(d) = βe−βd/
(
1 + e−βd

)2
. (2)

Here, the spread of densities around the surface (zero-level
set) is controlled by the scalar β. A small β results in fuzzy

a) Volumetric b) Surface c) Ours

Figure 2. Sampling strategies: (a) volumetric rendering’s dense
sampling; (b) single sampling point, as in surface rendering; (c) our
method, only sampling the first intersection with each surface.

densities, while in the limit β → ∞ densities are sharp
impulse functions for points on the implicit surface. While
NeuS regards β as a learnable parameter, Rosu and Behnke
[44] showed how controlling it explicitly leads to better
reconstructions. In our case, scheduling β ensures that den-
sities shift from being widely spread to being peaked by
the end of the training. When densities are peaked, the rep-
resentation can be baked into a mesh suitable for efficient
rendering. However, in this case, all appearance information
is condensed on a single point (Figure 2b); therefore, surface-
based methods are not able to model semi-transparent sur-
faces, strongly limiting their ability to handle mixed pix-
els often representing thin structures, which are notoriously
missed [60].

4. Method
In this section, we describe our proposed representation,
Volumetric Surfaces, in detail. We begin with its implicit ge-
ometry definition, then cover rendering, training, and baking.
We also discuss and justify our design choices. Comprehen-
sive architectural details can be found in the supplement.

4.1. k-SDF
Our new representation, called k-SDF, models k surfaces
as distinct signed distance fields {d1, . . . , dk}. To com-
posite the surfaces, k-SDF is endowed with an additional
transparency field α, which assigns a view-dependent trans-
parency value α(x,v) ∈ [0, 1] to each 3D point x. The trans-
parency field enables modeling semi-transparent surfaces.
We generalize Equation (1) to render a k-SDF (d1:k, α, ξ)
as:

Rβ(r | d1:k, α, ξ) =
k∑

i=1

Rβ(r | di, ξ)Rβ(r | di, α)wi,

(3)
where wi =

∏i
j=1 (1−Rβ(r | dj , α)) and, for the sake of

compactness, Rβ(r | di, γ) stands for R(r | ϕβ ◦di, γ). Our
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Figure 3. (a) High-level architecture of our k-SDF network, predicting k distance values as described in Section 4.1. For simplicity of
visualization, all offsets are positive. We highlight trainable components. For additional architectural details, refer to the supplementary
material. (b) 1D example visualization of the output d1:k when evaluating the network at a sample point x along a ray. Signed distances are
shown as solid lines, while β-controlled integration weights are represented as dotted lines.

per-surface density field is derived from the signed distance
field di as in Equation (2).

Support Surfaces as Shells: Blending weights in Equa-
tion (3) are order-dependent, but lower-ranked densities are
not necessarily positioned closer to the camera. To avoid
sorting, we model the set of surfaces as shells, ensuring
that layers are traversed in ray-intersection order. We model
our k-SDF with a main surface represented as an SDF d,
and a set of k− 1 support surfaces represented as offset
fields {o2, . . . , ok} (Figure 4) from d’s zero-level set. The
signed distance functions for each surface are thus given
by: d1:k = (d, d + o2, . . . , d + ok). A surface defined by
a positive offset is contained inside the main one, while a
negative offset yields a surface containing the main one. To
model multiple support surfaces while enforcing order, we
perform a cumulative sum over predicted relative offsets
{ô2, . . . , ôk} (separately for negative and positive offsets)
and use the resulting absolute displacements {o2, . . . , ok} to
parameterize the surfaces. Figure 3 illustrates our model.

Rendering Individual Surfaces: Equation (1) is approxi-
mated with quadrature [34] and evaluated at n discrete points
{x1, . . . ,xn} sampled along a ray r. For surface j, we ren-
der its color Cj(r) and transparency Aj(r) as:

Cj(r) =
n∑

i=1

wi,jξ(xi,v,ni,j , zi), (4)

Aj(r) =

n∑
i=1

wi,jα(xi,v,ni,j , zi), (5)

where RGB and transparency fields (ξ, α) are conditioned on
sample position xi, view direction v, SDF normal ni,j , and
feature vector zi, an additional output of the k-SDF model.
Sample weights wi,j are computed as in Wang et al. [54].

4.2. Surfaces Blending
We now rewrite Equation (3) as a fixed-order alpha blending
of the rendered surface color and transparency:

R(r) =

k∑
i=1

Ci(r)Ai(r)wi, (6)

a)

b)

Figure 4. 1D example visualization of 3-SDF along a ray. Signed
distances are shown as solid lines, while β-controlled integration
weights are represented as dotted lines. (a) Initialization of the
support surfaces as positive and negative constant displacements
∆o from the main SDF. (b) Densities peaked at the end of training.
The two support surfaces are displace by trained offsets (o1, o2), d:
d1 = d− o1, d2 = d+ o2.

where wi =
∏i

j=1 (1−Aj(r)).

Transparency Attenuation: Blending different hard sur-
faces might result in clear cut-offs at their borders, especially
noticeable from test views. We prefer smoother transitions
towards full transparency. We achieve this by multiplying
predicted transparencies with a weight αw that depends on
the angle between the view direction and the surface nor-
mal, downweighting the contribution from grazing angles.
Specifically, we use: αw = 2 · Sigmoid(10 · |v · n|)− 1.

4.3. Training and Baking
Our method is composed of two main stages. First, we op-
timize an implicit representation of k surfaces and their
appearances. Then, we fine-tune resolution-bounded neural
textures over their explicit (meshes) representation. Our hy-
perparameters are robust, ensuring consistent performance
across all scenes and datasets. In the following, we describe
both phases in detail.

Implicit Surfaces: We begin by training a standard NeuS-
like [54] model for 100k iterations, during which β is ex-
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ponentially scheduled from large densities ϕβ1 to thinner
densities ϕβ2 . In practice, training the k-SDF model from
scratch with predicted transparencies often introduces fully
transparent additional geometry in the reconstruction. This
opaque pre-training step helps prevent such artifacts. The
reconstructed surface serves as an anchor for initializing the
remaining k−1 support surfaces, which are represented as
shells uniformly spaced from the main surface by ∆o. The
mathematical formulation of k-SDF (Section 4.1) allows
for initializing support surfaces both inside and outside the
main SDF. However, we find that initializing all support
surfaces on the inside increases model capacity, leading to
better results (Section 5.1).

While we have observed the optimization to be robust
under different values of ∆o, we found a good balance by
setting it by the logistic distribution function ϕβ2

standard
deviation: ∆o = (1/β2)π/

√
3. This ensures that surface

densities only partially overlap (e.g., Figure 4). The k-SDF
model is trained for 50k iterations starting from ϕβ2

, until a
ϕβ3 value for which all surfaces are modeled as peaked den-
sities. When this happens, our rendering process collapses to
a simple blending of hard surfaces (Figure 2c), making the
reconstructed set of implicit surfaces optimal for the later
steps. During both training phases, we apply two additional
losses to all surfaces. The Eikonal loss Le [16], calculated on
points in the vicinity of the zero-level sets and on randomly
sampled points, and a curvature loss Ls [44] on near-surfaces
points, to push the optimization toward smooth solutions. We
minimize L = Lc + λeLe + λsLs, where Lc is the standard
L1 pixel-wise color loss, λe = 0.04 and λs = 0.65.

Occupancy Grid: As implicit surfaces training progresses
and densities peak, our volumetric rendering samples are
gradually positioned closer to the zero-level sets of the
signed distance functions, since points farther away would
be in empty space. To do so, we compute per-surface binary
occupancy values by describing as occupied voxels whose
center point’s |d| value, together with the current β and the
voxel’s space diagonal, would allow any point in the voxel
volume to have density above a 10−4 threshold. Per-surface
occupancy values are then aggregated with an or operation,
resulting in a single binary occupancy grid. Rays traverse
the grid to sample n points uniformly in occupied space. In
our experiments, we used a grid of resolution 2563.

Importance Sampling: During implicit surfaces training,
we adopt hierarchical sampling from NeuS [54], extending
it to the k-surfaces case. Starting from the n uniform sam-
ples, each SDF is evaluated to compute k CDFs; these are
summed together and normalized. The resulting probability
distribution is used to sample m/2 additional points that
are added to the previous n. The whole operation is then
repeated on the expanded set of points to add m/2 more
samples. The resulting number of samples per ray is then

n+m. In the first iteration, the kernel size β is half of that
used during rendering, while in the second, it matches it.

Baking Meshes: After the implicit surfaces optimization,
we extract k-SDF zero-level sets as high-resolution meshes
using marching cubes [30] and simplify them significantly
[15, 31] to 0.02% of the original triangle count (approxi-
mately 2 MB per mesh for synthetic scenes), meeting the
strict computing and memory constraints of mobile hard-
ware. Finally, we generate UV atlases for these lightweight
meshes using xatlas [61]. This step is essential for train-
ing per-mesh neural SH textures, which are later baked into
explicit textures.

Texturing Meshes: Finally, we train a per-surface view-
dependent appearance model for color and transparency us-
ing neural textures. A neural texture is implemented as a
hash-grid with input dimension 2 and a small decoder MLP
with output dimension dependent on the SH degree it mod-
els. The i-th neural texture predicts shi ∈ R4×cdeg , with
c = {1, 3, 5, 7}. The outputs of all neural textures are con-
catenated over the coefficient dimension (sh∈R4×(deg+1)2 )
and decoded with view direction v to predict RGBA. Specif-
ically, we discretize our neural textures by grounding them
to a fixed target baking resolution. In this setting, each point
x ∈ R3 on the surface of a mesh is mapped to a point
x∈ [0, 1]2 in UV space. SH coefficients at x are predicted as
the result of a bilinear interpolation of predictions at neigh-
boring texel centers {xi}1,...,4, as visualized in Figure 5.
This effectively mimics how OpenGL fragment shaders ac-
cess and interpolate texture values; by doing so, we optimize
our texture values such that when displayed in our real-time
renderer, images match – up to numerical precision – those
synthesized by our differentiable renderer. This final phase
is trained for 15k iterations using the L1 pixel-wise color
loss.

Figure 5. Bilinear interpolation in our mixed-resolution textures.
Instead of querying the blue 2D point directly, we predict the values
at its surrounding texel centers (red points) and bilinearly interpo-
late them. This anchors the neural texture to a predefined target
resolution (W , H).
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Table 1. Sweep over the number of meshes and target neural tex-
tures resolution. Mixed resolutions are described in Section 4.3.
Increasing neural texture resolution improves reconstruction quality
up to 10242, but performance declines beyond that. Modeling all
textures at the maximum resolution (20482) is counterproductive,
as results indicate that a mixed-resolution approach yields better
image quality while reducing memory usage. Results on the khady
scene from Shelly [56]; we highlight the best , second best and
third best .

PSNR ↑
Method mixed 20482 10242 5122 2562

5-Mesh 29.88 29.88 29.91 29.82 29.54
7-Mesh 29.97 29.97 30.02 29.94 29.65
9-Mesh 29.96 29.93 29.97 28.91 29.62

Mixed Resolutions: Storing all textures at full resolution
(20482) is impractical, as it would require approximately
0.5 GB per mesh. We propose scaling texture resolution
proportionally to the spherical harmonics (SH) coefficient
degree: the base color is modeled at the highest resolution
(20482), while the highest SH degree coefficients are mod-
eled at the lowest resolution (2562). This approach signifi-
cantly reduces the memory footprint to approximately 14 MB
per mesh without compromising image quality (Table 1).

Squeezing and Quantization: Neural textures predicted
values are continuous and unbounded. Before storing
them, they must be squeezed to the unit range via ŝh =
Sigmoid(sh). Training must account for quantization to
the discrete [0, 255] range when storing textures as im-
ages. Following MERF [42], we apply the function q(x) =
round(255x)/255 to the predicted and squeezed coefficients.
Before rendering, we re-scale value to a hyper-parameters
controlled range [vmin, vmax]: sh = vmin+(vmax−vmin)q(ŝh).
We observed a range of [−15, 15] to work well on all scenes.

Baking Textures: Lastly, we bake our resolution-grounded
neural textures, which is straightforward as it only requires
predicting values at texel centers and storing them. Baking re-
sults in (deg+1)2 PNG images, where the i-th image stores
the i-th coefficient of RGBA channels. The fully baked rep-
resentation can finally be visualized in our WebGL renderer,
which rasterizes all meshes in a fixed order and blends them
in the final frame buffer before displaying it on screen.

5. Evaluation

Our key baselines focus on real-time rendering, with 3DGS
and MobileNeRF as primary competitors. 3DGS represents
the fastest volumetric approach, while MobileNeRF pio-
neers surface-based neural graphics for mobile devices. We
compare to these methods in terms of quality, speed, and
memory footprint on a low-power laptop (Dell XPS 13 i5)

Table 2. Framerate is measured on close-up views at HD (720p)
resolution on low-power smartphone (Samsung A52s) (marked
with ⋄) and laptop (Dell XPS 13 i5) (marked with ⋆), on respective
WebGL renderers; memory footprint as stored on disk. 3DGS [24]
with spherical harmonics of degree 2, ours of degree 3. Metrics
averaged over scenes of the Shelly [56] dataset. We present further
qualitative comparisons in the supplementary material.

Method FPS ⋄ ↑ FPS ⋆ ↑ PSNR ↑ MB ↓
MobileNeRF [7] 24 35 29.30 194
3DGS-50K 20 160 32.73 12
3DGS-75K 13 115 33.05 18
3DGS [24] 8 18 35.44 57

3-Mesh 65 145 33.39 46
5-Mesh 55 90 34.25 77
7-Mesh 42 70 34.50 110
9-Mesh 35 55 34.38 140

0 15 30 45 60 75
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Figure 6. Frame rate vs. image quality comparison (smartphone
results ⋄ from Table 2). The radius of each circle represents the
memory footprint as stored on disk. The vertical dashed line marks
the required frame rate for real-time rendering (30 FPS).

and a smartphone (Samsung A52s) (Table 2). Additionally,
we compare with other baselines not designed for general-
purpose hardware rendering to provide a broader overview
of current methods (Table 3). Aiming at high-quality repre-
sentation of fuzzy geometries, we focus our evaluation on
object-centric datasets with prominent fuzzy structures. We
present results from synthetic benchmark datasets like Shelly
[56], plush objects from real-world tabletop scenes (DTU
[21]), and additional synthetic custom scenes (our plushy
and hairy monkey from Sharma et al. [47]).

Our method, tested on renderings from our real-time Web-
GL renderer, consistently delivers higher image quality than
surface-based competitors and renders faster than 3DGS.
We observe that our adaptive shell spacing clusters surfaces
around solid structures while maintaining greater separation
in volumetric regions (Figure 7). Using seven layers offers
a good balance between image quality, model size, and ren-
dering speed, as quality tends to degrade with nine meshes
under the same number of training iterations. This happens
as deeper surfaces contribute less to pixel color, reducing
gradient magnitudes and slowing optimization. Figure 6 il-
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Table 3. Results are averaged across all testing scenes; we highlight the best , second best and third best results. Highlighted baselines
meet the compute and/or memory requirements to run on general-purpose hardware (via WebGL) without modifications, as discussed in
Section 2. QuadFields [47] fails to meet real-time requirements due to its reliance on specialized ray-tracing acceleration hardware and
its high memory consumption (e.g., Shelly [56] scenes require an average of 1213 MB). Our results are directly computed from our
WebGL real-time render on our final baked representation. Methods marked with a “⋆” show results from original papers, as code is
unavailable at the time of writing. Instant-NGP [35] results on Shelly from Wang et al. [56]. DTU [21] is evaluated on masked foreground.
PermutoSDF [44] trained until densities are fully peaked (ϕβ3). Metrics not provided by a baseline are denoted with “—”. Please note
that the Shelly dataset, as released by the authors, has a large overlap of views between test and training sets. All our experiments were
conducted on a cleaned version of the dataset, free of this problem. However, a fair comparison with baselines whose code is not public
remains difficult. Our per-scene metrics are reported in the supplementary material.

Shelly [56] Custom (plushy + [47]) DTU [21] (scans 83, 105)

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

3DGS [24] 35.44 0.975 0.089 37.34 0.982 0.147 38.06 0.989 0.086
Instant-NGP [35] 33.22 0.922 0.125 31.13 0.935 0.132 38.24 — —
PermutoSDF [44] 29.85 0.950 0.129 33.31 0.961 0.193 36.31 0.988 0.098
AdaptiveShells⋆ [56] 36.02 0.954 0.079 — — — — — —
QuadFields⋆ [47] 35.13 0.954 0.073 — — — — — —
MobileNeRF [7] 29.30 0.939 0.150 30.89 0.942 0.195 — — —

3-Mesh 33.39 0.978 0.115 35.00 0.970 0.171 36.41 0.985 0.092
5-Mesh 34.25 0.980 0.110 35.45 0.975 0.172 36.87 0.986 0.085
7-Mesh 34.50 0.981 0.109 35.63 0.977 0.169 36.77 0.987 0.084
9-Mesh 34.38 0.981 0.110 35.74 0.978 0.167 37.17 0.987 0.083

lustrates the trade-offs between frame rate on a low-cost
smartphone and model size. Notably, 3DGS fails to meet
real-time requirements even when the number of Gaussians
is capped during optimization, which leads to a substantial
loss in quality.

For comparability, the frame rate of 3DGS is measured
using a widely adopted web viewer [22]. This implemen-
tation skips per-frame sorting to prevent slowdowns, using
occasional CPU sorting instead. This results in noticeable
popping artifacts during rapid camera rotation and subopti-
mal performance on mobile devices. Our sorting-free method
avoids these issues. While our method falls short of the latest
volume-based baselines in image quality, our baked repre-
sentation provides a favorable balance between quality and
speed, rendering much faster on non-specialized hardware.
We refer to our supplementary material for additional results
visualizations.

5.1. Ablations

We ablate all crucial aspects of our method and show results
on both implicit geometry and fully baked phases in Table 4.
We run our full model: 1) Without view-dependent surface
transparency, we observe increased model expressivity as
shown by the improved image quality metrics. 2) Without
curvature loss during k-SDF training (λs = 0), surfaces can
reconstruct high-frequency details, but the image quality of
the baked representation worsens. This happens because the
post-baking mesh poorly aligns with the implicit one. En-

Table 4. Ablation studies over intermediate results (5-SDF, implicit
representation, before meshes baking) and on final results (5-Mesh,
baked, real-time rendering assets). See Section 5.1 for explana-
tions. 5-Mesh achieves higher quality than the 5-SDF due to its
fixed geometry and surface-constrained appearance model; the SDF
representation suffers from the stochastic nature of ray sampling,
forcing the appearance model to allocate capacity to off-surface
elements. Results averaged over Shelly [56].

5-SDF 5-Mesh

Ablation PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Full 32.05 0.964 0.130 34.25 0.980 0.110

1) w/o view-dep. α 31.75 0.962 0.131 32.71 0.975 0.120
2) w/o curvature Ls 33.02 0.971 0.117 33.41 0.980 0.110
3) w/o αw 32.11 0.966 0.130 33.96 0.980 0.113
4) w. const. ∆o — — — 30.09 0.950 0.129
5) w. outer init. — — — 30.85 0.955 0.121

abling curvature loss pushes k-SDF to reconstruct smoother
surfaces with meshes that better match their implicit coun-
terparts while keeping the triangle cost low. Moreover, this
highlights how our high-capacity appearance model compen-
sates for missing geometric details. 3) Without transparency
attenuation (Section 4.2) at grazing angles (no αw), render-
ing errors increase, especially at object boundaries. 4) With
fixed (not trained) support surfaces offsets (∆o). We observe
a significant decline in results, as training offsets is essential
for adapting spacing optimally to each scene. 5) Initializing
support surfaces outside the main SDF. We observe how
this leads geometry to extend beyond the object silhouette.

7



a) b) c) d)

Figure 7. Qualitative comparisons between (b) PermutoSDF [44], a state-of-the-art implicit surface-based method, and (c) our Volumetric
Surfaces demonstrate that our approach convincingly represents fuzzy objects. This is achieved by trading (a) high-frequency geometry for
the number of integration points, which are found by rasterizing smooth, lightweight meshes defined as (d) shells around the object and
traversed in a fixed order. Volumetric Surfaces enable fast rendering of fuzzy geometries on general-purpose hardware with image quality
approaching the latest volumetric representations (Table 3). Scenes from Shelly [56] and QuadFields [47].

While training views can compensate through learned view-
dependent transparency, test views suffer from degraded
generalization. In contrast, initializing surfaces inside biases
them to be tighter, preventing unwanted expansion. This
happens because the reconstructed main surface is typically
conservative, forming an outer shell that encloses the scene
content, including fuzzy geometry (Figure 1).

5.2. Limitations
Textured shells [23, 26, 27] exhibit artifacts at grazing angles,
especially when test views fall outside training coverage or
model capacity is limited. Increasing shell count mitigates
this but raises memory and computation costs, particularly
during reconstruction. Artist-designed extruded textured fins
[26] can address these artifacts, though learning this com-
ponent remains challenging and is left for future work. Our
model performs well in densely observed scenes but strug-
gles in sparsely sampled ones. When under-constrained,
it tends to explain observations through view-dependency
rather than multi-view consistent geometry, leading to poorer
generalization in test views. A solution explored by Wan et al.
[53] trains a robust model (e.g., NeRF-like) and distills its

reconstruction using renderings from randomly generated
cameras as the training set. Handling thin structures remains
challenging due to the limitations of the underlying SDF
geometry representation. Advantages on fully solid surfaces
are also marginal; see the supplement for further details.

6. Conclusion

We presented Volumetric Surfaces, a multi-layer mesh rep-
resentation for real-time view synthesis of fuzzy objects on
a low-power laptops and smartphones. Our method renders
faster than state-of-the-art volume-based approaches, while
being significantly more capable at reproducing fuzzy ob-
jects than single-surface methods. For future work, we aim
to develop a single-stage, end-to-end training procedure that
directly generates real-time renderable assets.
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Volumetric Surfaces: Representing Fuzzy Geometries with Layered Meshes

Supplementary Material

In this supplementary material, we provide additional ar-
chitectural and technical details (Section S1), further vi-
sualizations (Section S2), comprehensive per-scene results
(Section S3), and an in-depth analysis of performance on
fully solid geometries (Section S4).

S1. Additional Technical Information

β scheduling details: During training, the β parameter
is controlled by the scheduling of v as β = e10v. During
the main surface training phase, v linearly transitions from
v1 = 0.3 to v2 = 0.7. During the training of k-SDF, it further
progresses from v2 = 0.7 to v3 = 1.0. At β2, the logistic
distribution standard deviation is approximately 0.001. We
use this value to initialize offsets as constants (∆o). By the
end of implicit surface training (β3), it decreases to 0.00008,
resulting in fully peaked densities.

k-SDF Architecture: We encode 3D points using the train-
able positional encoding from Rosu and Behnke [44], fol-
lowed by a small MLP with three layers of 32 features each.
Hidden layers employ GELU activations, while the final layer
uses a linear activation to output the signed distance d (our
main SDF) and a geometric feature vector z. We predict
relative offsets using tiny MLP heads (a single layer with 32
units) with independent parameters, taking only z as input.
This ensures that model complexity scales with the number
of surfaces. To enforce the sign of the predicted offset, we
apply a softplus activation multiplied by the desired sign.
Finally, we compute the final ordered offsets by performing a
cumulative sum over the predicted relative offsets, separately
for negative and positive values.

Volumetric Appearance Architectures: We model RGB
and transparency as two networks with identical architec-
tures, differing only in their output dimensions (3 for RGB
and 1 for transparency). Both models encode 3D points us-
ing the trainable positional encoding from Rosu and Behnke
[44], followed by an MLP with three layers of 128, 128, and
64 features, respectively. Its input consists of the encoded
position, a spherical harmonics encoding (with degree 3)
of the view direction v, the normal vector of the rendered
SDF n and the geometric feature vector z predicted by k-
SDF. Normals are computed as the normalized gradients of
the SDFs; gradients are computed with finite differences,
ϵ = 10−4. Hidden layers use GELU activations, while the
final layer applies a Sigmoid activation to produce outputs
in the range [0, 1].

Neural Textures Architecture: During the mesh texturing

phase, we use separate neural texture models for RGB and
transparency per mesh. We encode 2D UV coordinates using
the trainable positional encoding from Müller et al. [35],
followed by a small MLP with two layers of 64 features each.
Hidden layers use ReLU activations, while the final layer
applies a linear activation to output per-channel spherical
harmonics (SH) coefficients of degree 3, which are then
decoded with view direction v.

Points sampling: During volumetric rendering the number
of uniformly sampled points per ray in the foreground area
of the scene is 64. On top of these, 32 points are added with
importance sampling. Additionally, if a scene is unbounded
(e.g. DTU), we sample 32 additional points in contracted
space [3]. Rays batch size is defined w.r.t. a target number of
sample points which is up to a maximum of 512× 64× 32
points.

Data handling: We use MVDatasets [11] to load datasets,
manage training loop pixel iterators, and perform ray casting.

S2. Additional Visualizations
We provide additional qualitative comparisons on our eval-
uation scenes of the DTU [21] dataset. Additionally, we
provide visualizations of per-surface rendering before alpha
blending (Figure S1 and Figure S3) to illustrate how each
layer, based on its position and opacity, contributes with its
view-dependent appearance model to the final image. Fi-
nally, we visualize results from Table 2. Figure S5 presents
a qualitative comparison between a render of our 7-Mesh
model, 3DGS [24], and 3DGS-75K. Figure S6 compares our
5-Mesh model to MobileNeRF [7].

S2.1. Transparency Attenuation
We introduced transparency attenuation in Section 4.2 to re-
duce visual artifacts at object boundaries. Figure S2, cropped
from our ablation experiments (Section 5.1), highlights its
significance in our method.

S3. Per-scene Results
Table S1, Table S2 and Table S3 present the per-scene values
that are averaged in Table 3.

S4. Fully Solid Scenes
Although not our targeted use case, we tested our method
on the fully solid scenes of the NeRF-Synthetic dataset [34],
which lacks fuzzy objects. As noted in Section 5.2, our advan-
tages in these scenes are marginal. While we outperform Per-
mutoSDF [44], our quality remains behind other baselines.
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a) Surface normals.

b) Surface UVs.

c) Surface opacity.

d) Blending weights (contributions).

e) Surface colors (RGB).

Figure S1. Visualization of render buffers from our 5-Mesh model. Layers order: left to right is inner to outer. Individual layer color and
alpha buffers are blended as described in Section 4.2. Results on the khady scene from Shelly [56].

a) without αw b) with αw

Figure S2. (a) Rendering error crop (averaged over color channels)
without and (b) with transparency-decay, resulting in a 2.13 dB
PSNR gain. Scene from the Shelly [56].

We model fuzzy surfaces by optimizing sample distribution
rather than reconstructing high-frequency geometric details,

as spatial sampling is key to accurately capturing these ef-
fects. By favoring smoother surfaces, our method tends to
reconstruct overly simplified geometry in under-observed ar-
eas (Figure S7). Fully solid scenes can be optimally modeled
as a single surface. However, SDF-based methods struggle in
handling thin structures, as optimization often fails to recon-
struct them reliably (e.g., BakedSDF [60], BOG [43]). Our
surface smoothing, combined with view-dependent trans-
parency, often leads to thin structures being reconstructed as
view-dependent effects (Figure S8). As a result, our model
tends to overfit training views, leading to a larger quality gap
between training and test views (Table S4).
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a) Surface normals.

b) Surface UVs.

c) Surface opacity.

d) Blending weights (contributions).

e) Surface colors (RGB).

Figure S3. Visualization of render buffers from our 7-Mesh model. Layers order: left to right is inner to outer. Individual layer colors and
alpha buffers are blended as described in Section 4.2. Results our custom plushy scene.
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PermutoSDF 7-Mesh (ours) PermutoSDF 7-Mesh (ours)

3DGS Ground truth 3DGS Ground truth

Figure S4. Qualitative comparison of our 7-Mesh model with PermutoSDF [44] and 3DGS [24]. Scenes from the DTU dataset [21].

Table S1. Per-scene results for baselines. Refer to Table 3 for averaged results. Metrics not provided are denoted with “—”. PermutoSDF
trained until densities are fully peaked (ϕβ3). The hairy monkey scene is from Sharma et al. [47].

PermutoSDF [44] 3DGS [24] MobileNeRF [7]

Dataset Scene PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Shelly [56]

fernvase 28.42 0.953 0.078 34.82 0.986 0.040 29.06 0.957 0.088
horse 34.68 0.993 0.040 41.45 0.997 0.038 33.31 0.988 0.065
khady 26.22 0.879 0.226 30.54 0.924 0.187 26.42 0.877 0.228
kitten 30.91 0.971 0.093 38.17 0.991 0.050 30.22 0.968 0.098
pug 29.48 0.953 0.168 35.96 0.983 0.089 28.57 0.927 0.197
woolly 29.39 0.949 0.167 31.71 0.969 0.130 28.20 0.919 0.221

Custom hairy monkey 33.67 0.977 0.194 37.67 0.990 0.142 30.25 0.949 0.200
plushy 32.94 0.945 0.192 37.02 0.975 0.153 31.53 0.934 0.190

DTU [21] scan 105 34.78 0.985 0.124 35.50 0.984 0.102 — — —
scan 83 37.84 0.991 0.072 40.61 0.994 0.070 — — —
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a) 3DGS b) 7-Mesh (ours)

c) 3DGS-75K d) Ground truth

Figure S5. 3DGS [24] demonstrates superior performance in modeling thin structures but is significantly less effective in representing large,
textured areas. Our method renders faster than 3DGS-75K on mobile devices. Results on the khady scene from Shelly [56]. Quantitative
results are in Table 2.

Table S2. Our per-scene results. The hairy monkey scene is from Sharma et al. [47]. Refer to Table 3 for averaged results.

3-Mesh 5-Mesh

Dataset Scene PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Shelly [56]

fernvase 32.41 0.985 0.066 33.63 0.988 0.064
horse 38.34 0.998 0.038 39.78 0.998 0.034
khady 29.78 0.938 0.193 29.88 0.941 0.194
kitten 35.84 0.991 0.078 36.85 0.992 0.076
pug 33.72 0.983 0.138 34.25 0.985 0.132
woolly 30.26 0.973 0.175 31.12 0.978 0.162

Custom hairy monkey 35.59 0.984 0.178 35.90 0.985 0.179
plushy 34.41 0.957 0.164 34.99 0.965 0.164

DTU [21] scan 105 34.77 0.980 0.120 35.40 0.982 0.106
scan 83 38.05 0.990 0.064 38.34 0.990 0.063
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a) 5-Mesh (ours) b) MobileNeRF c) Ground truth

Figure S6. Our method surpasses MobileNeRF [7] in modeling volumetric hair while also achieving superior performance on flat surfaces.
Results on hairy monkey from QuadFields [47], our custom plushy scene and khady from Shelly [56]. Quantitative results are in Table 2.

Figure S7. Visualization of surface normals from our 7-Mesh model. Scene from NeRF-Synthetic [34].
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Table S3. Our per-scene results. The hairy monkey scene is from Sharma et al. [47]. Refer to Table 3 for averaged results.

7-Mesh 9-Mesh

Dataset Scene PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Shelly [56]

fernvase 34.55 0.990 0.062 34.64 0.991 0.062
horse 40.05 0.998 0.033 39.32 0.998 0.034
khady 29.97 0.942 0.194 29.96 0.943 0.195
kitten 37.11 0.993 0.074 37.05 0.993 0.074
pug 34.25 0.985 0.132 34.24 0.985 0.133
woolly 31.04 0.978 0.158 31.05 0.978 0.160

Custom hairy monkey 36.09 0.987 0.177 36.14 0.987 0.175
plushy 35.18 0.967 0.162 35.35 0.969 0.160

DTU [21] scan 105 35.50 0.982 0.106 35.54 0.983 0.105
scan 83 38.04 0.991 0.062 38.81 0.991 0.062

Table S4. Results averaged across test scenes. In solid scenes, our method outperforms PermutoSDF [44] (see Figure S8) but lags behind
other baselines. We explain this behavior in Section S4. Methods marked with a ⋆ show results taken from original papers. PermutoSDF
trained until densities are fully peaked (ϕβ3). Metrics not provided by a baseline are denoted with “—”.

NeRF-Synthetic [34]

Training Test

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS [24] 36.76 0.991 0.030 33.23 0.981 0.037
Instant-NGP [35] ⋆ — — — 33.18 — —
PermutoSDF [44] 29.31 0.975 0.057 28.05 0.966 0.065
AdaptiveShells [56] ⋆ — — — 31.84 0.957 0.056
QuadFields [47] ⋆ — — — 31.00 0.952 0.069
MobileNeRF [7] ⋆ — — — 30.90 0.947 0.060

3-Mesh 32.40 0.983 0.060 28.50 0.958 0.083
5-Mesh 33.23 0.986 0.055 28.77 0.959 0.081
7-Mesh 33.31 0.986 0.056 28.88 0.960 0.081
9-Mesh 33.19 0.986 0.057 28.79 0.960 0.082

a) PermutoSDF b) 7-Mesh (ours) c) PermutoSDF d) 7-Mesh (ours)

Figure S8. Qualitative comparison of our method with PermutoSDF [44]. Renderings (a) and (b) are from a training view. Renderings (c)
and (d) are from a test view. Scene from NeRF-Synthetic [34].
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