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1ETH Zürich 2Max Planck Institute for Intelligent Systems, Tübingen
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In this supplementary document, we provide additional
materials to supplement our main submission. In Sec. 1,
we provide further implementation details of our proposed
method. Sec. 2 explains details regarding the exact imple-
mentation of baseline methods. Furthermore, in Sec. 3
we provide more results, including ablation studies on ef-
fects of the energy functions (Sec. 3.1), additional qualita-
tive results (Sec. 3.2), comparisons on real data (Sec. 3.3).
More comparisons with traditional fusion-based methods
(Sec. 3.4) and SCANimate (Sec. 3.5) are also supplemented.
Finally, we discuss our limitations and potential negative so-
cietal impacts in Sec. 4. In the supplementary video, we
show reconstruction and animation demos of our method on
real-world data.

1. Implementation Details

1.1. Architecture

We leverage MLPs to represent the shape network and
skinning network. The shape network includes 8 blocks,
each of which consists of one fully connected layer, a
weight normalization layer [16] and a softplus activation
layer [7]. Each fully connected layer contains 256 neurons.
The pose condition p is obtained by concatenating all axis
angles and is passed through a fully connected layer to re-
duce its dimension to 8. We concatenate this pose feature
and the output feature of the fourth block as the input of
the fifth block of this network. We use geometric initial-
ization [2] for the shape network’s weights. We apply po-
sitional encoding with 4 frequency components to the input
points to better model high-frequency details [14]. Since
the skinning weights are smooth and thus don’t require a
large network to predict, we only use 4 blocks containing
128 neurons without conditioning on pose p.
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1.2. Iterative Root Finding

To find the set of canonical correspondences of the de-
formed point xd, we follow [6] to define them as the root
xc of the following linear blending constraint:

nb∑
i=1

wi
cBixc − xd = f(xc,B,xd) = f(xc) = 0 (1)

where wc = {w1
c , ..., w

nb
c } = fw(xc) represents the

learned skinning weights for xc and B is the bone transfor-
mation matrix derived from the pose p. Only xc is unknown
in this equation.

To find the solution to equation f(xc) = 0, we lever-
age Broyden’s method [4] for our correspondence search.
In our experiments, we set the maximum number of up-
date steps to 50 and the convergence threshold to 10−5. Fi-
nally, we choose the top-k candidates with the lowest er-
rors as our canonical candidates by conducting random re-
initialization. k is empirically set to 9 in our experiment.

1.3. Training Details

We train our network using the Adam optimizer [9], with
a learning rate of rsdf = 10−4 for the implicit canonical
shape network and rw = 10−6 for the canonical skinning
field network. The other Adam hyper-parameters are set to
β1 = 0.9 and β2 = 0.999. A model is trained for 12h on a
single NVIDIA RTX TITAN GPU.

1.4. Pose Initialization

We initialize body poses by fitting SMPL model [10]
to raw RGB-D observations. We formulate this process
as a per-frame optimization problem. Specifically, this is
achieved by minimizing the following loss functions over
the SMPL parameter Pi consisting of the pose pi, shape βi

and global translation ti:

Li(Pi) = Li
p2s(Pi) + Li

DP (Pi) + Li
T (Pi) + Li

prior(Pi)
(2)
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This loss formulation considers the point-to-surface loss
Li
p2s, dense correspondence loss Li

DP , temporal pose sta-
bility loss Li

T and pose plausibility Li
prior. We now introduce

these loss terms in more detail:

Point-to-Surface Li
p2s represents a point-to-surface loss

for frame i, measuring the sum of the distances from the
points xd to the SMPL body surface. We uniformly down-
sample the point clouds to retain only npc points, and com-
pute the energy function via:

Li
p2s(Pi) =

npc∑
j=1

P2S(xj
d, fsmpl(Pi))

npc
(3)

where P2S(·) calculates the ℓ2 point-to-surface distance
and fsmpl(·) denotes the forward function that regresses the
SMPL body surface from the SMPL parameters.

Dense Correspondence Li
DP depicts a 3D per-pixel

DensePose [8] energy term where we minimize the distance
between the point xd and its corresponding 3D position on
SMPL surface xsmpl estimated by DensePose:

Li
DP (Pi) =

nDP∑
j=1

P2P (xj
d,xsmpl)

nDP
(4)

here P2P (·) denotes the ℓ1 point-to-point distance and
nDP is the number of valid correspondences.

Temporal Pose Stability Li
T is a temporal regularizer on

SMPL poses. It is defined as the mean squared error of the
current frame and the last frame SMPL joint rotation angles,
which penalizes temporal pose jittering:

Li
T (Pi) = ∥Pi −Pi−1∥22 (5)

Pose Plausibility Li
prior, proposed in [3], reflects how

plausible a pose is, given a pose prior learned from a large
scale realistic pose corpus [1, 11]. The pose prior is mod-
elled as a mixture of Ngauss = 8 Gaussian distributions with
learned weights αj , mean µj , and variance Σj . The pose
plausibility is given as:

Li
prior(Pi) = − log

Ngauss∑
j=1

αjN (Pi;µj ,Σj) . (6)

2. Evaluation Protocol
2.1. Baselines

CAPE Following DSFN [5], we leverage the DSFN fit-
ting pipeline to optimize the energy with respect to the la-
tent codes of the CAPE model. Specifically, the publicly
available checkpoints are taken and the objective is defined
as latent codes’ optimization for the CAPE decoder.

Figure 1. Qualitative evaluation of energy functions. Dropping
the off-surface loss Eoff results in many artifacts outside the human
body. Ignoring the normal loss term Enormal leads to less detailed
reconstructions.

SCANimate (2.5D) SCANimate [15] excludes concave
regions from the smoothness constraint to avoid propagat-
ing incorrect skinning weights at self-intersecting regions.
To adapt SCANimate [15] to our monocular depth setting,
we slightly modify the concave region detection strategy.
In SCANimate, concave regions are detected by computing
the mean curvature on the surface of scans with a certain
threshold. In contrast, we detect the concave regions by
computing the point-to-surface distance between the point
and the corresponding posed SMPL surface and remove the
parts with a calculated distance larger than 4cm.

3. Supplementary Result

3.1. Additional Ablation Studies

Effects of Energy Functions To gain insights into the op-
timization process, we perform an ablation study on the im-
portance of the energy terms, which are introduced in Sec.
3.2. First, we drop the off-surface loss term Eout for the op-
timization. As shown in Fig. 1, this results in many artifacts
outside the human body. This is because we only define
losses on the body surface. Given partial point clouds of
human bodies, the IGR loss alone is not sufficient to regu-
larize the SDF. To tackle this problem, we leverage a loss
term defined in Eq. 10 to regularize the off-surface SDF
values. Another experiment is to compare our method with
the baseline ignoring the normal loss term Enormal defined in
Eq. 9. Shown in Fig. 1, this normal loss leads to more de-
tailed reconstructions. Without this loss, the surface tends to
be closer to the naked human body ignoring hair and cloth
geometry.

3.2. Additional Qualitative Results

Our method PINA generalizes to various people with
different human shapes and miscellaneous clothing styles.
We show more qualitative results of our approach on real-
world RGB-D sequences in Fig. 4 and in the supplemen-
tary video.



Figure 2. Qualitative comparison on real data. The reconstruc-
tion of DSFN can lead to holes and unrealistic surface noise. In
contrast, our method ensures smooth surfaces while preserving
fine surface details.

3.3. Comparison on real data

Due to the lack of accurate 3D ground-truth human scans
for real monocular RGB-D inputs, we conduct qualitative
comparisons to DSFN [5] on Azure Kinect sequences in
terms of reconstruction accuracy. We show the result in
Fig. 2. DSFN relies on the parametric human model SMPL
and represents the clothing as a displacement layer on top of
the minimally-clothed human body. This explicit represen-
tation strongly limits the reconstruction of surface details
that geometrically differ from the minimally clothed human
body and can cause holes (self-intersection) and unrealis-
tic surface noise. In contrast, our method represents human
shape implicitly and thus can better handle different topolo-
gies.

3.4. Comparison to fusion-based methods

We compare our method to BodyFusion [18] which is
specifically designed to reconstruct dynamic human bodies
from monocular RGB-D videos. The mean end-point error
(EPE) is measured on the BodyFusion dataset. Our method
attains an EPE score of 1.7 cm, which significantly outper-
forms the specialized BodyFusion method (2.2 cm).

3.5. Comparison to SCANimate

To compare our method with current SOTA methods,
we conduct quantitative and qualitative comparison with
SCANimate. When comparing both methods in our set-
ting, i.e., with 2.5D training data, our method (2.5D) out-
performs SCANimate (2.5D) significantly as shown in Tab.
4 (in the paper) and in Tab. 1. We further compare both
methods when using full 3D scans for training. Tab. 1 re-
veals that our method also outperforms SCANimate (3D) in
all metrics. As shown in Fig. 3, our method can generate
more realistic animation results for unseen poses compared
to SCANimate. Overall, we show that our method outper-
forms SCANimate, irrespective of the setting.

Figure 3. Qualitative evaluation with SCANimate [15] on
CAPE. Our method produces more realistic results while ani-
mated compared with SCANimate, regardless of the type of input
data.

Method Input IoU ↑ C− ℓ2 ↓ NC ↑
SCANimate [15] 2.5D 0.665 4.710 0.785
Ours 2.5D 0.946 0.621 0.906
SCANimate [15] 3D 0.941 0.560 0.906
Ours 3D 0.949 0.501 0.920

Table 1. Quantitative evaluation with SCANimate [15] on
CAPE. Our method outperforms SCANimate regardless of the
type of input data.

4. Limitations and Societal Impact Discussion
If regions of the clothed human are not visible in the

input RGB-D sequence, the surface in these regions will
show artifacts or be regularized to be smooth. Currently,
our method does not model the appearance of the avatar.
This will be an interesting direction for future work. Fur-
thermore, our method performs well for garments that are
topologically similar to the body. Non-skeletal induced dy-
namics are beyond the scope of this work. Combining our
method with physics simulation to obtain a ”personalized”
garment simulation is an exciting direction for future work
and can be leveraged to model and repose loose clothing
like skirts.

PINA enables digitization of humans from a single com-
modity RGB-D sensor, which has many potential appli-
cations in movies, AR/VR, and telepresence applications.
However, these may also lead to negative societal impacts,
in particular privacy concerns such as deep-fakes. These
must be addressed first before deploying virtual human
avatars in products. Furthermore, our goal is clearly to en-
able positive uses of the technology developed here. While
we cannot prevent nefarious uses, we argue that studying
such technologies fully in the open, including discussion
of technical details in the paper, release of code and data,
should be preferred over closed, secretive study because
it can also inform potential counter measures to deep-fake
technology (if our work was to be abused for such pur-
poses).



Figure 4. RGB-D results. We show qualitative results of our method based on real Azure Kinect RGB-D videos. Each subject has been
recorded for 2-3 min (left). From noisy depth sequences, we learn shape and skinning weights (reconstruction), by jointly fitting the
parameters of the shape and skinning network and the poses. We use motion sequences from [12, 13, 17] to animate the learned character.
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