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Conditional Affordance Learning
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Sauer, Savinov and Geiger: Conditional Affordance Learning for Driving in Urban Environments. CoRL, 2018.



NoVA:
Learning to See in Novel Viewpoints and Domains

[Coors & Geiger, 2019]




Are all autonomous vehicles created equal?




Are all autonomous vehicles created equal?

» Senor setups vary significantly depending on the type of autonomous vehicle



Generalization is Challenging

Target Domain

» Semantic Segmentation networks trained on source domain
do not generalize well to novel viewpoints (target domain)



Cycle-Consistent Adversarial Domain Adaptation
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» CyCADA addresses domain adaptation but not viewpoint adaptation

Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros and Trevor Darrell: CyCADA: Cycle-Consistent Adversarial Domain Adaptation. ICML, 2018.



Cycle-Consistent Adversarial Domain Adaptation

Target Domain

» CyCADA does not handle viewpoint changes

» | eads to significant performance drop also for source domain

Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros and Trevor Darrell: CyCADA: Cycle-Consistent Adversarial Domain Adaptation. ICML, 2018.



Novel Viewpoint and Domain Adapation

Source domain Target domain (no labels)

» NoVA: Geometry-aware image and semantic label translation
» Key Idea: Decompose problem (reconstruct, warp, inpaint, stylize)



Model Overview




Model Overview
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Depth Estimation
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Predict depth from a single image:
» Can be trained either supervised using depth ground truth

» Or self-supervised using a second frame for supervision [Godard, CVPR 2017]



Rendering
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Warp depth map and segmentation into target view:
> Forward splatting K- TK'
» Soft z-buffering (weight based on inverse depth)



Inpainting and Refinement
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» Inpaint occluded areas and stylize in style of target domain

» Residual network



Task Network
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Semantic segmentation task network:
» FCNB8s and DRN26, cross-entropy loss applied to valid pixels

» Adversarial losses encourage similarity of image and semantic spaces



Loss Function
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Experimental Evaluation




Viewpoint Adaptation
CARLA Car — CARLA Truck




Viewpoint Adaptation

Method mloU
Source Only 26.54
SceneAdapt [Mauro et al., AVSS 2018] 26.63
CyCADA [Hoffman et al., ICML 2018] 10.57
CyCADA [Hoffman et al., ICML 2018] + trgt-labels 16.31
SPLAT [Tzeng et al., 2018] 13.63
SPLAT [Tzeng et al., 2018] + trgt-labels 18.81
NOVA.ono—self 42.54
NOVA mono—sup 4527
NOVAstereofsup 4967
NoVAaT 51.89
Target Oracle 52.72




Viewpoint Adaptation

Source Image Warped Image
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Refined Image Warped Labels
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Viewpoint Adaptation

Refined Image Warped Labels



Viewpoint Adaptation

NOVAmonofself NOVAmonofsup NOVAstereofsup NOVAGT

NoVA Performance for Different Depth Estimators:

» NoVA works with self-supervised or supervised depth predictions
22



Viewpoint Adaptation




Viewpoint Adaptation

Source Translated Reconstructed

CyCADA on Sim2Sim:
» CyCADA translates incorrectly but reconstructs correctly

» |earns to encode source image semantics in the noise of translated image

24



Viewpoint and Domain Adaptation
CARLA Truck — Cityscapes Car




Viewpoint and Domain Adaptation

Method mloU
Source Only 18.84
SceneAdapt [Mauro et al., AVSS 2018] 11.54
CyCADA [Hoffman et al., ICML 2018] 19.26
SPLAT [Tzeng et al., 2018] 21.01
NOVA ono—sel 30.23
NOVAono—sup 34.36
NOVAstereo—sup 3296
NoVAGT 35.91
Target Oracle 51.30
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Viewpoint and Domain Adaptation

Refined Image Warped Labels



Viewpoint and Domain Adaptation




Ablation Study

Sim2Sim mloU
Source Only 26.54
+ Forward Warping 47.81
+ Residual Refinement 51.89
Sim2Real mloU
Source Only 18.84
+ Forward Warping 26.95
+ Residual Refinement 35.91
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Semi-Supervised Viewpoint and Domain Adaptation
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Semi-Supervised Adaptation on Sim2Real:

» Combination of Ng = 30,000 translated images with N labeled target images
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Video
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Summary

This work:
» Semantic segmentation networks do not generalize to novel viewpoints

» Existing domain adaptation techniques cannot address the problem
» NoVA is a new model for viewpoint and domain adaptation

> Geometry-aware image and label translation
» Decompose problem: depth estimation, warping, inpainting, domain

Future work:
» Warpings and inpaintings sometimes still exhibit artifacts

» Current results are not temporally consistent

32
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Thank you!

http://autonomousvision.github.io
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