Learning to See in Novel Viewpoints and Domains

Andreas Geiger

Autonomous Vision Group University of Tübingen / MPI for Intelligent Systems

June 16, 2018

University of Tübingen MPI for Intelligent Systems

Autonomous Vision Group

Conditional Affordance Learning

NoVA:

Learning to See in Novel Viewpoints and Domains

[Coors & Geiger, 2019]

Are all autonomous vehicles created equal?

Are all autonomous vehicles created equal?

Senor setups vary significantly depending on the type of autonomous vehicle

Generalization is Challenging

 Semantic Segmentation networks trained on source domain do not generalize well to novel viewpoints (target domain)

Cycle-Consistent Adversarial Domain Adaptation

CyCADA addresses domain adaptation but not viewpoint adaptation

Cycle-Consistent Adversarial Domain Adaptation

- **CyCADA** does not handle viewpoint changes
- ► Leads to significant performance drop also for source domain

Novel Viewpoint and Domain Adapation

- ► NoVA: Geometry-aware image and semantic label translation
- ► Key Idea: Decompose problem (reconstruct, warp, inpaint, stylize)

Model Overview

Model Overview

Depth Estimation

Predict depth from a single image:

- Can be trained either **supervised** using depth ground truth
- ► Or **self-supervised** using a second frame for supervision [Godard, CVPR 2017]

Rendering

Warp depth map and segmentation into target view:

- Forward splatting $\mathbf{K}_T \mathbf{T} \mathbf{K}_S^{-1}$
- ► Soft **z-buffering** (weight based on inverse depth)

Inpainting and Refinement

Refine warped image:

- ► Inpaint occluded areas and stylize in style of target domain
- Residual network

Task Network

Semantic segmentation task network:

- ► FCN8s and DRN26, cross-entropy loss applied to valid pixels
- ► Adversarial losses encourage similarity of image and semantic spaces

Loss Function

Loss function: $\mathcal{L}_{NoVA} = \mathcal{L}_{depth} + \mathcal{L}_{pho} + \mathcal{L}_{task} + \mathcal{L}_{GAN}$

Experimental Evaluation

Viewpoint Adaptation CARLA Car \rightarrow CARLA Truck

Method	mloU
Source Only	26.54
SceneAdapt [Mauro et al., AVSS 2018]	26.63
CyCADA [Hoffman et al., ICML 2018]	10.57
CyCADA [Hoffman et al., ICML 2018] + trgt-labels	16.31
SPLAT [Tzeng et al., 2018]	13.63
SPLAT [Tzeng et al., 2018] + trgt-labels	18.81
NoVA $_{mono-self}$	42.54
NoVA $_{mono-sup}$	45.27
NoVA $_{stereo-sup}$	49.67
NoVA $_{GT}$	51.89
Target Oracle	52.72

Source Image

Warped Image

Source Image

Warped Image

Refined Image

Warped Labels

NoVA Performance for Different Depth Estimators:

► NoVA works with self-supervised or supervised depth predictions

Source Image

 $NoVA_{mono-self}$

Source

Translated

Reconstructed

CyCADA on Sim2Sim:

- CyCADA translates incorrectly but reconstructs correctly
- ► Learns to encode source image semantics in the noise of translated image

Viewpoint and Domain Adaptation CARLA Truck \rightarrow Cityscapes Car

Viewpoint and Domain Adaptation

Method	mloU
Source Only	18.84
SceneAdapt [Mauro et al., AVSS 2018]	11.54
CyCADA [Hoffman et al., ICML 2018]	19.26
SPLAT [Tzeng et al., 2018]	21.01
NoVA $_{mono-self}$	30.23
NoVA $_{mono-sup}$	34.36
NoVA $_{stereo-sup}$	32.96
NoVA $_{GT}$	35.91
Target Oracle	51.30

Viewpoint and Domain Adaptation

Source Image

Warped Image

Refined Image

Viewpoint and Domain Adaptation

Source Image

 $NoVA_{mono-self}$

Ablation Study

Sim2Sim	mloU
Source Only	26.54
+ Forward Warping	47.81
+ Residual Refinement	51.89

Sim2Real	mloU
Source Only	18.84
+ Forward Warping	26.95
+ Residual Refinement	35.91

Semi-Supervised Viewpoint and Domain Adaptation

Semi-Supervised Adaptation on Sim2Real:

• Combination of $N_S = 30,000$ translated images with N_T labeled target images

Summary

This work:

- Semantic segmentation networks **do not generalize** to novel viewpoints
- ► Existing domain adaptation techniques cannot address the problem
- ► NoVA is a new model for viewpoint and domain adaptation
 - Geometry-aware image and label translation
 - Decompose problem: depth estimation, warping, inpainting, domain

Future work:

- Warpings and inpaintings sometimes still exhibit artifacts
- Current results are not temporally consistent

Thank you!

http://autonomousvision.github.io

