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Abstract. SLEDGE is the first generative simulator for vehicle mo-
tion planning trained on real-world driving logs. Its core component is
a learned model that is able to generate agent bounding boxes and lane
graphs. The model’s outputs serve as an initial state for traffic simula-
tion. The unique properties of the entities to be generated for SLEDGE,
such as their connectivity and variable count per scene, render the naive
application of most modern generative models to this task non-trivial.
Therefore, together with a systematic study of existing lane graph repre-
sentations, we introduce a novel raster-to-vector autoencoder (RVAE). It
encodes agents and the lane graph into distinct channels in a rasterized
latent map. This facilitates both lane-conditioned agent generation and
combined generation of lanes and agents with a Diffusion Transformer.
Using generated entities in SLEDGE enables greater control over the
simulation, e.g. upsampling turns or increasing traffic density. Further,
SLEDGE can support 500m long routes, a capability not found in ex-
isting data-driven simulators like nuPlan. It presents new challenges for
planning algorithms, evidenced by failure rates of over 40% for PDM,
the winner of the 2023 nuPlan challenge, when tested on hard routes and
dense traffic generated by our model. Compared to nuPlan, SLEDGE re-
quires 500× less storage to set up (<4GB), making it a more accessible
option and helping with democratizing future research in this field.

1 Introduction

While recent breakthroughs in generative AI have revolutionized natural image
synthesis [4, 16], generative models are yet to find widespread adoption in au-
tonomous driving. In contrast to the regular pixel grid of images, self-driving
planners typically require abstract bird’s eye view (BEV) representations as in-
put which characterize the most important scene elements (e.g., lanes, traffic
lights, static and dynamic objects) in a compact, vectorized format (see Fig. 2).
These representations are a key component of data-driven simulators which are
necessary for rigorous evaluation of planners [11,12,25,50]. However, learning a
generative model on such irregular vectorized representations is hard.

Consequently, many existing data-driven simulators [17,22] are initialized by
simply replaying logs of abstract representations. They extract the local lane
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Fig. 1: SLEDGE. We show state snapshots of simulation environments generated by
our approach in 4 cities, with the lanes, ego-vehicle, other vehicles, pedestrians, obsta-
cles, and traffic lights. Our supplementary video visualizes clips with more examples.

graph from a High Definition (HD) map and object bounding boxes from pre-
recorded annotation logs. They test planning algorithms by simulating short
scenarios (∼15 seconds long) in which the algorithms must safely traverse the
route followed in the original log. However, to provide sufficient diversity among
routes for comprehensive testing, these simulators require huge databases, e.g.,
nuPlan [22] consists of 1300 hours of driving logs which require over 2TB of
storage. Such high resource requirements heighten the barrier for entry into the
field of vehicle motion planning.

In this paper, we study the task of generating simulation-ready abstract
representations of driving scenes. Using generative models as an alternative to
log replays has the potential for significant compression [39]. Furthermore, ab-
stract representations are far lower dimensional than visual data, simplifying
the generation task. However, the unique characteristics of abstract representa-
tions in driving scenes pose new challenges to modeling them, e.g., they require
accurate topological connectivity and precise modeling of geometry (e.g., paral-
lel/perpendicular lines) in order to be useful for simulation.

To tackle these complexities, we first perform a systematic study of the exist-
ing representations of lane graphs used in autonomous driving. We then propose
a novel representation based on a raster-to-vector autoencoder (RVAE). It rep-
resents a driving scene with a fixed-size BEV rasterized latent map (RLM). We
learn to generate these RLMs with a Diffusion Transformer (DiT) [35]. Our
model generates high-fidelity results enabling both lane-conditioned agent gen-
eration or joint lane and agent generation within a single flexible and scalable
framework (Fig. 1). Independent to its use of generative models, SLEDGE also
provides the previously missing functionality of simulating only agents within
a certain radius of the ego-vehicle. By doing so, we can test on routes that are
significantly longer than those currently used for evaluating planners. We find
previously ignored failure modes of the state-of-the-art PDM-Closed planner [12],
which is unable to complete 25-50% of our new 500m long test routes despite
having failure rates below 10% on existing benchmarks.
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Contributions. (1) We formalize the task of abstract scene generation for au-
tonomous driving with a challenging benchmark and corresponding metrics. (2)
We perform a systematic exploration of modern generative models (with various
architectures and representations) and propose a novel latent diffusion model for
synthesizing abstract driving scenes that largely outperforms other baselines. (3)
We present a simulation framework, SLEDGE, which is nearly 3 orders of mag-
nitude more storage efficient than nuPlan yet enables more rigorous testing of
motion planning algorithms. SLEDGE will be made publicly available.

2 Related Work

Diffusion Models. Best known for their success in generative modeling of im-
ages [16,38] and video [3,4,48], diffusion models have recently found widespread
adoption in diverse domains, including point clouds [30,33,49], floor plans [7,41],
molecules [47], robot policies [9], traffic patterns [51], and many others. Scenario
Diffusion [36], a pioneering approach in generating vehicles conditioned on HD
maps with diffusion, is the closest existing approach to ours. This method uses
latent diffusion with a raster-based vehicle decoder unlike our proposed trans-
former decoder head. Importantly, we offer significantly increased capabilities in
comparison: generation of lane graphs (enabling settings both with and without
map conditioning), support for pedestrians, static obstacles, and traffic lights,
as well as long-horizon simulation environments with reactive agents.

Generating Lane Graphs. Lane graphs, being the most important component
of HD maps, are well-studied in the autonomous driving domain. They are often
constructed through an expensive offline mapping process often involving hu-
man annotators [15]. However, a surge of recent work on predicting lane graphs
from sensor data [24, 26] has sparked interest on generative modeling of these
lane graphs. The first and only existing research study on this task, HDMap-
Gen [32], proposes an autoregressive approach for generating lane graphs node-
by-node [10]. Our experiments show that this achieves reasonable results, but
is unable to match the high quality and scalability offered by diffusion models.
Unlike HDMapGen, our approach jointly generates agents with lanes, and effi-
ciently generates all scene elements in parallel. A concurrent project, DriveScene-
Gen [42], generates lanes and vehicles with image-space diffusion. Our approach
covers agent types beyond vehicles which are critical for simulation, uses less
heuristics, and is more efficient via the use of compact latent representations.
Additionally, we show the successful integration of our model into a simulator,
which we then use for the downstream task of evaluating planning algorithms.

Data-driven Simulation. Developing an autonomous driving system necessi-
tates rigorous testing which is costly and risky if conducted in the real world.
Driving simulators are a valuable alternative [14,22,46]. However, simulators face
challenges in ensuring realism while initializing traffic scenes, simulating traffic,
and providing sensor data, for which they primarily depend on rule-based solu-
tions [8]. Instead, data-driven simulators address these challenges by replaying
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traffic scenes from real-world recordings [1, 17, 22, 23]. The simulator can mine
specific situations or even optimize the initial parameters for safety-critical sce-
narios [13, 18, 45]. Leveraging modern generative models, we take a step further
and learn the underlying distribution of the real-world data. This leads to a
flexible, compact and controllable simulator that goes beyond the replay-based
nuPlan framework [5, 22] which we build upon.

3 SLEDGE

Our goal is to design a driving scene synthesis framework that can be trained
using real-world driving logs and incorporated into SLEDGE, our generative
simulator. We base this framework on LDMs [38] as: (1) latent diffusion shows
excellent training stability and scalability with compute. (2) One can easily con-
struct a fixed-size latent space for diffusion that can be mapped to the variable
sized set representation for simulation (Section 3.1) using detection-based trans-
former architectures [6, 26]. Our LDM is trained in two stages: an autoencoder
(Section 3.2) followed by a diffusion model (Section 3.3). We detail the simulation
of scenes generated by the LDM in Section 3.4.

3.1 nuPlan Vector Representation

We represent a scene state abstractly in the format native to the nuPlan simu-
lator. The representation combines several sets of entities, as outlined below.

Lanes. Our focus is on the generation of lanes, the central element of HD maps
used in data-driven simulation. Each lane L ∈ R20×2 is geometrically represented
by a polyline, i.e., a fixed set of 20 bird’s eye view (BEV) points. These are
bounded by two endpoints and form the lane centerline, connected along the
driving direction. A lane may share endpoint(s) with predecessor and successor
lanes. This information is encoded in an adjacency matrix A ∈ RN×N , where
N is the number of lanes in a certain field of view (FOV). The set of all lane
polylines L form the lane graph of the local map M = {L,A}.

Traffic Lights. We then augment the lane graph with polylines representing
traffic lights. These share the same 20× 2 format as lanes, and come in two types
(red and green). The set of red polylines (R) contains the lane regions that are
currently not traversable due to a red traffic light. The set of green polylines (G),
on the other hand, contains entities indicating lane segments where the road is
safe to proceed along due to the presence of a green traffic signal.

Agents. Further, we expand the scene representation using oriented bounding
boxes for the agents. Each bounding box is defined by a 2D center position,
heading, 2D extent and optional speed. We consider three types of agent sets:
pedestrians (P), vehicles (V) and static objects (O). Pedestrians and vehicle
boxes are assigned a speed attribute, whereas static objects are not.

Ego Velocity. Finally, initializing a simulation requires the BEV ego velocity
v ∈ R2. Overall, we denote the scene state as S = {M,R,G,P,V,O,v}.



SLEDGE 5

Fig. 2: Rasterized State Image (RSI). We encode S into a 12-channel image, with
2 channels per entity type. We visualize these encodings as optical flow fields.

3.2 Raster-to-Vector Autoencoder

Each entity type in S is unique. To maintain overall scene consistency, we would
like to model them with a single architecture, instead of creating several inde-
pendent entity-specific generative models. Furthermore, most existing tools in
the literature have been developed and optimized for 2D input domains [38].
To this end, we propose the raster-to-vector autoencoder (RVAE) which unifies
all entity types in S into a compact, shared 2D representation well-suited for
diffusion modeling. The RVAE is inspired by work in object detection [6] and
online mapping for autonomous driving [26].

Rasterization. We first define a function ρ : S → I that encodes the scene state
into a rasterized state image (RSI) I ∈ RW×H×12. Our design of ρ is motivated
by (and closely resembles) techniques used in motion planners [2,37]. As shown
in Fig. 2, ρ maps the three polyline entity types (L,R,G) and three bounding box
entity types (P,V,O) to image pixel locations, assigning 2 channels to each entity
type which encode all their attributes. For polylines, we use a 2D directional
vector ∆ = [dx, dy], which points from any point to its successor, indicating
the presence of a polyline traversing a specific pixel. A background value (i.e.,
[0, 0]) is assigned to other regions. For a bounding box type entity, we rasterize
it in BEV according to its position, extent, and heading. For dynamic bounding
boxes (P,V), the values in the two channels within the box region represent
the entity’s 2D velocity. For static obstacles, we fill the rasterized region with
the obstacle’s orientation vector. We use a square field of view centered at and
oriented as per the ego vehicle’s pose for rasterization. The ego velocity v is
encoded at the origin of I as an extra rasterized vehicle in V.

Vectorization. This step is necessary to decode the unified RSI representation
I back into the per-entity attributes (e.g., polylines, bounding boxes). We use a
learned vectorization pipeline consisting of a raster encoder π and vector decoder
head ϕ. The ResNet-50 [19] encoder takes the RSI and outputs a rasterized latent
map (RLM) M = π(I) of shape W ′×H ′×C, where H ′ = H/2d and W ′ = W/2d
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Fig. 3: Raster-to-Vector Autoencoder (RVAE). We represent scenes with a ras-
terized latent map (RLM) consisting of two channel groups. The ‘Lanes’ group is de-
coded into lane segments and the ‘Agents’ group into all other scene entities, via a
transformer decoder with attention masking. The RVAE is trained to predict polylines,
bounding boxes, and the ego velocity in a simulation-compatible vectorized format.

for a downsampling factor d ∈ N. C is a chosen channel dimension. In practice,
the RLMs we use are compact, H ′ = W ′ = 8 and C = 64. Additionally, as
shown in Fig. 3, we split the RLM’s channels into 2 groups, C = CL + CA

for the lanes and agents respectively. For each group, we tokenize the latent
vectors spatially, resulting in W ′ × H ′ lane tokens and W ′ × H ′ agent tokens.
Following the DETR [6] paradigm, we use these tokens as keys and values for
our transformer decoder ϕ. The decoder uses a fixed number of learnable queries
of each entity type, which we cap to a maximum count per entity, based on
statistics from our dataset. The final decoder layer is unique per entity type and
outputs the attributes specific to that entity, e.g. a 20×2 set of point coordinates
for a polyline, or a 6-dimensional descriptor (2D position, orientation, 2D extent,
and speed) for a bounding box. It also outputs an existence attribute p ∈ [0, 1]
for both polylines (pline) and bounding boxes (pbox), which is used to handle
variable counts of ground truth entities with a fixed number of queries.

Channel Group Masking. The motivation behind our design with two token
groups is to enable agent generation conditioned on known lanes. To this end,
the tokens for agents should contain no information about lanes. We implement
a binary mask in the cross-attention mechanism of ϕ to achieve this. Specifically,
queries for lanes L are prevented from attending to the keys and values of the
agents tokens, and all other queries (i.e., R,G,P,V,O,v) cannot attend to the
lanes tokens. Our experiments show the effectiveness of this approach.

Training. The RVAE is optimized using both reconstruction and existence losses
on the decoder outputs, and a KL divergence loss on the RLM. For reconstruc-
tion, we first match generated and ground truth entities using the Hungarian
algorithm, as in [6]. We use a matching score based on the L1 error of the entity’s
position attributes. We then use the L1 error summed over all attributes and
averaged over all matches as the training loss. For the existence variable, we use
a binary cross entropy loss based on whether the query was matched to a ground
truth entity. We provide additional details in the supplementary material.
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Fig. 4: Route Extrapolation by Inpainting. We show an example scenario gener-
ated by our DiT, where we iteratively sample poses along a route, warp the previous
tile’s RSI to this pose, and generate a new tile conditioned on the warped RSI.

3.3 Diffusion Transformer

We obtain RLMs M for each training example via the frozen, pretrained encoder
π and use them to train a diffusion model δ with the DDPM algorithm [21].

Training. For each scene, we sample a noise scaling factor σ from a log-normal
distribution and create a noisy sample M̂ = M+σE, with E being sampled from
a standard normal distribution of the same shape as M. We model δ(M̂; c, σ)
as a Transformer [44], following DiT [35], where c is a conditioning vector. For
our experiments, we choose c to be a one-hot class label indicating the city to
which the example belongs, which is readily available in nuPlan. However, it
is easily possible to adapt our framework to other conditioning, e.g., images,
text descriptions, or learned cluster labels based on RVAE features. The DiT
architecture is simple, scalable, and free from down- or upsampling operations,
making it compatible with RLMs of any spatial resolution. It applies a series of
self-attention blocks to the tokenized input M̂, with the conditioning on c and
σ implemented using AdaLN-Zero [35]. To train the model, we optimize the L2
reconstruction loss between E and δ(M̂; c, σ).

Generation. During inference, we begin with an initial noisy sample M̂ ∼
N

(
0, σ2

maxI
)
, which undergoes iterative refinement from σ = σmax to σ = 0

based on the reverse PDE defined via δ [21]. We then use the trained vector
decoder ϕ from Section 3.2 to predict L,R,G,P,V,O, and v. Only entities with
an existence probability above a threshold τ are retained, and for overlapping
bounding boxes, those with the highest existence probability are kept. The pro-
cess of recovering the full scene state S further involves extracting the adjacency
matrix A of the lane graph, which is not an explicit output of our model. We
do this by simply matching lanes whose start and endpoints lie within a range
of 1.5 meters with orientations differing by less than 60 degrees, which we found
to be robust in practice given our highly accurate lane polyline predictions.

Conditional Generation via Inpainting. Diffusion models excel at inpaint-
ing, even without explicit training for this task [29]. Specifically, by executing
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the denoising process on only a subset of the tokens in the noisy sample M̂,
with the remaining tokens extracted from a known and encoded scene, we can
inpaint RLMs. We use this capability to perform two tasks: (1) lane conditioned
agent generation and (2) route extrapolation. Lane conditioned agent gener-
ation involves encoding all lane tokens from a known map, and denoising all
agent tokens. Route extrapolation, as illustrated in Fig. 4, involves encoding a
subset of tokens within a known spatial region to denoise the unknown region.
Specifically, we can iteratively sample poses along a generated route, warp the
previously generated scene’s RSI to the new pose with an affine transformation,
and use a known region as conditioning for completing a newly created tile. We
provide implementation details in the supplementary material.

3.4 SLEDGE Simulation Environments

Finally, we initialize a reactive simulation in SLEDGE using the generated initial
scene state S. In the following, we provide an overview of the steps involved.

Hard Routes and Traffic. To evaluate a planner in ambiguous situations,
we must specify the driver intention, e.g. whether to turn left or right at an
intersection. Existing replay-based simulators offer limited controllability over
this, since they are unable to extract agents to simulate if the planner diverges
significantly from the route followed by the human driver from the log recording.
However, for generated scenes, we can extract multiple valid routes from the lane
graph, e.g., we define ‘hard’ routes by selecting the route with the highest number
of turns. In addition, our approach also provides a degree of control over traffic
density. We define a ‘hard’ traffic setting by generating multiple valid traffic
configurations along the desired route, and selecting the configuration with the
largest number of generated agents. Our experiments show that these ‘hard’
settings provide new challenges to the state of the art for planning.

Behavior Simulation. We simulate non-ego vehicles in SLEDGE by project-
ing each to the center of a lane based on proximity and heading, from which
it then laterally follows the lane centerlines. For longitudinal control, we use a
simple policy called the Intelligent Driver Model (IDM) [43]. Upon choosing a
connected lane sequence as a driving path, IDM calculates a longitudinal trajec-
tory, iteratively adjusting acceleration based on current position, velocity, and
distance to the leading vehicle. For pedestrians, we assume a constant veloc-
ity and heading while unrolling the simulation. Traffic lights are hard-coded to
change states every 15 seconds. While these choices are simplistic, they are in line
with the capabilities of today’s best data-driven simulators [17,22]. SLEDGE is
not incompatible by design with other types of policies for vehicle and pedestrian
simulation, but we leave this exploration to future work.

Simulation Radius. By default, existing data-driven simulators like nuPlan
simulate all the initialized agents at all timesteps. This severely limits the scala-
bility of these simulators to long simulation horizons or large scenes. We propose
a simple modification for SLEDGE wherein we only simulate agents at a dis-
tance below α=64m to the ego vehicle at a given timestep, while holding the
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(c) Lane & Agent(a) Log Replay

Fig. 5: Long Route Simulation. SLEDGE supports (a) replayed scenarios, (b) lane-
conditioned agent generation, and (c) joint lane and agent generation. Importantly, we
enable testing on arbitrarily long routes by dynamically simulating agents near the ego
vehicle while keeping the state of distant agents fixed.

state of all other agents to be constant (Fig. 5). We demonstrate the scalability
this provides by conducting experiments on simulations that are 10× longer than
those in nuPlan, i.e., up to 150 seconds as opposed to nuPlan’s 15 seconds.

4 Experiments

We now present our experimental results. (1) We demonstrate the suitability of
the RLM as a lane graph representation. (2) We benchmark a series of mod-
els for lane graph generation. (3) We showcase the effectiveness of SLEDGE
environments for evaluating planners. For all experiments, we present concise
descriptions of baselines, metrics and implementations in the main paper. Addi-
tional details can be found in the supplementary material.

Dataset. We use nuPlan [22], the largest publicly available dataset for vehicle
motion planning. It comprises 1300 hours of logs from 4 cities. We sample 450k
train and 50k validation frames from these logs with sampling intervals of 30s,
1s, 2s and 2s between frames for Las Vegas, Boston, Pittsburgh and Singapore
respectively, in order to obtain a balanced distribution while achieving high
map coverage. Each city offers unique challenges for generative modeling, e.g.
Las Vegas has large and dense intersections, while Singapore involves left-hand
traffic. Each frame is limited to a 64m×64m FOV centered at the ego vehicle.

4.1 Lane Graph Representations

In our first experiment, we evaluate various representations based on their ability
to reconstruct the complete directed lane graph M = {L,A}.

Baselines. We consider three baseline representations. (1) RSI: we use the skan
library [34] to extract vector polylines from the 256×256×2 RSI representation
of the lane graph. Skan is a highly optimized image processing pipeline for graph
extraction (details and visualizations in supplementary). (2) RLM w/o mask:
we train the RVAE without the channel group masking proposed in Section 3.2,
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which entangles information about agents and lanes into a single 8 × 8 × 64
latent map instead of an 8×8×32 tensor for the lane graph and an independent
8 × 8 × 32 tensor for agents. (3) Vector: As an upper bound, we additionally
compute our metrics for the respresentation used as target labels for the RVAE
during training. This is a set of polylines shaped N × 20 × 2, where we cap
N at 30 in our experiments. Note that the ground truth for evaluation in this
experiment uses all polylines in the scene (which is sometimes greater than 30).

Metrics. Our metrics are adapted from the street map extraction literature [20].
We use three base metrics, which all operate on point sets sampled along graphs
at a resolution of one point every 1.5m. (1) F1: measures the harmonic mean
of the precision and recall, which are estimated using Hungarian matching be-
tween point sets with a distance threshold of 1.5m. Intuitively, this penalizes
large structural errors, while ignoring small positional offsets. (2) Lateral L2
(Lat.): averaged over all true positive matched points, measures the lateral off-
set of each such point from its nearest ground truth lane centerline. In contrast
to F1, it penalizes positional errors, while ignoring structurally incorrect and
unmatched lanes. (3) Chamfer: averaged over all points in two point sets, this
is the distance of each point to the closest in the other set. It requires both pre-
cise structure and details. These three base metrics are further applied in two
settings. (1) GEO uses point sets sampled from the complete graph, making
it independent of the predicted adjacency matrix A. On the other hand, (2)
TOPO uses A to extract sets of fully-connected sub-graphs corresponding to
every tenth node of the graph (i.e., every 15 meters). The base metrics are com-
puted on these sub-graphs and averaged. Errors in A can lead to large missing
sections of such sub-graphs, making TOPO suitable for evaluating connectivity.

Results. As shown in Table 1, the RSI is unable to match the RLM on all TOPO
and both the F1 and Chamfer GEO metrics. Despite the significantly larger
representation size of 524 KB per 64m×64m scene, the reliance on heuristics
to convert this representation back to its constituent entities serves as a major
limiting factor for the RSI. Qualitatively, we observe that the key issue is dense
groups of lines that nearly overlap at forks or cross over in intersections. For the
2 variants of RLM, we obtain similar reconstruction quality, largely closing the
gap towards the upper bound vector representation. Importantly, the proposed
channel group masking for the RLM (i.e., ‘Split’) disentangles the lane graph
from the agents with no impact on the graph reconstruction fidelity. Finally, as
we cap the maximum number of polylines to 30, we observe a very minor error
rate (<1% drop in F1) in the upper bound vector representation, corresponding
to the negligible fraction of scenes with over 30 lanes. However, the size of the
vector representation varies significantly per scene, ranging from 2 to 30 lanes.
The RLM achieves an ideal balance of high quality with a fixed size.

4.2 Lane Graph Generation

Next, we compare our proposed DiT to several generative models for lane graphs.
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Table 1: 64m×64m Lane Graph Reconstruction. We show the F1 score, lateral
displacement and Chamfer distance for graphs extracted from each representation.
We additionally include qualitative results (more in supplementary material). The RSI
struggles with nearly overlapping segments at the beginning of forks (FNs) and overlaps
at intersections (FPs). The RLM closes the gap towards the upper bound (vector).

Rep. Fixed? Split? Size GEO TOPO

(KB) F1 ↑ Lat. ↓ Ch. ↓ F1 ↑ Lat. ↓ Ch. ↓

RSI ✓ ✓ 524.3 0.933 0.133 0.423 0.851 0.438 64.824

RLM ✓
✗ 16.0 0.981 0.161 0.399 0.945 0.282 20.096
✓ 8.0 0.980 0.164 0.411 0.944 0.288 20.624

Vector ✗ ✓ 4.8 0.997 0.005 0.070 0.990 0.010 4.174

Baselines. We select four diverse baselines. (1) VAE: we train a convolutional
VAE with a 2D decoder head to generate RSIs. (2) RVAE: we sample from the
decoder ϕ of our proposed RVAE. (3) HDMapGen: an autoregressive hierar-
chical graph neural network for lane graph generation [32], reimplemented for
nuPlan. (4) DiT (RSI): similar to the concurrent DriveSceneGen [42], this is
an image diffusion model that generates the RSI.

Metrics. Lane graph generation does not have established evaluation protocols.
Therefore, we use a comprehensive set of seven metrics. (1) Route Length mea-
sures the mean and std of the longest valid ego vehicle route in the 64m×64m
FOV for 1k generated graphs. The remaining six metrics are Frechet distances in
different feature spaces measured using 50k generated and ground truth graphs.
Two of these involve rasterizing lane graphs into the RSI, and using the penulti-
mate feature vector of a ResNet-50 for the Frechet distance. (2) ImNet uses a
ResNet trained on ImageNet, and (3) RVEnc uses the encoder π of our RVAE.
The remaining metrics are taken from [10, 32], based on graph features used in
urban planning. They operate on all nodes of the generated lane graphs with
degree ̸= 2, which are referred to in [32] as key points. (4) Connectivity: this
uses the degrees of all key points. (5) Density: the number of key points in the
64m×64m FOV. (6) Reach: the number of valid paths found from key points
to others. (7) Convenience: Lengths of all valid paths from all key points. The
Frechet metrics are scaled by suitable powers of 10 for readability.

Results. Our results are shown in Table 2. All DiT variants generate more
plausible layouts than the VAE, RVAE and HDMapGen, with significantly better
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Table 2: 64m×64m Lane Graph Generation. We show the route lengths and
various Frechet distances between samples from the validation set and model outputs.
We additionally include qualititve results (more examples in supplementary material).
Latent diffusion combining DiT with an RLM obtains the best results. *Trained with
∼6× more compute than others, which already converge at the lower compute budget.

Arch. Repr. Route Frechet (CNN) ↓ Frechet (Urban Planning) ↓

Length ↑ ImNet RVEnc Conne. Densi. Reach Conve.

VAE RSI 2.68 ± 3.66 21.06 14.77 9.45 0.99 2.86 13.06
RVAE Vector 23.79 ± 9.96 9.27 14.52 15.63 12.57 3.08 17.72

HDMapGen Vector 28.17 ± 14.81 9.18 13.97 7.02 3.03 2.49 18.10

DiT-L RSI 24.78 ± 10.38 1.14 7.27 6.11 15.33 1.90 3.95
RLM 32.51 ± 9.93 1.30 2.36 2.35 3.52 0.88 3.10

DiT-XL* RLM 35.37 ± 10.28 2.08 3.38 0.27 2.47 0.20 0.47

VAE (RSI) RVAE (Vec.) HDMapGen (Vec.) DiT-L (RSI) DiT-L (RLM) DiT-XL (RLM)

metrics. For DiT-L, we observe higher visual fidelity in intersection areas when
using the RLM representation instead of the RSI. In particular, the RLM-based
models excel at creating coincident endpoints between connected lanes, which is
crucial for smooth simulation. Scaling to DiT-XL provides further gains, leading
to results competitive to the upper bound of replay. Among the metrics used in
our study, we find the CNN Frechet distances do not value connected drivable
lanes. In particular, the ImNet Frechet distance increases when moving from
the RSI to RLM or from DiT-L to DiT-XL, despite visual evidence of reduced
fidelity (see supplementary for larger sets of randomly generated samples from
each model). Therefore, we focus on Reach in our subsequent experiments.

Scaling. We run a systematic analysis of scaling for our DiT with the RLM
representation. We conduct a grid of experiments, considering (1) 2 model
sizes: DiT-B and DiT-L, (2) 3 dataset sizes: 1×, 0.5×, and 0.25× our full
dataset, and (3) 3 compute budgets: 24, 48 and 96 GPU hours. As shown
in Fig. 6, the performance scales significantly with increased compute. While it
also scales with more parameters, more data does not have a large impact. This
is possibly because data diversity is more valuable than scale, and all of our
3 datasizes have similar diversity. This scaling behavior shows the potential of
further improvements for SLEDGE with more training resources.
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Fig. 6: Scaling. The DiT’s performance scales significantly with increased compute.
For our task, dataset size is less crucial, with all settings performing similarly.

4.3 SLEDGE Simulation of PDM-Closed

In our final experiment, we use the inpainting capabilities of DiT-XL in SLEDGE
to demonstrate its utility for testing vehicle motion planners.

Tasks and Settings. We consider the two inpainting-based tasks described in
Section 3.3: lane conditioned agent generation (Lane → Agent) and joint lane
and agent generation via route extrapolation (Lane & Agent). For the Lane
→ Agent task, we consider 100 existing nuPlan logs and use the original route
extracted from these logs as the ‘easy’ route. ‘Hard’ routes are generated from
the same initial pose while maximizing the number of turns. For the Lane &
Agent task, as we no longer rely on the nuPlan maps, we dynamically adjust the
difficulty of generated routes during DiT inpainting. We generate 100 scenarios.
For each, we perform iterative inpainting starting from an initial 64m×64m area,
and perform a depth-first search on the updated lane graph at every inpainting
step. ‘Hard’ routes correspond to selecting the the next point to inpaint from
to be the endpoint reachable with the most new turns, and ‘easy’ routes are
generated from endpoints with the fewest turns. We evaluate on route lengths
of 100m (with a simulation time of 30 seconds) and 500m (150 seconds). We
consider both ‘easy’ and ‘hard’ traffic densities: ‘easy’ is a single sample, and
‘hard’ is the scene with the largest number of agents among 8 DiT samples.

Metrics. We evaluate the Planner Failure Rate (PFR) in SLEDGE using
PDM-Closed [12]. This is the winner of the 2023 nuPlan challenge, and the state
of the art for motion planning in the short, 15 second scenarios possible with
existing data-driven simulators. The planner ‘fails’ if it achieves less than 20%
of the route’s total progress, goes in the wrong driving direction for more than
6m, goes off-road, or causes an at-fault collision. We also measure the #Turns
and #Agents, which are proxies of the difficulty of the route and traffic.

Results. We show our results in Table 3. Importantly, we note that setting up an
evaluation with SLEDGE only requires a 3GB download of our DiT-L checkpoint
for the Lane & Agent mode, and an additional 1GB download of the nuPlan maps
for the Lane → Agent mode, in contrast to the 2TB of logs needed to set up
nuPlan. When using easy routes and traffic, we observe similar PFRs for both
replay-based and generative simulation despite this large compression factor. For
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Table 3: Simulation of PDM-Closed in SLEDGE. Our simulator offers control
over the route length, difficulty and traffic density. In several settings, we present new
challenges for the existing state-of-the-art, leading to high failure rates of over 40%.

Task → Lane → Agent Lane & Agent

Length → 100 meters 500 meters 100 meters 500 meters

Routes Traffic Turns Agents PFR Turns Agents PFR Turns Agents PFR Turns Agents PFR

Replay 0.89 57.40 0.06 3.29 102.34 0.26 - - - - - -

Easy Easy 0.89 44.61 0.07 3.29 125.23 0.25 0.61 27.30 0.22 2.22 110.51 0.39
Hard 56.44 0.11 167.47 0.39 0.57 39.11 0.20 2.30 173.91 0.44

Hard Easy 1.18 44.66 0.14 4.20 128.79 0.28 1.23 27.14 0.29 3.66 107.11 0.45
Hard 57.65 0.11 170.87 0.44 1.07 39.03 0.30 3.82 169.66 0.49

replay, we observe over a 4× rise in PFR from 0.06 to 0.26 when extending the
route from 100m to 500m. These are primarily due to PDM-Closed’s inability
to make lane changes or overtake slow vehicles, which are important planning
behaviors that are not strongly penalized on current benchmarks like Val14 [12].
In all settings, switching to hard routes increases the number of turns, which
is more challenging than straight driving and in turn deteriorates the planning
performance. In the most challenging settings with hard routes and traffic, the
PFR increases to over 40%. We visualize some snapshots of states from 100m
SLEDGE simulations in Fig. 1. Our supplementary video contains clips from
such reactive simulations, where we highlight the weaknesses of PDM-Closed
that were not sufficiently penalized in prior benchmarks.

5 Conclusion

We present SLEDGE, a generative simulator for vehicle motion planning based
on latent diffusion. We conduct several experiments to show that it is more
realistic, compact, controllable, and diverse than other generative and replay-
based approaches. Additionally, we establish several baselines and metrics for
the generative simulation task. We hope our work can lay the foundation for
accelerating progress in data-driven simulation and vehicle motion planning.

Limitations. Evaluating simulators is hard. We provide metrics for the lane
graph generation sub-task, and preliminary experiments on testing rule-based
planning, but using the simulator for other downstream tasks, such as reinforce-
ment learning, will be important to showcase its full potential. For efficiency,
we use a relatively small FOV and simulation radius, and a simplistic lane rep-
resentation consisting of only the centerline (assuming constant lane widths).
These issues could be alleviated by further scaling of our model and compute.
However, like other diffusion models, the compute requirements of our approach
are already high. We see value in improving the efficiency of SLEDGE through
relevant techniques for accelerating diffusion models [27,28,31,40].
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