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1 ARCHITECTURE DETAILS

In this section, we provide additional details regarding the
multi-scale feature fusion component of the TransFuser and
the low-level PID controller that converts waypoints to steer,
throttle, and brake of the vehicle.

1.1 Multi-Scale Feature Fusion

TransFuser takes in RGB images and a LiDAR BEV repre-
sentation as inputs and processes them with two RegNetY-
3.2GF [1] modules respectively. It uses several transformers
for the fusion of intermediate feature maps between both
modalities. For the camera input of resolution 160 × 704
pixels, the RegNet module produces intermediate feature
maps of dimensions 40×176×72, 20×88×216, 10×44×576
and 5 × 22 × 1512 in different RegNet blocks. For the
LiDAR input of resolution 256 × 256 pixels, the RegNet
module produces intermediate feature maps of dimensions
64× 64× 72, 32× 32× 216, 16× 16× 576 and 8× 8× 1512
in different RegNet blocks. Since processing feature maps
at high spatial resolutions is computationally expensive, we
downsample higher resolution feature maps from the early
encoder blocks using average pooling to a fixed resolution
of 5 × 22 for the camera and 8 × 8 for the LiDAR before
passing them as inputs to the fusion transformer.

Next, we describe the fusion mechanism between the
RGB and LiDAR BEV feature maps. The height and width
channels of the RGB and LiDAR BEV feature maps are
collapsed into one dimension and stacked together to form
a tensor of size (8 ∗ 8 + 5 ∗ 22)× 72/216/576/1512 for the 4
different fusion resolutions. This tensor is passed as input to
the transformer, which outputs a feature of the same dimen-
sion. It is then reshaped back into 2 tensors of dimension
5×22×72/216/576/1512 and 8×8×72/216/576/1512 each
for the camera and LiDAR branches. Each of these 2 tensors
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is then upsampled using bilinear interpolation to match the
original feature resolution. They are then combined with the
existing feature maps via element-wise summation. We pass
the fused features back into the feature extraction branches
since this provides the deeper RegNet layers access to the
global context of the 3D scene encoded in the earlier layers.
After the final fusion layer, we use 1 × 1 convolution to
reduce the number of features to 512 so that we can keep
the rest of the network the same, independent of the chosen
vision architecture, which can have varying channel dimen-
sions. The resulting 512-dimensional feature vector output
from both the image and LiDAR BEV stream is combined
via element-wise summation. This 512-dimensional feature
vector constitutes a compact representation of the environ-
ment which incorporates global contextual reasoning.

1.2 PID Controller

To convert waypoints to vehicle controls, we use two PID
controllers. This process is summarized in Algorithm 1.
We first compute the T − 1 vectors between waypoints of
consecutive time-steps, with T = 4 in our configuration.
The longitudinal controller (LonPID in Algorithm 1) takes
in a weighted average of these vectors and tries to match
the vehicle velocity v to the desired velocity γ as much as
possible. We find the weights λ = {1, 0, 0}, for the T − 1
vectors, prioritizing the closest pair of waypoints, give the
best empirical results. The lateral PID controller (LatPID in
Algorithm 1) orients the vehicle along the aim direction α
which is computed as the orientation of the midpoint of w1

and w2. Each controller has 3 gain parameters, which are
tuned on a subset of our training routes. For the longitudinal
controller, we set Kp = 5.0,Ki = 0.5,Kd = 1.0 and for the
lateral controller, we set Kp = 1.25,Ki = 0.75,Kd = 0.3.
Both controllers use a buffer of size 20 to approximate the
integral term as a running average. The other parameters
used are a brake threshold speed βmin and brake speed
ratio βratio, which we tune jointly with the gain parameters,
and set to 0.4 and 1.1 respectively. If the speed is smaller
than 0.01 we set the lateral angle to 0. This is to avoid error
accumulation in the integral while the car is stopped (cars
have to move forward to reduce lateral error).
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Algorithm 1: Generating an action from waypoints.

input : v, {wt}Tt=1; // velocity and
waypoints

output: steer ∈ (−1, 1), throttle ∈ (0, 1), brake ∈
(0, 1); // vehicle control

γ = 0
for t← 1 to T − 1 do

γ +=λt||wt+1 −wt||; // desired velocity

ω = (w1+w2)
2

α = tan−1
(
ω[1]
ω[0]

)
; // aim direction

steer = LatPID(α)
if γ < βmin or γ < vβratio then

throttle = 0
brake = 1

else
throttle = LonPID(γ − v)
brake = 0

2 DATASETS

In this section, we describe our data generation pipeline
with details about the sensor configuration, routes and
scenarios used in the CARLA simulator.

2.1 Sensor Configuration

We use three front cameras with a field of view (FOV) of
120◦ for the RGB image input rotated by −60◦, 0◦ and 60◦

around the upward yaw axis. The cameras are mounted at
a height of 2.3m from the ground level of the ego-vehicle
and located 1.3m in front of the centroid of the ego-vehicle.
We offset the cameras forward by 1.3m to avoid the hood
of the ego-vehicle from occluding a portion of the rendered
images. We extract images from this camera at a resolution
of 960 × 480 pixels. In the preprocessing stage, we crop
the sides of the images to remove image distortions. Finally,
they are concatenated, resulting in a single image width
height 160 and width 704. For the LiDAR point cloud, we
use a ray-cast-based Velodyne 64 LiDAR with an 85m range
and rotation frequency of 10 FPS. The upper FOV of the
LiDAR is set at 10◦ and the lower FOV is set at -30◦. The
LiDAR sensor is mounted at a height of 2.5m from the
ground level of the ego-vehicle and located 1.3m in front
of the ego-vehicle. Since the simulation is running at 20
FPS the sensor is returning either the front or the backside
at each simulation step. We only use the front side of the
LiDAR, since this is where most of the relevant information
is located, and perform action repeat at each second time
step. We further use additional sensors such as IMU to get
the orientation, GPS for localization, and speedometer to get
the current speed of the ego-vehicle.

The CARLA leaderboard client adds independent Gaus-
sian noise with a standard deviation of 50 cm to all 3
GPS axis. This makes the localization of the vehicle (and
consequently of the target position) unreliable. To reduce
this noise, we use a model based denoising algorithm. We
keep a buffer of the last 100 observed GPS positions. At each
time step, we estimate our own expected relative motion

Fig. 1: Histogram of localization error. Error is measured in
absolute meters compared to the ground truth position. The
default GPS signal sent by the simulator is compared with
the position estimated by the denoising algorithm. Data was
collected in a short route where the car waits at a red light
and then performs a left turn.

using a kinematic bicycle model. We add this motion to
all observed GPS points, effectively turning them into an
estimate of the next position. We then average all updated
GPS positions to obtain a Monte Carlo estimate of the true
position. This Monte Carlo estimate has a lower variance
than the original as can be seen in figure Fig. 1.

2.2 Routes and Scenarios

We generate around 3500 training routes in CARLA to train
our models. Each route consists of one unique scenario. A
scenario is defined by a trigger ’transform’ which indicates
the spawn location and the orientation of that scenario in
a particular town. Specifically, we consider Scenarios1 1, 3,
4, 7, 8, 9, and 10 in our training dataset. Since we focus
on safety-critical scenarios, e.g. pedestrians emerging from
occluded regions to cross the road at random locations,
vehicles running red lights, and unprotected turns, we do
not include Scenarios 5 and 6, which involve lane changing.
We also do not include Scenario 2 since it occurs naturally
during the driving in the presence of other dynamic agents.

Scenarios 4, 7, 8, 9, and 10 can only occur at intersections.
We sample all the intersections present in all CARLA town
maps, and extract every possible traversal through these
intersections. We then check for all traversals where the
spawned scenario is valid, and include these for training.
Across the 8 public town maps, we obtain around 2500 such
routes through intersections. The average length of these
routes is 100m.

Scenarios 1 and 3 can occur anywhere on a CARLA
map. Since we have an abundance of intersections in our
dataset due to the other scenarios, we collect data for these
scenarios along curved highways. There are around 500
such routes. The average route length is 400m, and the
scenario is spawned at the middle of the route.

1. https://leaderboard.carla.org/scenarios/

https://leaderboard.carla.org/scenarios/
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Route Town Weather Daytime Length
0 1 MidRain Dawn 1130
1 1 Cloudy Dawn 1014
2 1 Cloudy Morning 893
3 1 HardRain Noon 731
4 1 HardRain Twilight 936
5 1 HardRain Morning 685
6 2 Wet Noon 1010
7 2 Cloudy Night 974
8 2 Cloudy Twilight 820
9 2 WetCloudy Noon 820
10 2 HardRain Sunset 972
11 2 MidRain Night 872

Route Town Weather Daytime Length
12 3 SoftRain Twilight 2303
13 3 MidRain Twilight 1748
14 3 WetCloudy Night 1436
15 3 MidRain Noon 1870
16 3 Wet Night 1869
17 3 HardRain Dawn 1556
18 4 WetCloudy Twilight 2069
19 4 SoftRain Dawn 2058
20 4 SoftRain Night 1862
21 4 HardRain Night 1863
22 4 Cloudy Sunset 2319
23 4 Wet Sunset 2440

Route Town Weather Daytime Length
24 5 MidRain Sunset 2101
25 5 SoftRain Noon 1554
26 5 SoftRain Morning 1271
27 5 WetCloudy Morning 1018
28 5 MidRain Morning 1071
29 5 WetCloudy Dawn 1651
30 6 SoftRain Sunset 2525
31 6 Wet Dawn 1859
32 6 Wet Morning 2842
33 6 Wet Twilight 2270
34 6 Cloudy Noon 1442
35 6 WetCloudy Sunset 1760

TABLE 1: Longest6 Routes. Environmental condition and length (in meters) of each of the 36 evaluation routes.

Fig. 2: Visualization of Longest6 Routes. We show the 36 unique routes on their corresponding town map. The starting
point is shown in red, the destination in green and target points along the route are highlighted in blue.

Finally, since changing lanes is challenging, we extracted
curved routes similar to those with Scenarios 1 and 3, but
include lane changes along the route instead of the CARLA

scenario. There are around 500 lane change routes with an
average length of 400m. Each such route has 2 lane changes,
one at the beginning and one at the half-way point.
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2.3 Longest6 Routes
Our proposed evaluation setting consists of 36 routes from
6 different CARLA towns (Town01-Town06). Each route has
a unique environmental condition obtained by combining
one of 6 weather conditions (Cloudy, Wet, MidRain, Wet-
Cloudy, HardRain, SoftRain) with one of 6 daylight condi-
tions (Night, Twilight, Dawn, Morning, Noon, Sunset). We
provide details regarding the weather, daytime, and length
of the 36 evaluation routes in Table 1 and visualizations of
the routes in Fig. 2.

3 BASELINES

In this section, we describe Late Fusion and Geometric
Fusion in detail.

3.1 Late Fusion
We implement a version of our architecture where the RGB
image and the LiDAR BEV streams are processed indepen-
dently of each other. The image features are extracted using
RegNetY-3.2GF, which is initialized from ImageNet pre-
trained weights, whereas the LiDAR BEV features are ex-
tracted using RegNetY-3.2GF, which is trained from scratch.
These features are then combined via element-wise summa-
tion and passed to the waypoint prediction network. This
architecture is equivalent to removing the transformer mod-
ules from the TransFuser. This is similar to the encoder of [2]
which also processed the image feature and LiDAR features
separately. While Sobh et al. [2] used a learned controller
module conditioned on discrete navigational commands
(similar to CILRS), we use our auto-regressive waypoint
prediction network since it performs better empirically.

3.2 Geometric Fusion
We implement a multi-scale geometry-based fusion method,
inspired by [3], [4], involving both image-to-LiDAR and
LiDAR-to-image feature fusion. We unproject each 0.125m
× 0.125m block in our LiDAR BEV representation into 3D
space, resulting in a 3D volume. Then, we randomly select 5
points from the LiDAR point cloud lying in this 3D volume
and project them into the image space. We aggregate the
image features of these points via element-wise summation
before passing to a 3-layer MLP, consisting of 512 units each.
The output of the MLP is then combined with the LiDAR
BEV feature of the corresponding 0.125m × 0.125m block at
multiple resolutions throughout the feature extractor.

Similarly, for each image pixel, we randomly select 5
points in the LiDAR point cloud which project to that pixel
in image space, then project these points into the BEV space,
aggregate their features via element-wise summation before
passing to a 3-layer MLP, consisting of 512 units each. The
output of the MLP is then combined with the features
of the corresponding image pixels at multiple resolutions
throughout the feature extractor.

Similar to the TransFuser, we downsample the higher
spatial resolution feature maps to a fixed resolution of 5 ×
22 for the camera and 8 × 8 for the LiDAR branch. After the
features are combined, they are upsampled to the original
resolution using bilinear interpolation, before being fed into
the individual feature extractors of the two modalities. This

Method LiDAR? Map? DS ↑ RC ↑ IS ↑
CaRINA [5] X - 4.56 23.80 0.41
CIRLS [6] - - 5.37 14.40 0.55
LBC [7] - - 8.94 17.54 0.73

CaRINA [5] X X 15.55 40.63 0.47
Pylot [8] X X 16.70 48.63 0.50

TF CVPR [9] X - 16.93 51.82 0.42
AIM-MT [10] - - 19.38 67.02 0.39

NEAT [10] - - 21.83 41.71 0.65
MaRLn [11] - - 24.98 46.97 0.52
Late Fusion X - 26.07 64.67 0.47
WOR [12] - - 31.37 57.65 0.56
TF+ [13] X - 34.58 69.84 0.56

GRIAD [14] - - 36.79 61.86 0.60
Geometric Fusion X - 41.70 87.85 0.47
Latent TF (Ours) - - 45.20 66.31 0.72

TF (Ours) X - 61.18 86.69 0.71
LAV [15] X - 61.85 94.46 0.64

TABLE 2: CARLA Leaderboard Snapshot. The LiDAR and
Map column indicate whether a submission uses a LiDAR
sensor or an HD map. Methods are ranked by the main
metric, driving score (DS). Additionally, we report the route
completion (RC) and infraction score (IS).

baseline is equivalent to replacing the transformers in our
architecture with geometry-based feature projections.

4 ADDITIONAL RESULTS

In this section, we provide additional results and analysis to
supplement our findings in the main paper.

4.1 Leaderboard Snapshot
For completeness, we report a snapshot of all publicly
available methods with a report on the CARLA leaderboard
in Table 2, taken on 24.05.2022. If a method has multiple
submissions in the same setting, we report the best result.
Progress on the CARLA leaderboard has been rapid over
the last years. It is important to note that the leaderboard
gives maximum flexibility to researchers on how to solve
the problem of self-driving. It only places restrictions on the
maximum numbers of sensors used. As a result, evaluated
systems vary among many axes: the amount of training
data, the kind of training labels, sensors inputs, pre-training,
training method, run time, architecture and engineering.
The progress of evaluated systems often comes from im-
provements along multiple axes. While comparisons can
only be made at a system level in this setting the resulting
newer systems do drive much better. Methods like CILRS
and LBC were popular baselines [9], [10], [12], [16] in
the past. Their performance does get dwarfed now, so we
encourage future work to compare to more recent baselines.

4.2 Latent TransFuser
To investigate the importance of using transformers to fuse
the BEV branch with the perspective branch in Latent
TransFuser we conduct an ablation where we replace the
transformers with simple MLPs. Specifically, we flatten the
same input features as the transformers use and process
them with 2 layer MLPs with a hidden dimension of 100 and
a ReLU activation function. We use one MLP for each fusion
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Parameter Value DS ↑ RC ↑ IS ↑
Fusion Method MLP 38.66 86.24 0.47

Default Configuration Worst Seed 49.68 91.97 0.54
Best Seed 50.48 92.28 0.55

TABLE 3: Latent TransFuser Ablation. We conduct an abla-
tion where we replace the transformers in Latent TransFuser
with 2 layer MLPs. Fusing the BEV branch with the perspec-
tive image branch using transformers leads to a significant
improvement in all three metrics.

direction at each of the 4 resolutions, giving 8 in total. The
result is shown in Table 3. Using Transformers to fuse the
perspective and BEV branch leads to a clear improvement
of more than 10 DS.

4.3 Attention Map Visualizations
As described in Sec 4.10 of the main paper, we visualize the
attention maps from the final attention layer for each head
for each transformer. Specifically, we consider intersection
scenarios from Town03 and Town05 and examine the top-
5 attention weights for the tokens in image feature map
and LiDAR feature map. From the visualizations in Fig. 7
and Fig. 8, we observe a common trend in attention maps:
TransFuser attends to areas near vehicles and traffic lights
at intersections, albeit at a slightly different location in the
image and LiDAR feature maps.

In addition, we also provide statistics on cross-modal
attention for image and LiDAR feature tokens. We report
the % of tokens for which atleast one of the top-5 attended
tokens belong to the other modality for each of the 4 trans-
formers (T1, T2, T3, T4) in Table 5 of the main paper. The
results indicate distinct behavior for different transformers.
Next, we provide attention map visualizations for each
transformer to study their behavior in detail.
T1 exhibits significant image to LiDAR cross-attention but
negligible LiDAR to image cross-attention. Moreover, we
observe that for image tokens, T1 always attends to nearly
the same location in the LiDAR, i.e., just in front of the ego-
vehicle as shown in Fig. 3.
T2 shows similar behavior to T1 in terms of negligible
LiDAR to image cross-attention. However, it differs from T1
in image to LiDAR cross-attention, i.e., it attends to different
regions in the LiDAR input (Fig. 4), not just in front of the
ego-vehicle. We also observe significant image to image self-
attention in head 3 and have provide 2 such visualizations
in Fig. 5.
T3 exhibits strong LiDAR to image cross-attention, as op-
posed to T1 and T2 which have negligible LiDAR to image
cross-attention. However, it always attends to a region near
the bottom of the image.
T4 shows extensive cross-attention for both image and
LiDAR tokens, which indicates that it is effective in ag-
gregating information across the two modalities. We have
provided its visualizations in Fig. 7 and Fig. 8.
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Fig. 3: T1 Cross-Modal Attention Maps. For the red query token in the image feature map, we show the top-5 attended
tokens in green. For image tokens, T1 always attends to the region just in front of the ego-vehicle in the LiDAR input.

Fig. 4: T2 Cross-Modal Attention Maps. For the red query token in the image feature map, we show the top-5 attended
tokens in green and highlight the presence of vehicles in the LiDAR point cloud in yellow T2 attends to different regions
in the LiDAR input, as opposed to T1.
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Fig. 5: T2 Self-Attention Maps. For the red query token in the image feature map, we show the top-5 attended tokens in
green. T2 exhibits significant image to image self-attention in head 3.
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Fig. 6: T3 Cross-Modal Attention Maps. For the red query token in the LiDAR feature map, we show the top-5 attended
tokens in green. In contrast to T1 and T2, T3 shows strong LiDAR to image cross-attention but it always attends to a region
at the bottom of the image.
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Fig. 7: T4 Attention Maps. For the red query token in the image feature map, we show the top-5 attended tokens in green
and highlight the presence of vehicles in the LiDAR point cloud in yellow. TransFuser attends to areas near vehicles and
traffic lights at intersections.
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Fig. 8: T4 Attention Maps. For the red query token in the LiDAR feature map, we show the top-5 attended tokens in green
and highlight the presence of vehicles in the LiDAR point cloud in yellow. TransFuser attends to areas near vehicles and
traffic lights at intersections.


