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Abstract. We present a novel semantic 3D reconstruction framework
which embeds variational regularization into a neural network. Our net-
work performs a fixed number of unrolled multi-scale optimization it-
erations with shared interaction weights. In contrast to existing varia-
tional methods for semantic 3D reconstruction, our model is end-to-end
trainable and captures more complex dependencies between the seman-
tic labels and the 3D geometry. Compared to previous learning-based
approaches to 3D reconstruction, we integrate powerful long-range de-
pendencies using variational coarse-to-fine optimization. As a result, our
network architecture requires only a moderate number of parameters
while keeping a high level of expressiveness which enables learning from
very little data. Experiments on real and synthetic datasets demonstrate
that our network achieves higher accuracy compared to a purely varia-
tional approach while at the same time requiring two orders of magnitude
less iterations to converge. Moreover, our approach handles ten times
more semantic class labels using the same computational resources.

1 Introduction

Estimating 3D geometry from images is one of the long-standing goals in com-
puter vision. Despite its long history, however, many problems remain unsolved.
In particular, ambiguities arising from textureless or reflective regions, viewpoint
changes, and image noise render the problem difficult. Powerful priors are there-
fore needed to robustly solve the task. One source of prior knowledge which can
be exploited are semantics and their interaction with 3D geometry. Consider an
urban scene, for example. While the ground is often flat and horizontal, building
walls are mostly vertical and located on top of the ground. The availability of
reliable semantic image classification methods has therefore recently driven the
development of methods that jointly optimize geometry and semantics in 3D.

In their pioneering work, Häne et al. [10,12,13] proposed a method for joint
volumetric 3D reconstruction and semantic segmentation using depth maps and
semantic segmentations as input. They formulate the task as a variational multi-
label problem, where each voxel is labeled by either one of the semantic classes
or free space. Wulff shapes [28] serve as convex anisotropic regularizers, mod-
eling the relationship between any two neighboring voxel labels. While impres-
sive semantic reconstruction results have been demonstrated, the priors used
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Input Cost Häne et al. [12] (50 iters.) Ours (50 iters.)

Input Cost TV-L1 (1K iters.) Ours (50 iters.)

Fig. 1: Semantic 3D reconstruction results. We learn semantic and geometric
neighborhood statistics to handle large amounts of noise, outliers, and missing data.
Compared to traditional TV-L1 and the state of the art [12], our approach requires
significantly less iterations and memory. Besides, it handles much larger label sets.

are hand-tuned and very simplistic, thus not able to fully capture the complex
semantic and geometric dependencies of our 3D world. Furthermore, inference
in those models requires thousands of iterations for convergence, limiting the
applicability of these methods.

This work revisits the problem of jointly estimating geometry and semantics
in a multi-view 3D reconstruction setting as shown in Fig. 1. Our approach com-
bines the advantages of classical variational approaches [10, 12, 13] with recent
advances in deep learning [32,39], resulting in a method that is simple, generic,
and substantially more scalable than previous solutions. In addition, our ap-
proach allows for automatically learning 3D representations from much fewer
training data than existing learning-based solutions. As a result, our approach
runs orders of magnitude faster than variational methods while producing better
reconstructions. Moreover, memory requirements are significantly reduced allow-
ing for larger label spaces. In summary, we make the following contributions:
• We present a novel framework for multi-view semantic 3D reconstruction

which unifies the advantages of variational methods with those of deep neural
networks, resulting in a simple, generic, and powerful model.
• We propose a multi-scale optimization strategy which accelerates inference,

increases the receptive field, and allows long-distance information propagation.
• Compared to existing variational reconstruction methods [13], our approach

learns semantic and geometric relationships end-to-end from data. Compared
to fully convolutional architectures, our model is lightweight and can be trained
from as little as five scenes without overfitting. Besides, formerly required
manual and scene-dependent parameter tuning is no longer necessary and all
meta-parameters, such as step sizes, are learned implicitly.
• Our experiments demonstrate that our method is able to achieve high qual-

ity results with only 50 unrolled optimization iterations compared to several
thousands of iterations using traditional variational optimization.
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Method
training model model

runtime
manual

#labels
semantic

scenes complexity parameters tuning interactions

Learned [6,8, 9, 36,38,40] > 5K high millions minutes • > 40 multi-scale

Variational (TV) [19,31,41] > 0 low none seconds • > 40 none

Variational (Wulff-shape) [5, 10,12] > 1 moderate hundreds hours • < 10 single-scale

Learned-Variational [Ours] > 5 low thousands seconds • > 40 multi-scale

Table 1: Qualitative comparison of semantic reconstruction methods. Quan-
tities are approximate and categorized into positive, neutral, negative.

2 Related Work

Our work builds on a variety of computer vision and machine learning works.
This section and Table 1 provide an overview of the most relevant prior works.

Semantic 3D Reconstruction. Ladicky et al. [22] presented a model for
joint semantic segmentation and stereo matching. They considered simple height-
above-ground properties as constraints between semantics and 3D geometry.
Kim et al. [17] proposed a conditional random field (CRF) model for labeling
the 3D voxel space based on a single RGB-D image and solved the CRF using
graph cuts. Joint volumetric 3D reconstruction and semantic segmentation in
a multi-view setting has been tackled by Häne et al. [12, 13] using variational
optimization. Extensions to this seminal work consider object-class specific shape
priors [10,23], scalable data-adaptive data structures [1], or larger semantic label
spaces [5]. Kundu et al. [21] define a conditional random field to jointly infer
semantics and occupancy from monocular video sequences.

A common drawback of these methods is that employed priors are either
hand-crafted or not rich enough to capture the complex relationships of our 3D
world. We propose to combine the advantages of variational semantic multi-view
reconstruction with deep learning in an end-to-end trainable model. This leads
to more accurate results and faster runtime as hyperparameters, such as the step
size, are learned during training. Furthermore, we propose a novel multi-scale
optimization scheme which allows to quickly propagate information across large
distances and effectively increases the receptive field of the regularizer.

Variational Regularization. Variational energy minimization methods led
to great advances when dealing with noise and missing information. A variety
of regularizers have been studied in the literature [2–4,27, 28, 42] in the context
of different vision problems. Although these regularizers haven proven effective
for low-level vision problems [3,35] and 3D surface reconstruction [12,19,31,41],
they are limited in their expressiveness and do not fully capture the statistics of
the underlying problem. In this paper, we propose a more expressive variational
regularizer which jointly reasons at multiple scales and can be learned from data.

Learned Regularization. Several works combine the benefits of variational
inference and deep learning. Early approaches combine proceed in a sequential
manner by either learning the data costs for subsequent energy minimization [43]
or by further regularizing the network output [14]. In contrast, several very re-
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cent works integrate variational regularization directly into neural networks and
apply them to 2D image processing tasks, including depth super-resolution [32],
denoising [18,25,39], deblurring [18], stereo matching [39] and image segmenta-
tion [30]. Typically, the individual optimization steps are unrolled and embedded
as layers into a neural network. Our work builds upon these ideas and tailors
them to the multi-view semantic 3D reconstruction problem using a novel multi-
scale neural network architecture for joint geometric and semantic reasoning.

Learned Shape Priors. Recently, deep learning based approaches have been
proposed for depth map fusion [15], 3D object recognition [16, 24], or 3D shape
completion [6, 8, 9, 36, 38, 40] using dense voxel grids as input. As all these ap-
proaches rely on generic 3D convolutional neural network architectures, they re-
quire a very large number of parameters and enormous amounts of training data.
In contrast, our approach is more light-weight as it explicitly incorporates struc-
tural constraints via unrolled variational inference, therefore limiting the num-
ber of parameters needed. Although there are recent efforts to change the spatial
scalability of these approaches using data-adaptive structures [11,33,34,37], cur-
rent results are mostly limited to single objects or simple scenes and consider
relatively small resolutions. However, none of these works have considered the
semantic multi-view 3D reconstruction task which is the focus of this paper.
Furthermore, our approach is fully convolutional and thus also scales to very
large scenes.

3 Method

Using a generic 3D convolutional neural networks for semantic 3D reconstruction
requires enormous amounts of memory and training data. In this paper, we
therefore propose a more light-weight alternative which embeds a multi-label
optimization task into the layers of a semantic 3D reconstruction network. We
first introduce our multi-scale network architecture in Section 3.1, followed by a
detailed description of the embedded variational problem in Section 3.2, and a
description of the loss function we use for training the model in Section 3.3.

3.1 Network Architecture

The proposed network architecture for semantic 3D reconstruction is illustrated
in Fig. 2. The input to our network is a set of semantically labeled depth maps
aggregated into a 3D volume of truncated signed distance functions (TSDFs).
More specifically, we follow [12] and accumulate per label evidence, e.g., using
depth maps from stereo and corresponding semantic image segmentations. As in
traditional TSDF fusion, we trace rays from every pixel in each depth map to
determine which voxels are occupied or empty. However, instead of using a fixed
additive cost, we scale it using the semantic scores at the corresponding pixel.
The output of our network is a volumetric semantic 3D reconstruction, where
every voxel has one of the semantic class labels or the free space label.
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Fig. 2: Proposed network architecture. While the boxes represent data entities, the
blue circles represent concurrent primal-dual (PD) processing steps with the iteration
number as subscript. The weightsW j

i indicate the information flow (adjoint, primal and
dual variables are omitted for brevity). The graph shows an example of our multi-scale
optimization for three scales, however, their number is flexible.

Our network comprises three components (see Fig. 2): an encoder (yellow),
the unrolled primal dual optimization layers (blue), and a decoder (orange). Our
method reasons at multiple scales which allows for (i) modeling semantic inter-
actions at different scales and (ii) propagating information quickly over larger
distances during inference, e.g., to complete missing data. We found that (i)
results in higher accuracy while (ii) leads to much faster convergence compared
to standard solvers [12, 42]. We now describe the three network components on
a high level before providing a detailed derivation in Section 3.2.

Data Cost Encoder. At every voxel, the data cost is encoded by TSDFs
computed via fused depth maps (e.g., from stereo or Kinect) and semantic scene
segmentations (e.g., obtained from a semantic segmentation algorithm). In the
first stage of our network, we pre-process this input using a shallow multi-scale
neural network with 3 layers. The encoder serves several purposes: first, it nor-
malizes the influence of the different semantic classes with respect to each other
and the data term as a whole. Second, it helps in reducing low-level noise in
the input. Finally, our multi-scale optimization requires down-sampling of the
data cost which we learn automatically using separate encoders per scale. More
concretely, starting at the highest resolution, we process the input with a resid-
ual unit that has two pairs of convolution-ReLU operations followed by a final
convolution without activation. The encoded input is then down-sampled to the
next scale using average pooling, followed by the next encoding stage.

Unrolled Multi-Grid Primal Dual. Instead of processing the input with
a high-capacity 3D convolutional neural network, we propose to exploit varia-
tional optimization for semantic 3D reconstruction as a light-weight regularizer
in our model. The advantage of such a regularizer is that it requires relatively
few parameters due to temporal weight sharing while being able to propagate
information over large distances by unrolling the algorithm for a fixed number
of iterations and propagating information across multiple scales. More specifi-
cally, we unroll the iterations of the primal-dual (PD) algorithm of Pock and
Chambolle [29], tailored to the multi-label semantic 3D reconstruction task, and
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Isotropic Regularization Anisotropic Regularization

TV-Norm [4] Weighted TV [2] Anisotr. TV [27] Wulff-Shape [42]
(circle) (scaled circle) (ellipsoid) (convex shape)

φx(u) = φx(u) = φx(u) = φx(u) =
λ‖∇u(x)‖2 λg(x)‖∇u(x)‖2 λ

√
∇uᵀDx∇u λmaxξ∈Wφ

〈ξ,∇u〉

Fig. 3: Overview of hand-crafted regularizers that have been used in volumetric
3D reconstruction, e.g. weighted TV-Norm: [19, 41], Anisotropic TV: [20, 31], Wulff-
shapes: [1, 12]. The polar plots show the smoothness cost φx(·) for different gradient
directions ∇u. The right two cost functions are aligned to a given normal n. We learn
these regularization functions from the training data.

parameterize it by replacing the gradient operator with matrices which model
the interaction of semantics and geometry at multiple scales for efficient label
propagation. Each PD update equation defines a layer in the network, as illus-
trated with the blue circles in Fig. 2. To learn the parameters of the semantic
label interactions and the hyper-parameters of the optimization algorithm, we
back-propagate their gradients through the unrolled PD algorithm. A detailed
derivation of our algorithm is presented in Section 3.2.

Probability Decoder. Similar to the proposed encoding stage, we also decode
the obtained solution after the final PD iteration. The main goal here is to
smooth and increase contrast, enabling stronger decisions on the final labeling
and thereby improving accuracy. Our decoder takes the primal variable after the
final iteration of the variational optimizer and feeds it into a residual unit with
two pairs of convolution-ReLU operations followed by a final convolution with
softmax activation for normalization.

3.2 Learning Variational Energy Minimization

This section describes the multi-grid primal-dual optimization algorithm which
we leverage as light-weight, learned regularizer in our network. The traditional
variational approach to volumetric 3D reconstruction [1, 10, 12, 13, 19, 20, 31]
minimizes the energy

minimize
u

∫
Ω

(
φx(u)︸ ︷︷ ︸

regularization

+ fu︸︷︷︸
data fidelity

)
dx subject to ∀x∈Ω :

∑
`
u` (x)=1

(1)

in order to find the best labeling u : Ω → [0, 1]|L| that assigns each point in
space a probability for each label ` ∈ L. The constraint in (1) ensures normalized
probabilities across all labels ` ∈ L at every point x ∈ Ω. The data cost term
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f : Ω → R|L| aggregates the noisy depth measurements of likely surface locations
and is usually modeled as a truncated signed distance function (TSDF). To deal
with noise, outliers, and missing data, a regularization term is typically added
to the energy functional to obtain a smoother and more complete solution. The
simplest choice for regularization is the total variation (TV) norm [2,4] φx(u) =
λg(x)‖∇u(x)‖2 which corresponds to minimizing the surface area of a 3D shape
[19]. In most cases the weight function g : Ω → R≥0 encodes photoconsistency
measures to align the surface with the input data. In many works this model has
been extended to better deal with fine geometric details [20, 27, 31] or multiple
semantic labels and directional statistical priors [12, 42]. Figure 3 provides an
overview of various regularizers which have been proposed for 3D reconstruction.
Notably, all these regularizers are convex and a global minimizer of Eq. (1) can
be computed efficiently [3]. These hand-crafted regularizers are usually designed
for tractability during optimization, but are not powerful enough to represent
the true statistics of the underlying problem [18].

Proposed Energy. To overcome the limitations of hand-crafted regulariz-
ers, we follow Vogel and Pock [39] and generalize the gradient operator in
the regularizer to the general matrix W , i.e. φx(u) = ‖Wu‖2. Since we are
interested in modeling the complete space of directional and semantic inter-
actions in the 3D multi-label setting, we choose to use a 6-dimensional ma-
trix W ∈ R2×2×2×|L|×|L|×3 for our task. This matrix computes gradients us-
ing forward-backward differences (modeled by 2 × 2 × 2) and can represent
higher-order interactions between any combination of semantic labels (modeled
by |L|×|L|) in any spatial direction (modeled by last dimension 3). For W = ∇,
we obtain a standard TV regularizer. Note that in contrast to the Wulff shapes
used by [12], representing W directly leads to a large reduction in the number of
parameters and consequently in memory as evidenced by our experimental eval-
uation. In this work, we aim to learn the weights of this matrix jointly with the
other network parameters considering the following energy minimization prob-
lem:

minimize
u

∫
Ω

(
‖Wu‖2 + fu

)
dx subject to ∀x∈Ω :

∑
`
u` (x)=1 (2)

Optimization. To minimize the convex energy in Eq. (2), we use a first-order
primal-dual (PD) algorithm [3] for which the problem is first transformed into a
saddle point problem. We introduce the dual variable ξ to replace the TV-norm
with its conjugate. We also relax the constraints in Eq. (1) by introducing the
Lagrangian variable ν. Then, the corresponding discretized saddle point energy

minimize
u

max
‖ξ‖∞≤1

〈Wu, ξ〉+ 〈f, u〉+ ν
(∑

`
u` − 1

)
(3)

can be minimized using the update equations

1. νt+1 = νt+σ
(∑

`
ūt` − 1

)
3. ut+1 =Π[0,1]

[
ut−τ(W ∗ξt+1+f + νt+1)

]
2. ξt+1 = Π‖·‖≤1

[
ξt + σWūt

]
4. ūt+1 =2ut+1 − ut (4)



8 I. Cherabier, J.L. Schönberger, M.R. Oswald, M. Pollefeys, A. Geiger

at time t with a total of T iterations, W ∗ the adjoint of W , step sizes τ and
σ and projections Π[0,1] and Π‖·‖≤1, see [3]. Note that the operations Wū and
W ∗ξ convolve the kernel W with the variables ξ and ū. This enables efficient
integration of these operations into a CNN with shared weights across the primal
and dual updates and across the different iterations of the algorithm. We embed
this algorithm into our network architecture by unrolling it for a fixed number of
iterations. The input to the unrolled PD network is the pre-processed data cost
term f provided by the encoder and the output is the optimized primal variable
u which is passed to the decoder for post-processing.

Optimization Unrolling. One pass on the updates in Eq. (4) corresponds to
one PD iteration. Similar to [32], we unroll the PD algorithm for a fixed number
of iterations. Each PD update equation defines a layer in the network, as illus-
trated with the blue circles in Fig. 2. This unrolled PD algorithm constitutes
the core of the network that we use to learn the label interactions represented
by W . Note that the step sizes σ and τ that appear in Eq. (4) influence the
speed of convergence of the PD algorithm. These parameters are typically se-
lected manually or by preconditioning [29]. In this work, we learn the step sizes
automatically by factoring them into W and thereby eliminating them from the
update equations, contributing to fast convergence of the proposed algorithm.

Multi-Scale Optimization. In the algorithm discussed above, information
only propagates between neighboring voxels, generally resulting in slow conver-
gence of the optimization. Therefore, label interactions are relatively low-level
and cannot capture more complex statistics arising at larger scales. While it is
easy to enlarge the spatial extent of the matrix W , a drawback of näıvely in-
creasing W is the cubic increase in the number of parameters which slows down
training and makes the model prone to overfitting. Hence, we consider an al-
ternative in this paper: instead of increasing the size of W , we simultaneously
consider the scene at multiple scales.

More specifically, at each PD iteration, information is passed from the lower
to the higher scales, as shown in Fig. 2. This enables long-range propagation of
information and recovery of fine details while at the same time allowing faster
back-propagation of gradients during training. Besides, inference runs in parallel
at different scales, which, in practice, results in another speedup of the optimiza-
tion as compared to traditional coarse-to-fine approaches, where the optimization
must wait for coarser scales to converge. Note that even with different regular-
izer matrices W for each scale, the increase in the number of parameters is at
most linear in the number of scale levels. Thus, the increase is sub-linear in the
receptive field size compared to the cubic increase of the single-scale approach.

In our network, information is propagated via the matrix W . Thus, we lift
our model to multiple scales by modifying update steps 2 and 3 in Eq. (4) to

ξt+1
s = Π‖·‖≤1

[
ξts + σ

(
W s
s ū

t
s + Uss+1W

s
s+1ū

t
s+1

)]
(5)

ut+1
s = Π[0,1]

[
uts + τ

(
W s∗
s ξt+1

s + Us∗s+1W
s∗
s+1ξ

t+1
s+1

)
+ τ

(
νt+1
s − f

) ]
(6)
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where s is one of S scale levels (lower level = higher resolution) and Uss+1 up-
samples from s+1 to s. W s

s corresponds to the regularizer at level s, while W s
s+1

handles the transfer of information from level s+ 1 to the next finer level s.

3.3 Loss Function

We train the network architecture in Fig. 2 using supervised learning. Towards
this goal, we define the training objective as the semantic reconstruction loss be-
tween our computed solution u and a given ground truth labeling û. Typically,
this loss is defined as the categorical cross entropy. However, several important
modifications to the standard definition of this loss are necessary in practice as
the ground truth is often not completely observed or labeled. We follow common
practice and introduce a separate label ˜̀ for unlabeled regions. Unobserved re-
gions are modeled by a uniform distribution UL in label space. To make the loss
function agnostic to unobserved areas in the ground truth and to not penalize
our solution in unlabeled regions, we use the following weighted loss function

H(u, û) = −
∫
Ω

w(x)u(x) log û(x) dx (7)

w(x) = ∆KL(û(x),UL)∆KL(û(x), δ˜̀) (8)

which returns zero if the ground truth at x is not unobserved or unkown. Here,
∆KL denotes the KL-divergence. The first term measures the similarity between
the ground truth and a uniform distribution and the second term the similarity
to a Dirac distribution with center ˜̀. In case the ground truth matches ex-
actly the uniform distribution or it is unlabeled with maximum certainty, this
is equivalent to masking the loss as a hard constraint. However, as shown in the
experiments, we generate ground truth using conventional regularization meth-
ods. As a result, it is beneficial to penalize using a soft constrained loss on the
imperfectly labeled ground truth. Without the proposed weighting, the training
would receive contradicting supervisory signals. Specifically, if the ground truth
is incomplete for a specific class, the loss would encourage reconstruction in the
observed areas whereas a potentially correct labeling in the unobserved parts
would be inadvertently penalized.

4 Results

This section presents our results. We first analyze the memory and runtime
complexity of our method wrt. to the state-of-the-art approach of Häne et al. [12].
Next, we empirically validate our approach in a controlled setting on a synthetic
2D toy dataset Finally, we present results on challenging indoor and outdoor
semantic reconstruction tasks.

4.1 Memory and Runtime Complexity

One of the main advantages of our method over Häne et al. [12] is the significantly
reduced memory complexity. While the approach of Häne et al. has a memory
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GT Noisy TV-L1 Ours

T

S
1 2 3 4 3+E 3+E+D TV-L1

76.83 97.57 98.10 98.34 99.37 99.32 97.73
10

38.58 82.11 87.43 88.74 94.94 95.14 79.50

90.76 98.26 98.85 98.86 99.38 99.41 98.40
20

49.13 88.80 91.42 91.83 95.16 95.23 85.94

97.21 98.99 99.19 99.21 99.20 99.38 98.70
50

74.36 91.56 91.42 93.20 93.57 94.86 88.31

– – – – – – 98.8
1000

– – – – – – 89.2

Learned Shape Priors

Fig. 4: 2D semantic segmentation on synthetic images. Top Left: 3/1200 test
scenes with ground truth (GT), noisy method input and the results of TV-L1 and ours
in comparison. Bottom Left: Reconstruction accurcay for TV-L1 and our method
using different numbers of iterations T (TV-L1 converges in 1000 iterations) and scales
S. Accuracy over all pixels is shown in the first and accuracy only over regions with
missing data cost in the second rows. Right: The plots show label transition costs
between two labels depending on the surface normal. Ours learns more complex cost
functions compared to the hand-crafted ones in Fig. 3. The cost functions have been
rescaled for readability, with the magnitude encoded as color.

complexity of (3 + d)|L| · |Ω| + (1 + d)|L|2|Ω|, ours has a complexity of (3 +

d)|L| · |Ω|+ 3 ·2d|L|2. Here, d is the dimension of Ω, and |L| and |Ω| the number
of labels and voxels. Note that using additional scales in our approach only
marginally increases the amount of memory, since each successive higher scale
has 2d fewer voxels. While their approach maintain dual variables for all label
combinations at each location in the voxel grid, our approach shares this state
for all locations. In practice, for a moderate scene size of |Ω| = 3003 (5003)
voxels with |L| = 40 labels and single-precision floating point data, theirs has
an intractable memory usage of around 668GB (3TB) versus a tractable 24GB
(111GB) for ours. In addition to an improved memory complexity, our approach
is much faster to compute. Compared to the costly calculation of Wulff shape
projections, the convolution operations in our case are much cheaper to compute
and, in practice, are implemented efficiently on GPUs. In summary, our proposed
approach makes it tractable to perform joint semantic 3D reconstruction for both
larger scenes and significantly more labels, as shown in the experiments.

4.2 Experiments on Synthetic 2D Data

Dataset. For validating our model, we created a simple 2D toy dataset with
5 labels, each defined by a color (white for free space, gray for ground, red for
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building, blue for roof and green for vegetation). The scenes were generated
with shapes like boxes, triangles, and circles, which were randomly positioned
subject to interval bounds and ordering constraints, e.g., roof on top of building
and building on top of ground. We perturb the images with Gaussian noise and
simulate missing data by removing large regions using random shapes (circle,
square, triangle). Fig. 4 shows examples along with their degraded versions. We
created 3000 images of size 160×96 for training and 1200 for testing, respectively.
The data cost for label ` ∈ L is defined as f` =‖ I − c` ‖22 where I is the input
image and c` is the color corresponding to label `. For regions with missing
pixels, which can only be filled by regularization, we use a uniform data cost.

Quantitative Evaluation. Using this dataset, we evaluate the benefit of the
multi-scale approach as well as the feature encoding (E) and the probability de-
coding (D) networks. All networks are trained from random initialization with
a batch size of 32. Fig. 4 (left) shows results on the test set with TV-L1 as a
baseline. We show the accuracy computed on the whole image and only on the
missing regions. The latter emphasizes the performance of the regularizer since
in these regions, the data cost has no influence. Our approach consistently out-
performs TV-L1, especially in the missing regions. This shows that our method
learns more powerful regularizers, encoding statistics about geometry and se-
mantics. Furthermore, increasing the number of scales and including encoding
and decoding networks is beneficial.

Qualitative Evaluation. Fig. 4 (left) compares the segmentations from our
full network (T = 20, S = 3) to those of TV-L1. While TV-L1 finds the (wrong)
minimal surface solution, our network correctly fills in these regions and respects
ordering constraints (e.g. building above ground).

Learned Priors. Our network learns costs at label transitions in a small 2d

neighborhood at every scale. This cost is influenced by the orientation of the
transitions: vertical transitions between building and ground should be penalized
more than horizontal transitions. Fig. 4 (right) plots the label transition costs
against the surface normal for all label combinations. We see that the regularizer
has the desired behavior in most cases, e.g. for building to ground transitions,
we see that vertical transitions are penalized the most.

4.3 Experiments on Real 3D Data

We now use the best-performing architecture as determined in our 2D experi-
ments and apply it to the 3D multi-label domain using two challenging datasets.
We show that we can replicate hand-crafted Wulff shapes by learning from so-
lutions produced by Häne et al. [12]. Using the learned weights, our approach
produces equivalent results but two orders of magnitude faster, using only a
fraction of the memory. Moreover, we apply our method to datasets with ten
times more labels than can be handled by existing Wulff shape approaches.

Datasets. For all datasets, we assume gravity aligned inputs and use a standard
multi-label TSDF for data cost aggregation [12]. For comparing against Häne et
al. [13], we use their 3 outdoor scenes (Castle, South Building, Providence) with
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ground [12]

building [12]

Input Images & Häne et al. [12] Häne et al. [12] Shape priors [12]
Depth & Semantics (50 iters.) (2750 iters.)

ground (ours)

building (ours)

Input Data Cost TV-L1 (50 iters.) Ours (50 iters.) Our shape priors

Fig. 5: Semantic 3D reconstruction results. Left: Input. Middle: Reconstruc-
tion results. Our method learns semantic and geometric neighborhood statistics to
effectively handle large amounts of noise, outliers and missing data. Compared to tra-
ditional TV-L1 and the state-of-the-art [12], our approach requires significantly less
iterations and memory. Right: Hand-crafted shape priors from Häne et al. [12] (top)
vs. our learned shape priors (bottom).

5 labels (freespace, ground, building, vegetation, unkown). The largest scene has
a size of around 3003 voxels. In addition, we evaluate on the recently released
ScanNet dataset [7], comprising 1513 scenes with fine-grain semantic labeling.
We adopt the NYU [26] labeling with 40 classes. Using a voxel resolution of 5cm,
the largest scenes have a size of around 4003 voxels.

Training. Our network can optimize arbitrarily sized scenes both during infer-
ence and training, as our architecture is fully convolutional. However, due to the
increased memory requirements during back-propagation and the computational
benefits of batch processing in stochastic gradient descent, we train on fixed-size,
random crops of dimension 323 with a batch size of 4 and a learning rate of 10−4.
We perform data augmentation by randomly rotating and flipping around the
gravity axis. For all experiments, we unroll the PD algorithm for T = 50 iter-
ations using S = 3 scales. As our network uses a few parameters as compared
to pure learning approaches, overfitting is not a problem for our approach and
training typically converges quickly after a few thousand mini batches.

Wulff Shape Comparison. First, we are interested in replacing the more
complex and computationally costly Wulff shape approach [12] by learning from
data produced by their method. Fig. 5 (right) shows the original Wulff shapes by
Häne et al. next to our learned shapes at scale s = 0. The cost shape visualization
is equivalent to the synthetic 2D experiments with the difference that here we



Learning Priors for Semantic 3D Reconstruction 13

Bathroom Dormitory Bedroom Living Room Office

G
ro

u
n
d

T
ru

th
T

V
-L

1
(5

0
0

it
.)

O
u
rs

(5
0

it
.)

Fig. 6: 3D reconstruction results for ScanNet [7] for different scenes and methods.

compute the average shape around the gravity axis. Our method meaningfully
learns the hand-crafted shapes, demonstrating that we can replicate the more
complex Wulff shape formulation. This is confirmed by a 98% per-class accuracy
when evaluating our learned weights on the full scenes wrt. [12]. Figs. 1 and
5 show qualitative results for Castle and South Building. Moreover, our results
are achieved after 50 iterations and 10 seconds while their approach requires
2750 iterations and around 4000 seconds to converge. Next, we demonstrate our
method in a setting with an order of magnitude more class labels, which would
be computationally intractable for their method [12].

Evaluation on ScanNet [7]. For ScanNet we re-integrate the provided depth
maps and semantic segmentations using TSDF fusion based on the provided
camera poses to establish voxelized ground truth. The resulting data costs pro-
vide very strong evidence and we thus use multi-label TV-L1 optimization with
W = ∇. For our evaluation, we also generate weak data costs by only inte-
grating every 50th frame. The objective during training is to recover the high
fidelity ground truth generated from the strong data cost using only the weak
data cost as input. We train our network using 312 training scenes and evaluate
their performance on 156 test scenes. Fig. 7 summarizes quantitative results for a
reconstruction extracted from the input data cost, a multi-label TV-L1, a coarse-
to-fine version of our network, a version of our network without variational reg-
ularization (0 iterations), and our proposed multi-scale architecture. Note that
ours without regularization is a simple variant of approaches like SSCNet [36]
or ScanComplete [6]. We draw the following conclusions: First, running TV-L1
for the same number of iterations as our method results in significantly worse
results. Second, running TV-L1 for an order of magnitude more iterations until
convergence still performs worse than our method. Third, a näıve coarse-to-fine
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Fig. 7: 3D Reconstruction accuracy for ScanNet [7]. Left: Reconstruction ex-
tracted from the input data, TV-L1 for 50 and for 500 iterations (=̂ converged), tra-
ditional coarse-to-fine network (C2F), our method with/without multi-scale scheme
trained on 312 scenes, ours with multi-scale trained on a subset of only 5 scenes, ours
without the unrolled optimization (0 iterations). Right: Per-label accuracies.

approach does not converge during training and produces bad reconstructions.
Moreover, integrating multi-scale variational regularization into the network sig-
nificantly improves the completeness of the results. Lastly, a version trained on
only 5 scenes attains almost the same overall accuracy as a version trained on
the full training dataset, indicating that our model can be trained with very
little data. Furthermore, due to the few learned parameters in our network, we
achieve the same accuracy for the training and test scenes which demonstrates
the generalization power of our model. Figs. 1 and 6 show qualitative results for
selected scenes. Surprisingly, our method sometimes produces results which are
visually more pleasing than the ground truth used for training. We attribute this
to the fact that our method can learn correct label interactions from all training
data jointly and can then apply this knowledge to a single instance.

5 Conclusion

We presented a novel method for dense semantic 3D reconstruction. By incor-
porating variational regularization into a neural network, we can learn powerful
semantic priors using a limited number of parameters. In stark contrast to purely
learning based approaches, our method requires little training data and gener-
alizes to new scenes without overfitting. The proposed multi-scale optimization
jointly reasons about semantics and geometry at different scales and enables in-
ference that is an order of magnitude more efficient than the state of the art.
Experiments on synthetic and real data demonstrate the benefits wrt. accuracy,
runtime, memory consumption, and algorithmic complexity.
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