
LaRa: Efficient Large-Baseline Radiance Fields

Anpei Chen1,2 Haofei Xu1,2 Stefano Esposito1

Siyu Tang2 Andreas Geiger1

1University of Tübingen, Tübingen AI Center 2ETH Zürich

https://apchenstu.github.io/LaRa/

Large-baseline views Single image Text

“a beautiful rainbow fish”

Fig. 1: LaRa is a feed-forward 2D Gaussian Splatting model that reconstructs radiance
fields from large-baseline views, a single image, or a text prompt.

Abstract. Radiance field methods have achieved photorealistic novel
view synthesis and geometry reconstruction. But they are mostly applied
in per-scene optimization or small-baseline settings. While several recent
works investigate feed-forward reconstruction with large baselines by
utilizing transformers, they all operate with a standard global attention
mechanism and hence ignore the local nature of 3D reconstruction. We
propose a method that unifies local and global reasoning in transformer
layers, resulting in improved quality and faster convergence. Our model
represents scenes as Gaussian Volumes and combines this with an image
encoder and Group Attention Layers for efficient feed-forward reconstruc-
tion. Experimental results demonstrate that our model, trained for two
days on four GPUs, demonstrates high fidelity in reconstructing 360◦

radiance fields, and robustness to zero-shot and out-of-domain testing.
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1 Introduction

The ability to reconstruct the shape and appearance of objects from multi-view
images has long been one of the core challenges for computer vision and graphics.
Modern 3D reconstruction techniques achieve impressive results with various
applications in visual effects, e-commerce, virtual and augmented reality, and
robotics. However, they are limited to small camera baselines or dense image
captures [8, 32, 42, 67]. In recent years, the computer vision community has made
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great strides towards high-quality scene reconstruction. In particular, Structure-
from-Motion [52, 56] and multi-view stereo [23, 73] emerged as powerful 3D
reconstruction methods. They identify surface points by aggregating similarities
between point features queried from source images, and are able to reconstruct
highly accurate surface and texture maps.

Despite these successes, geometry with view-consistent textures is not the only
aspect required in applications of 3D reconstruction. The reconstruction process
should also be able to recover view-dependent appearance. To this end, neural
radiance fields [42] and neural implicit surfaces [47, 75] investigate volumetric
representations that can be learned from multi-view captures without explicit
feature matching. Their follow-ups [2, 5, 21, 32, 44, 58, 65, 77, 78] improve efficiency
and quality, but mainly require per-scene optimization and dense multi-view
supervision.

Several recent works thus investigate feed-forward models for radiance field
reconstruction while relaxing the dense input view requirement. While feed-
forward designs vary, they commonly utilize local feature matching [8,13,30,37,71],
which however limits them to small-baseline reconstruction, since feature matching
generally relies on substantial image overlap and reasonably similar viewpoints.
Geometry-aware transformers [34,43,50,63] have also been adapted to address
large-baseline problems, but they often suffer from blurry reconstructions due
to the lack of 3D inductive biases. Recent large reconstruction models [26, 36]
learn the internal perspective relationships through context attention, enabling
large-baseline reconstruction. However, the transformers are unaware of epipolar
constraints, and instead are tasked to implicitly learn spatial relationships, which
requires substantial data and GPU resources.

In this work, we present LaRa, a feed-forward reconstruction model without
the requirement of heavy training resources for the task of 360◦ bounded radiance
fields reconstruction from unstructured few-views. The core idea of our work
is to progressively and implicitly perform feature matching through a novel
volume transformer. We propose a Gaussian volume as the 3D representation,
in which each voxel comprises a set of learnable Gaussian primitives. To obtain
the Gaussian volume from image conditions, we progressively update a learnable
embedding volume by querying features in 3D. Specifically, we utilize a DINO
image feature encoder to obtain image tokens and lift 2D tokens to 3D by
unprojecting them into a shared canonical space. Next, we propose a novel Group
Attention Layer architecture to enable local and global feature aggregation.
Specifically, we divide dense volumes into local groups and only apply attention
within each group, inspired by standard feature point matching. The grouped
features and embeddings are fed to a cross-attention sub-layer to implicitly
match features between feature groups of the feature volume and embedding
volume, which is followed by a 3D CNN layer to efficiently share information
across neighboring groups. After passing through all attention layers, the volume
transformer outputs a Gaussian volume, and is then decoded as 2D Gaussian [27]
parameters using a coarse-to-fine decoding process. By incorporating efficient
rasterization, our method achieves high-resolution renderings.
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We demonstrate our method’s efficiency and robustness for providing photore-
alistic, 360◦ novel view synthesis results using only four input images. We find that
our model achieves zero-shot generalization to significantly out-of-distribution
inputs. Moreover, our reconstructed radiance fields allow high-quality mesh re-
construction using off-the-shelf depth-map fusion algorithms. Finally, our model
achieves high-quality reconstruction results using only 4 A100-40G GPUs within
a span of 2 days.

2 Related Work

Multi-view stereo. Multi-view stereo reconstruction aims to generate detailed
3D models by reasoning from images captured from multiple viewpoints, which has
been studied for decades [14,22,25,33,35,51,53]. In recent years, multi-view stereo
networks [28, 73] have been proposed to address MVS problems. MVSNet [73]
utilizes a 3D Convolutional Neural Network for processing a cost volume. This
cost volume is created by aggregating features from a set of adjacent views,
employing the plane-sweeping technique from a reference viewpoint, facilitating
depth estimation and enabling superior 3D reconstructions. Subsequent research
has built on top of this foundation, incorporating strategies such as iterative
plane sweeping [74], point cloud enhancement [9], confidence-driven fusion [41],
and the usage of multiple cost volumes [12,24] to further refine reconstruction
accuracy. However, all of these works require a large image overlap to achieve
faithful feature matching.

Few-shot Radiance fields. The Radiance field representation [42] has rev-
olutionized the reconstruction field, emerging as a promising replacement for
traditional reconstruction methods. Despite the promising achievement in per-
scene sparse view reconstruction [6, 7, 16, 46, 54, 57, 61, 64, 69], training a feed-
forward radiance field predictor [8,13,67,77] has gained popularity. MVSNeRF [8]
proposed to combine a cost volume with volume rendering, allowing appear-
ance and geometry reconstruction only using a photometric loss. The following
works [10,30,37,71] are proposed to advance reconstruction quality and efficiency.
Similarly to standard MVS methods, they are limited to small camera baselines.

Recently, several works have explored feed-forward models for few-shot
[1, 4, 11,19,36,43,68] input by capitalizing on large-scale training datasets and
model sizes. They leverage cross-view attention to global reason about 3D scenes
and output 3D representation (e.g., tri-plane, IB-planes) for radiance field re-
construction. Concurrent work by LGM [60] and GRM [76] introduces few-shot
3D reconstruction models that produce high-resolution 3D Gaussians using a
transformer framework. While these methods achieve impressive visual results,
training becomes expensive and less practical for the academic community. Unlike
some recent single view reconstruction methods [26, 59], our work focuses on
few-shot (> 1) reconstruction since single-view input can be efficiently lifted to
multi-view by multi-view generative models [38,39,55,72].
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Fig. 2: Pipeline. Our method represents objects as dense voxels filled with 2D Gaussian
primitives. We first construct 3D feature volumes Vf by lifting 2D DINO features to a
canonical volume, modulated by Plücker rays (Section 3.1). We then apply a volume
transformer to reconstruct a Gaussian volume VG from the feature and embedding
volumes (Section 3.2). We use a coarse-to-fine decoding process to regress 2D Gaussian
primitive parameters (Section 3.3), followed by rasterization for efficient rendering.

3 LaRa: Large-baseline Radiance Fields

Our goal is to reconstruct the geometry and view-dependent appearance of
bounded scenes from sparse input views using limited training resources. Given
M images I=(I1, . . . , IM ) with camera parameters π=(π1, . . . , πM ), our method
reconstructs radiance fields as a collection of 2D Gaussians, which is used to
synthesize novel views and extract meshes. Our model is a function f of a discrete
radiance field of voxel positions v and produces a Gaussian volume VG

VG = {Gk
i }Kk=1 = f(v; I,π), (1)

where Gk
i represents the primitives within ith voxel, and k is the index of K

primitives. The output Gaussian volume VG can be utilized for decoding into
radiance fields. Our work considers sparse input views, in which the camera
rotates around a bounded region within a hemisphere. Our approach is designed
to handle unstructured views and is flexible to accommodate various numbers of
views (see supplementary material). Figure 2 shows an overview of our method.

In the following, we first describe how we model objects using Gaussian
Volumes, in which each voxel stores multiple Gaussian primitives (Section 3.1).
Next, we introduce how to infer the primitive parameters from multi-view inputs
(Section 3.2). For rendering, we explore a coarse-fine decoding process to enable
efficient rendering with rich texture details (Section 3.3). Finally, we discuss how
we train our model from large-scale image collections (Section 3.4).
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3.1 3D Representation

We utilize a 3D voxel grid as our 3D representation, consisting of 3 volumes: an
image feature volume Vf to model image conditions, an embedding volume Ve
describes 3D prior learned from data, and a Gaussian volume VG represents the
radiance field.

Image feature volume. We construct a feature volume for each input view
by lifting the 2D image features to a canonical volume defined in the center
of the scene. We use the DINO [3] image encoder to extract per-view image
features, and inject Plücker ray directions into the features via the adaptive layer
norm [48]. Unlike previous works that modulate camera poses to image features
using extrinsic and intrinsic matrices [26,38], Plücker rays are defined by the cross
product between the camera location and ray direction, offering a unique ray
parameterization independent of object scale, camera position, and focal length.
After modulation, we obtain M per-view image feature maps. We further lift
the 2D maps to 3D by back-projecting the feature maps to a canonical volume,
therefore resulting in M feature volumes Vf ∈ RW×W×W×O with O channels.

Embedding volume. Inspired by prior works [26, 31, 45], we construct a
learnable embedding volume Ve ∈ RW×W×W×C to model prior knowledge. 3D
reconstruction is generally under-constrained in sparse view settings, hence prior
knowledge is critical for faithful reconstructions. We propose to leverage a 3D
embedding volume to model and learn prior information across objects, which acts
as a 3D object template that greatly reduces the solution space. The embedding
volume is aligned with the image feature volume, allowing for efficient cross
attention (see Section 3.2).

Gaussian volume. To achieve efficient rendering, we propose to use dense
primitives as an object representation and output a set of 2D Gaussians from the
image feature volume and embedding volume. However, predicting a set of dense
unordered point sets without 3D supervision is always a challenge for neural
networks. To this end, we introduce a dense Gaussian volume representation that
can effectively model points densely near the object’s surface, while being suitable
for modern network architectures by facilitating prediction and generation.

Specifically, our Gaussian volume comprises K learnable Gaussian primitives
per voxel, where each primitive can move freely within a constrained spherical
region centered at the voxels’ center. For primitive modeling, we borrow the
shape and appearance parametrization from 2D Gaussian splatting [27] for better
surface modeling. Each Gaussian has an opacity α, tangent vectors t=[tu, tv],
a scaling vector S = (su, sv) controlling the shape of the 2D Gaussian, and
spherical harmonics coefficients for view-dependent appearance. Furthermore, we
substitute the primitive’s position with an offset vector ∆∈ [−1, 1]3, incorporating
a scaled sigmoid activation function. Consequently, the position of Gaussian
primitive k in voxel vi is expressed as pk

i = vi + r · ∆k
i , where r signifies

the maximum displacement range of the primitive. In this way, primitives are
restricted to neighborhoods of uniformly distributed local centers. The inclusion
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Fig. 3: Volume Transformer. We aggregate the embedding volume Ve and feature
volume Vf through a series of Group Attention Layers that progressively match features.
In each layer, the volumes are first unfolded into local groups. Subsequently, a layer
normalization is applied, followed by a GroupCrossAttn sublayer. This is followed by
another normalization and an MLP layer. The output is reshaped back to the original
embedding volume shape, processed by a 3D convolution layer, and forwarded to the
next layer. To connect the output of the sublayers, we use residual connections.

of offset modeling allows each voxel to effectively represent adjacent regions that
require it. This reduces unnecessary capacity in empty space and enhances the
representational capacity compared to the standard dense volume. We refer the
reader to the supplementary material for more details on 2D Gaussian splatting.

3.2 Volume Transformer

To predict the Gaussian volume, we propose a volume transformer architecture to
perform attention between volumes. Self-attention and cross-attention modules,
as commonly used in transformers [17], are inefficient for volumes, since the
number of tokens grows cubically with the resolution of the 3D representation.
Naïve applications thus result in long training times and large GPU memory
requirements. In addition, geometry constraints and regional matching play
crucial roles in the context of 3D reconstruction, which should be considered in
the attention design.

We now present our novel volume transformer containing a set of group
attention layers that progressively update the embedding volume. Our group
attention layers contain three sublayers (see Figure 3): group cross-attention,
a multi-layer perceptron (MLP), and 3D convolution. Given the image feature
volume and embedding volume, we first unfold these 3D volumes (i.e., Vf and
Ve) into G groups along each axis. We then apply a cross-attention layer between
the corresponding groups of embedding tokens Vg,j

e and image feature tokens
Vg

f , where j denotes the index of the layer starting from 1, and {Vg,1
e }g =Ve.

Figure 2 illustrates the unfolding of G = 4 and highlights the corresponding
groups.

The next sublayer is an MLP, similar to the original transformer [29,48,62]. The
updated embedding groups {V̈g,j

e }Gg=1 are reassembled into the original volume
shape, resulting in V̈j

e, which are subsequently processed by a 3D convolutional
layer to share information between groups and enable the intra-model connections
within the spatially organized voxels. In summary,
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V̇g,j
e = GroupCrossAttn

(
LN

(
Vg,j

e
)
,Vg

f

)
+Vg,j

e , (2)

V̈g,j
e = MLP

(
LN

(
V̇g,j

e

))
+ V̇g,j

e , (3)

Vj+1
e = 3DCNN

(
LN

(
V̈j

e

))
+ V̈j

e. (4)

To incorporate information from multiple views, we flatten and concatenate
the image feature tokens from multi-view feature volumes. It is important to note
that different groups are processed simultaneously by the group attention layer
across the batch dimension. This parallel processing allows for a larger training
batch size within the attention sublayer, reducing the number of training steps
required. In addition, using a 3D convolution layer increases inference efficiency
compared to the popular self-attention layer. Also, we also apply layer norms
LM(·) between the sub-layers. Finally, the output embedding volume Vj

e serves
as input for the subsequent (j+1)th group attention layer.

After passing through all (12 in our experiments) group attention layers,
we use a 3D transposed CNN to scale up the updated embedding volume V̇e,
VG = Transpose-3DCNN

(
V̇e

)
. Now we have a Gaussian volume VG , each

Gaussian voxel is a 1-D feature vector Vi
G ∈ R1×B, representing the primitives

associated with the voxel.

3.3 Coarse-Fine Decoding

We obtain 2D Gaussian primitive shape and appearance parameters from the
Gaussian volume, so we introduce a coarse-fine decoding process to better re-
cover texture details. Instead of using a single network and sampling scheme to
reason about the scene, we simultaneously optimize two decoding modules: one
“coarse” and one “fine”. Intuitively, the “fine” decoding module attempts to learn
a geometry-aware texture blending process based on multi-view images, primitive
features, and rendering buffers from the coarse module.

For the “coarse” decoding module, we feed Gaussian volume features to
a lightweight MLP and output a set of K Gaussian parameters per voxel. We
employ the efficient 2D splatting technique [27] to form high-resolution renderings,
including RGB, depth, opacity, and normal maps. During training, we render M
input views and M novel views for supervision.

Despite the fact that the coarse renderings can already provide faithful
depths/geometries, the appearance tends to be blurred, as shown in (e) of
Figure 7. This is because the image texture can easily be lost after the DINO
encoder and the Group Attention layers. To address this problem, we propose a
“fine” decoding module to guide the fine texture prediction.

Specifically, we project the primitive centers pk
i onto the coarse renderings

(i.e., RGB image Î, depth image D̂, and accumulation alpha map Â) to contain
the coarse renderings for each primitive using the camera poses π,

Xpk
i
=

(
Ipk

i
, Îpk

i
, D̂pk

i
, Âpk

i

)
= Φ

(
P
(
pk
i ,π

)
,⊕

[
I, Î, D̂, Â

])
, (5)
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Fig. 4: Coarse-fine decoding. Top row: A “coarse” decoding module transforms the
voxel features Vi

G into K 2D Gaussian parameters, representing shape (specifically,
α, t,S,∆) and appearance (denoted as SHcoarse). This step is followed by a splatting
procedure. On the bottom, a "fine" decoding module aggregates rendering buffers (i.e.,
RGB, depth, and alpha maps) from the coarse module, volume feature, and source images
for appearance enhancement. It projects the centers of primitives onto these buffers,
applies cross-attention with the voxel features Vi

G , and produces residual spherical
harmonics SHresiduals. These residuals are added to the coarse spherical harmonics for
a refined splatting process.

where P denotes the point projection, ⊕ is a concatenation operation along the
channel dimension, and Φ is a bilinear interpolation in 2D space.

In practice, the depth features can change significantly in different scenes.
To mitigate scaling discrepancies, we replace the rendering depth D̂pk

i
with a

displacement feature
∣∣∣D̂pk

i
− zpk

i

∣∣∣ that compares the rendered depth for input
views and the depth zpk

i
of a primitive, allowing for occlusion-aware reasoning.

We then apply a point-based cross-attention layer to establish relationships
between the features of a point Xpk

i
and the primitive voxel. The results of this

cross-attention process are then fed into an MLP, which is tasked with predicting
the residual spherical harmonics

SHresiduals
i,k = MLP

(
CrossAttn

(
Xpk

i
,Vi

G

))
, (6)

SHfine
i,k = SHcoarse

i,k + SHresiduals
i,k . (7)

Furthermore, both coarse and fine modules are differentiable and updated simul-
taneously. Thus, the fine renderings can further regularize the coarse predictions.

Splatting. Our work takes advantage of Gaussian splatting [27,32] to facilitate
efficient high-resolution image rendering. We follow the original rasterization
process and further output depth and normal maps by integrating the z value
and the normal of the primitives.

3.4 Training

Our LaRa is optimized across scenes via gradient descent, minimizing simple
image reconstruction objectives between the coarse and fine renderings (i.e., Î)
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and the ground-truth images (i.e., I),

L = LMSE(I, Î) + LSSIM(I, Î) + LReg, (8)

where LMSE is the pixel-wise L2 loss, LSSIM is the structural similarity loss, which
are applied on both coarse and fine RGB outputs.

Regularization terms. We find that only applying the photometric recon-
struction losses is adequate for rendering. However, the consistency across views
is low because of the strong flexibility of the discrete Gaussian primitives. To
encourage the primitives to be constructed on the surface, we follow 2D Gaus-
sian splatting [27] that utilize a self-supervised distortion loss Ld and a normal
consistency loss Ln to regularize the training.

Specifically, we concentrate the weight distribution along the rays by minimiz-
ing the distance between the ray-primitive intersections, inspired by Mip-NeRF [2].
Given a ray u(x) of pixel x, we obtain its distortion loss by,

Ld =
∑
i,j

ωiωj |zi − zj |, (9)

where ωi = αi Gi(u(x))
∏i−1

j=1(1− αj Gj(u(x))) is the blending weight of the i−th
intersection and zi the depth of the intersection point.

As 2D Gaussians explicitly model the primitive normals, we can align their
normals ni with the normals N derived from the depth maps via the loss

Ln =
∑
i

ωi(1− n⊤
i N). (10)

Therefore, our regularization term for the ray u(x) is given by LReg = γdLd+γnLn.
We set γd=1000 and γn=0.2 in our experiments.

4 Implementation Details

We briefly discuss our implementation, including the training and evaluation
dataset, network design, optimizer, and mesh extraction.

Datasets. We train our model on multi-view synthetic renderings of objects
[49, 70], based on the Objaverse dataset [15], which includes 264,775 scenes with
a train/test split of 10:1. Each scene contains 38 circular views with an image
resolution of 512× 512. To ensure sufficient angular coverage of the input views,
we employ the classical K-means algorithm to cluster the cameras into 4 clusters.
We employ eight views for supervision for each object and leverage the loss
objectives outlined in Eq. 8 to update the network.

We present our in-domain evaluation using the Objaverse dataset’s test set,
consisting of 26,478 scenes. To assess our model’s cross-domain applicability, we
conducted tests on the Google Scanned Objects dataset [18], which contains
1,030 scans of real objects, and on the 46 hydrants and 90 teddy bears from the
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Co3D test set [50], totaling 136 objects. To examine our model’s performance
on zero-shot reconstruction task, we use the generative multi-view dataset from
Instant3D [36], which comprises 122 scenes generated from text prompts.

Network. We developed LaRa using PyTorch Lightning [20] and conducted
our training on 4 NVIDIA A100-40G GPUs over a period of 2 days for the fast
model and 3.5 days for the base model, with a batch size of 2 per GPU. We use
DINO-base for encoding M=4 multi-view images at a resolution of 512× 512.
We use a volume resolution of W =16 with C=768 channels for the image feature
volume, and a resolution of W =32 with C =256 channels for the embedding
volume, dividing both into G=16 groups for the group attention layers. Our
group attention network consists of 12 layers, producing a Gaussian volume of
size 64×64×64×80. We choose K=2 primitives for each voxel, and constrain the
offset radius to r = 1/32 of the length of the bounding box. The total number of
trainable parameters is 125 million.

Training. The optimization is carried out using the AdamW optimizer [40],
starting with a learning rate of 2×10−4 and following a cosine annealing schedule
with a period of 10 epochs. Our final model is trained for 50 epochs, comprising
50,000 iterations for each epoch. We observe that applying the regularization
loss from the start can slow down the convergence regarding the shape. This is
because regularization objectives tend to encourage thinner surfaces, which may
result in premature convergence to local minima if the shapes are noisy. In our
experiments, we thus enable regularization after the first 15 epochs.

Mesh extraction. To obtain a mesh from reconstructed 2D primitives, we
generate RGBD maps by rendering along three circular video trajectories at
elevations of 30°, 0°, and −30°. Inside the scene bounding box, we construct a
signed distance function volume and apply truncated SDF (TSDF) fusion to
integrate the reconstructed RGB and depth maps, allowing for efficient textured
mesh extraction. In our experiments, we use a resolution of 2563 and set a
truncation threshold of 0.02 for TSDF fusion.

5 Experiments

We now present an extensive evaluation of LaRa, our large-baseline radiance
field. We first compare with previous and concurrent works on in-domain and
zero-shot generalization settings. We then analyze the effect of local attention,
regularization term, and renderer.

5.1 Comparison

We compare our method against MVSNeRF [8], MuRF [71], and the concurrent
work LGM [60]. The first two methods are key representatives of feature matching-
based methods, and the latter shares a conceptually similar approach of using
Gaussian primitives for large-baseline settings. It is worth noting that while
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Table 1: Quantitative results of novel view synthesis. Our fast model is trained
for 30 epochs (2 days on 4 GPUs), while ours is trained for 50 epochs, taking 3.5 days.

Gobjaverse [70] GSO [18] Co3D [50]

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MVSNeRF [8] 14.48 0.896 0.1856 15.21 0.912 0.1544 12.94 0.841 0.2412
MuRF [71] 14.05 0.877 0.3018 12.89 0.885 0.2797 11.60 0.815 0.3933
LGM [60] 19.67 0.867 0.1576 23.67 0.917 0.0637 13.81 0.739 0.4142
Ours-fast 25.30 0.925 0.1027 26.79 0.946 0.0683 21.56 0.870 0.2079
Ours 26.14 0.931 0.0932 27.65 0.951 0.0616 21.64 0.871 0.2026

existing feed-forward radiance field reconstruction methods are capable of being
evaluated in large-baseline settings, retraining these methods to establish a
new large-baseline benchmark on the Objaverse dataset is both time and GPU
intensive. Here, we retrain MVSNeRF and the current state-of-the-art feed-
forward radiance field reconstruction method MuRF [71].

Appearance. Table 1 shows quantitative results (PSNR, SSIM, and LPIPS)
comparisons. Our method achieves clearly improved rendering quality for both
in-domain generation (Gobjaverse testing set) and zero-shot generalization (GSO
and Co3D datasets). As shown in Figure 5, MVSNeRF fails to provide faithful
reconstructions on the large-baseline setting and tends to produce floaters within
the reconstruction regions since the cost volume is extremely noisy in the sparse
view scenarios, resulting in a challenge for its convolution matching network to
distinguish the surface. MuRF [71] quickly overfits the white background and
produces empty predictions for all inputs. Instead of predefining and constructing
the feature similarity as network input, our method injects volume features
to the inter-middle attention layer and implicitly and progressively matches
them through the attention mechanism between the volume feature and updated
embeddings, achieving clearer and overall better reconstructions.

As shown in Table 1, our approach is robust to scene scale and can be
generalized to real captured images, such as those in the Co3D dataset, thanks to
our canonical modeling and projection-based feature lifting. In contrast, LGM [60]
leverages a monocular prediction and fusion technique that requires a reference
scene scale and a constant camera-object distance to avoid focal length and
distance ambiguity. This requirement significantly limits its generalizability to real
data. As shown in Table 1 and Figure 5, LGM provides faithful reconstructions
in datasets with a strict constant camera-object distance, such as GSO, but fails
to generalize to unconstraint multi-view data such as in Objaverse and Co3D
datasets, and exhibits serious distortions. Our model trained on 4 A100-40G
GPUs for 2 days demonstrates superior results compared to the LGM model
trained on 32 A100-80G GPUs (8× GPUs, 16× RAM, 32× GPU hours) and on
the same synthetic Objaverse dataset [15].

Furthermore, our approach also performs well for generative multi-view images
where textures are not consistent across views. In this comparison, we only present
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Fig. 5: Rendering results of unseen scenes. The top two rows compare our
reconstructions with MVSNeRF [8], LGM [60] on Co3D [50]. We also show the view
synthesis results for Gobjaverse [70], GSO [18], and generative multi-view [36] datasets,
arranged from top to bottom. Note that visual results from MuRF are not shown due
to their lack of content, appearing as white images. The above results are reconstructed
using 4 input views.
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Fig. 6: Zero-shot reconstruction results. Our approach achieves faithful surface
reconstruction for images generated from text. These images are produced using a
pre-trained text-to-image model [36].

Table 2: Depth reconstruction. We evaluate geometry quality within the mask by
measuring L1 error, and the accuracy in terms of the percentage of pixels that fall
below thresholds of [0.005, 0.01, 0.02].

Method Abs err↓ Acc (0.005)↑ Acc (0.01)↑ Acc (0.02)↑

MVSNeRF [8] 0.0993 6.2 12.4 24.0
LGM [60] 0.1121 13.4 26.2 49.6
Ours-fast 0.0695 32.7 52.2 70.7
Ours 0.0654 36.6 57.4 75.4

a qualitative analysis due to the absence of ground truths, as illustrated in the
bottom rows of Figure 5. Our method offers detailed texture and smooth surface
reconstruction. We invite the reader to our Appendix for more results.

Geometry. We evaluate the quality of our geometry reconstruction by com-
paring the depth reconstructions on novel views, generated by a weighted sum
of the z values of the primitives. As shown in Table 2, our approach achieves
significantly lower L1 errors and higher geometry accuracy than other baselines.
In Figure 6, we also visualize geometry reconstruction by extracting meshes using
TSDF. In addition, our trajectory video rendering (48 views at a resolution of
512) together with mesh extraction is highly efficient, as it does not require
fine-tuning and can be performed in just 2 seconds.

5.2 Ablation Study

We now analyze the contributions of individual elements of our model design.

Effect of local attention. We first evaluate the contribution of our group
partition using different group numbers. Here, G=1 is equivalent to the standard
cross-attention layer; however, using such group size can lead to much higher
compute time for the same number of iterations, i.e., 22 days on 4 A100s for
30 epochs. Therefore, our ablation starts with 4 groups for acceptable training
time. As shown in ablations (a), (b) and (g) in Table 3 and Figure 7, the image
synthesis and geometry quality are consistently improved with a larger group
number, thanks to the local attention mechanism.
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Fig. 7: Ablation study on a Shell scene. We report the PSNR for each example at
the top. Here, the fast model corresponds to the full model detailed in Table 3.

Table 3: Ablations. See Section 5.2 for descriptions.

Gobjaverse [70] GSO [18]

Design PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Geo (%) ↑

a) G = 4 22.27 0.900 0.1558 23.06 0.920 0.1113 17.3/31.0/48.1
b) G = 8 23.80 0.914 0.1256 25.30 0.936 0.0849 25.1/42.8/61.1
c) w/o LReg 26.16 0.930 0.1006 27.71 0.950 0.0668 22.8/45.6/71.2
d) 3DGS 26.04 0.929 0.1021 27.45 0.950 0.0666 23.3/45.0/69.2
e) coarse 25.06 0.922 0.1239 26.28 0.934 0.1017 32.7/52.2/70.7
f) SH order-0 24.93 0.923 0.1097 26.71 0.945 0.0743 32.0/51.7/70.5
g) full model 25.30 0.925 0.1027 26.79 0.946 0.0683 32.7/52.2/70.7

Effect of regularization term. We further evaluate the regularization term
introduced in Eq. 9 and Eq. 10. We observe a marked improvement in the
average rendering score when disabling the regularization. Although this provides
a stronger model capability for modeling details, this may cause floaters near
the surfaces, as shown in (c) and (d) of Figure 7, which leads to inconsistent
free-viewpoint video rendering (see Appendix video). In contrast, our approach
is able to reconstruct hard surfaces.

Effect of renderer. We also compare 2D Gaussian splatting with 3D Gaussian
splatting in our framework, as shown in (c) and (d). They achieve similar
rendering quality and we choose 2DGS to facilitate surface regularization and
mesh extraction. Furthermore, to evaluate the effectiveness of the coarse-fine
decoding, we conduct an evaluation of the coarse outputs, shown in row (e). Our
fine decoding is able to provide richer texture details.

6 Conclusion

We have presented LaRa, a novel method for reconstructing 360◦ bounded
radiance fields given large-baseline inputs. Our central idea is to match image
features and embedding volume through unified local and global attention layers.
By integrating this with a coarse-fine decoding and splatting process, we achieve
high efficiency for both training and inference. In future work, we plan to explore
how to enlarge the batch size per-GPU and volume resolution without increasing
GPU usage.
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A Limitations and Discussions

Our LaRa demonstrates a remarkable efficiency feed-forward model that achieved
high-fidelity all-around novel-view synthesis and surface reconstruction from
sparse large-baseline images. However, our approach struggles to recover high-
frequency geometry and texture details, mainly due to the low volume resolution.
Enhancing our approach with techniques such as gradient checkpointing or mixed-
precision training can potentially increase training batch size as well as volume
resolution. We have also noticed that our method can yield inconsistent render-
ing results when the geometry is incorrectly estimated or when reconstructing
multi-view inconsistent inputs, as demonstrated in the comparison video. This
occurs because our method utilizes second-order Spherical Harmonic appearance
modeling. Although such modeling can capture view-dependent effects, it also
introduces a stronger ambiguity between geometry and appearance. We believe
that incorporating our method with a physically-based rendering process can
potentially address this issue. In addition, our work assumes posed inputs, but
estimating precise camera poses for sparse views is a challenge in practice. In-
corporating a pose estimation module [66] into the feed-forward setting is an
orthogonal direction to our work.
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C More Visual Results

Finally, we report more qualitative results on the testing sets, as shown in
Figure ??,Figure ??, and Figure ??.
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