Factor Fields: A Unified Framework for Neural Fields and Beyond
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Figure 1: Factor Fields is a framework which unifies many recently proposed neural field representations (e.g., NeRF, EG3D,
Instant-NGP, TensoRF) and allows for the creation of powerful new ones such as the proposed Dictionary Factorization. In
particular, Factor Fields decomposes a signal into IV factors f; to fy (top-center), each of which is represented by one out of
many different field representations operating on coordinate transformations ~y; to <. The resulting product field is passed to
a projection function (e.g., MLP) which maps it to the signal’s output.

Abstract

We present Factor Fields, a novel framework for modeling
and representing signals. Factor Fields decomposes a signal
into a product of factors, each represented by a classical or
neural field representation which operates on transformed
input coordinates. This decomposition results in a unified
framework that accommodates several recent signal repre-
sentations including NeRF, Plenoxels, EG3D, Instant-NGP,
and TensoRF. Additionally, our framework allows for the
creation of powerful new signal representations, such as
the ”Dictionary Field” (DiF) which is a second contribu-
tion of this paper. Our experiments show that DiF leads to
improvements in approximation quality, compactness, and
training time when compared to previous fast reconstruc-
tion methods. Experimentally, our representation achieves
better image approximation quality on 2D image regres-
sion tasks, higher geometric quality when reconstructing 3D
signed distance fields, and higher compactness for radiance

field reconstruction tasks. Furthermore, DiF enables gen-
eralization to unseen images/3D scenes by sharing bases
across signals during training which greatly benefits use
cases such as image regression from sparse observations
and few-shot radiance field reconstruction. Our code is
available at

1. Introduction

Effectively representing multi-dimensional digital content
— like 2D images or 3D geometry and appearance — is critical
for computer graphics and vision applications. These digi-
tal signals are traditionally represented discretely as pixels,
voxels, textures, or polygons. Recently, significant headway
has been made in developing advanced neural representa-
tions [36, 51, 37, 10, 49], which demonstrated superiority in
modeling accuracy and efficiency over traditional representa-
tions for different image synthesis and scene reconstruction
applications.


https://apchenstu.github.io/FactorFields/

In order to gain a better understanding of existing rep-
resentations, make comparisons across their design princi-
ples, and create powerful new representations, we propose
Factor Fields, a novel mathematical framework that unifies
many previous neural representations for multi-dimensional
signals. This framework offers a simple formulation for
modeling and representing signals.

Our framework decomposes a signal by factorizing it
into multiple factor fields (fi,...,fy) operating on suit-
ably chosen coordinate transformations (71, . .., yn) as il-
lustrated in Fig. 1. More specifically, each factor field de-
codes multi-channel features at any spatial location of a
coordinate-transformed signal domain. The target signal is
then regressed from the factor product via a learned projec-
tion function (e.g., MLP).

Our framework accommodates most previous neural rep-
resentations. Many of them can be represented in our frame-
work as a single factor with a domain transformation — for
example, the MLP network as a factor with a positional en-
coding transformation in NeRF [36], the tabular encoding
as a factor with a hash transformation in Instant-NGP [37],
and the feature grid as a factor with identity transforma-
tion in DVGO [51] and Plenoxels [16]. Recently, TensoRF
[10] introduced a tensor factorization-based representation,
which can be seen as a representation of two Vector-Matrix
or three CANDECOMP-PARAFAC decomposition factors
with axis-aligned orthogonal 2D and 1D projections as trans-
formations. The potential of a multi-factor representation
has been demonstrated by TensoRF, which has led to supe-
rior quality and efficiency on radiance field reconstruction
and rendering, while being limited to orthogonal transforma-
tions.

This motivates us to generalize previous classic neural
representations via a single unified framework which enables
easy and flexible combinations of previous neural fields and
transformation functions, yielding novel representation de-
signs. As an example, we present Dictionary Field (DiF),
a two-factor representation that is composed of (1) a basis
function factor with periodic transformation to model the
commonalities of patterns that are shared across the entire
signal domain and (2) a coefficient field factor with identity
transformation to express localized spatially-varying features
in the signal. The combination of both factors allows for an
efficient representation of the global and local properties of
the signal. Note that, most previous single-factor representa-
tions can be seen as using only one of such functions — either
a basis function, like NeRF and Instant-NGP, or a coefficient
function, like DVGO and Plenoxels. In DiF, jointly modeling
two factors (basis and coefficients) leads to superior quality
over previous methods like Instant-NGP and enables com-
pact and fast reconstruction, as we demonstrate on various
downstream tasks.

As DiF is a member of our general Factor Fields family,

we conduct a rich set of ablation experiments over the choice
of basis/coefficient functions and basis transformations. We
evaluate DiF against various variants and baselines on three
classical signal representation tasks: 2D image regression,
3D SDF geometry reconstruction, and radiance field recon-
struction for novel view synthesis. We demonstrate that
our factorized DiF representation is able to achieve state-of-
the-art reconstruction results that are better or on par with
previous methods, while achieving superior modeling effi-
ciency. For instance, compared to Instant-NGP our method
leads to better reconstruction and rendering quality, while
effectively halving the total number of model parameters
(capacity) for SDF and radiance field reconstruction, demon-
strating its superior accuracy and efficiency.

Moreover, in contrast to recent neural representations
that are designed for purely per-scene optimization, our
factorized representation framework is able to learn basis
functions across different scenes. As shown in preliminary
experiments, this enables learning across-scene bases from
multiple 2D images or 3D radiance fields, leading to signal
representations that generalize and hence improve recon-
struction results from sparse observations such as in the
few-shot radiance reconstruction setting. In summary,

¢ We introduce a common framework Factor Fields that
encompasses many recent radiance field / signal rep-
resentations and enables new models from the Factor
Fields family.

* We propose DiF, a new member of the Factor Fields
family representation that factorizes a signal into co-
efficient and basis factors which allows for exploiting
similar signatures spatially and across scales.

* Our model can be trained jointly on multiple signals,
recovering general basis functions that allow for recon-
structing parts of a signal from sparse or weak observa-
tions.

* We present thorough experiments and ablation stud-
ies that demonstrate improved performance (accuracy,
runtime, memory), and shed light on the performance
improvements of DiF vs. other models in the Factor
Fields family.

2. Factor Fields

We seek to compactly represent a continuous Q-
dimensional signal s : RP? — R® on a D-dimensional
domain. We assume that signals are not random, but struc-
tured and hence share similar signatures within the same
signal (spatially and across different scales) as well as be-
tween different signals. In the following, we develop our
factor fields model step-by-step, starting from a standard
basis expansion.
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Figure 2: Local Basis. (a) Choosing a (periodic) coordi-
nate transformation ~y(x) allows for applying the same basis
function b(x) at multiple spatial locations and scales. For
clarity, we have chosen constant coefficients ¢ = 1. (b)
Composing multiple bases at different spatial resolutions
with their respective coefficients yields a powerful represen-
tation for signal s(x). In practice, we use multiple bases and
coefficient fields at each resolution.

Dictionary Field (DiF): Let us first consider a 1D signal
s(x) : RP — R. Using basis expansion, we decompose
s(x) into a set of coefficients ¢ = (cy,...,cx) " with¢c;, €
R and basis functions b(x) = (b1(x),...,bx(x))" with
bp : RP — R:

3(x) = ¢ "b(x) (1)

Note that we denote s(x) as the true signal and 5(x) as its
approximation.

Representing the signal s(x) using a global set of ba-
sis functions is inefficient as information cannot be shared
spatially. We hence generalize the above formulation by
(i) exploiting a spatially varying coefficient field c(x) =
(c1(x),...,cx(x))T with ¢ : RP — R and (ii) transform-
ing the coordinates of the basis functions via a coordinate
transformation function v : RP? — RB:

3(x) = e(x) b (v(x))

When choosing -y to be a periodic function, this formulation
allows us to apply the same basis at multiple spatial locations
and optionally also at multiple different scales while varying
the coefficients c, as illustrated in Fig. 2. Note that in general
B does not need to match D, and hence the domain of the
basis functions also changes accordingly: by : R® — R.
Furthermore, we obtain Eq. (1) as a special case when setting
c(x) = cand v(x) = x.

So far, we have considered a 1D signal s(x). However,
many signals have more than a single dimension (e.g., 3 in
the case of RGB images or 4 in the case of radiance fields).

2

We generalize our model to Q-dimensional signals f(x) by
introducing a projection function P : RX — R® and re-
placing the inner product with the element-wise/Hadamard
product (denoted by o in the following):

8(x) =P (c(x) o b (v(x))) ©)

We refer to Eq. (3) as Dictionary Field (DiF). Note that in
contrast to the scalar product ¢ " b in Eq. (2), the output of
c o b is a K-dimensional vector which comprises the indi-
vidual coefficient-basis products as input to the projection
function P which itself can be either linear or non-linear.
In the linear case, we have P(x) = Ax with A € RO*K,
Furthermore, note that for @ = 1and A = (1,...,1) we
recover Eq. (2) as a special case. The projection operator
‘P can also be utilized to model the volumetric rendering
operation when reconstructing a 3D radiance field from 2D
image observations as discussed in Section 2.3.

Factor Fields: To allow for more than 2 factors, we gener-
alize Eq. (3) to our full Factor Fields framework by replacing
the coefficients c(x) and basis b(x) with a set of factor fields

{fi(x) L,

N
S(x)="P (H fi (i (X))> ©)
i=1
Here, [] denotes the element-wise product of a sequence
of factors. Note that in this general form, each factor
f; : R — RX may be equipped with its own coordinate
transformation ~y; : RP — RF%.

We obtain DiF in Eq. (3) as a special case of our Fac-
tor Fields framework in Eq. (4) by setting f; (x) = c(x),
¥1(x) = x, f3(x) = b(x) and v2(x) = v(x) with N = 2.
Besides DiF, the Factor Fields framework generalizes many
recently proposed radiance field representations in one uni-
fied model as we will discuss in Section 3.

In our formulation, {~;} are considered deterministic
functions while P and {f;} are parametric mappings (e.g.,
polynomials, multi-layer perceptrons or 3D feature grids)
whose parameters (collectively named 6 below) are opti-
mized. The parameters 6 can be optimized either for a single
signal or jointly for multiple signals. When optimizing for
multiple signals jointly, we share the parameters of the pro-
jection function and basis factors (but not the parameters of
the coefficient factors) across signals.

2.1. Factor Fields f;

For modeling the factor fields f; : Rf: — RX, we con-
sider various different representations in our Factor Fields
framework as illustrated in Fig. 1 (bottom-left). In particular,
we consider polynomials, MLPs, 2D and 3D feature grids
and 1D feature vectors.

MLPs have been proposed as signal representations in
Occupancy Networks [35], DeepSDF [40] and NeRF [36].
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Figure 3: Coordinate Transformations. We show various
periodic (top) and non-periodic (bottom) coordinate transfor-

mations -y used in our framework.

While MLPs excel in compactness and induce a useful
smoothness bias, they are slow to evaluate and hence in-
crease training and inference time. To address this, DVGO
[51] proposes a 3D voxel grid representation for radiance
fields. While voxel grids are fast to optimize, they increase
memory significantly and do not easily scale to higher di-
mensions. To better capture the sparsity in the signal, Instant-
NGP [37] proposes a hash function in combination with 1D
feature vectors instead of a dense voxel grid, and TensoRF
[10] decomposes the signal into matrix and vector prod-
ucts. Our Factor Fields framework allows any of the above
representations to model any factor f;. As we will see in
Section 3, many existing models are hence special cases of
our framework.

2.2. Coordinate Transformations ~;

The coordinates input to each factor field f; are trans-
formed by a coordinate transformation function ~; : RP —
RF:,

Coefficients: When the factor field f; represents coeffi-
cients, we use the identity «y;(x) = x for the corresponding
coordinate transformation since coefficients vary freely over
the signal domain.

Local Basis: The coordinate transformation ~y; enables
the application of the same basis function f; at multiple
locations as illustrated in Fig. 2. In this paper, we consider
sawtooth, triangular, sinusoidal (as in NeRF [36]), hashing
(as in Instant-NGP [37]) and orthogonal (as in TensoRF [10])
transformations in our framework, see Fig. 3.

Multi-scale Basis: The coordinate transformation =y; also
allows for applying the same basis f; at multiple spatial
resolutions of the signal by transforming the coordinates x
with (periodic) transformations of different frequencies as
illustrated in Fig. 2. This is crucial as signals typically carry
both high and low frequencies, and we seek to exploit our
basis representation across the full spectrum to model fine
details of the signal as well as smooth signal components.

Specifically, we model the target signal with a set of
multi-scale (field of view) basis functions. We arrange the
basis into L levels where each level covers a different scale.
Let [u, v] denote the bounding box of the signal along one
dimension. The corresponding scale is given by (v — u)/ f;
where f; is the frequency at level [. A large scale basis (e.g.,
level 1) has a low frequency and covers a large region of
the target signal while a small scale basis (e.g., level L) has
a large frequency f;, covering a small region of the target
signal.

We implement our multi-scale representation (PR) by
multiplying the scene coordinate x with the level frequency
fi before feeding it to the coordinate transformation function
~; and then concatenating the results across the different
scalel =1,...,L:

(vi(x f1), -, vi(x fr)) (%)

Here, ~; is any of the coordinate transformations in Fig. 3,
and ~ypg is the final coordinate transform of our multi-scale
representation.

As illustrated in Fig. 2 (b), when considering one coeffi-
cient factor f; (x) = ¢(x) and one basis factor f2(x) = b(x)
with coordinate transformation 45R(x) results in the tar-
get signal s(x) being decomposed as the product of spatial
varying coefficient maps and multi-level basis maps which
comprise repeated local basis functions.

YN (x) =

2.3. Projection P

To represent multi-dimensional signals, we introduced a
projection function P : RX — R that maps from the K-
dimensional Hadamard product [, f; to the Q-dimensional
target signal. We distinguish two cases in our framework:
The case where direct observations from the target signal
are available (e.g., pixels of an RGB image) and the indirect
case where observations are projections of the target signal
(e.g., pixels rendered from a radiance field).

Direct Observations: In the simplest case, the projection
function realizes a learnable linear mapping P(x) = Ax
with parameters A € R®*X to map the K -dimensional
Hadamard product [ [, f; to the Q-dimensional signal. How-
ever, a more flexible model is attained if P is represented by
a shallow non-linear multi-layer perceptron (MLP) which is
the default setting in all of our experiments.

Indirect Observations: In some cases, we only have ac-
cess to indirect observations of the signal. For example,
when optimizing neural radiance fields, we typically only
observe 2D images instead of the 4D signal (density and
radiance). In this case, extend P to also include the differ-
entiable volumetric rendering process. More concretely, we
first apply a multi-layer perceptron to map the view direction
d € R? and the product features [, f; at a particular location
x € R3 to a color value ¢ € R? and a volume density o € R.



Next, we follow Mildenhall et al. [36] and approximate the
intractable volumetric projection integral using numerical in-
tegration. More formally, let {(c;, o;)}¥.; denote the color
and volume density values of N random samples along a
camera ray. The RGB color value c at the corresponding
pixel is obtained using alpha composition

regularizer using a random binary vector which we multiply
element-wise with the factor product: o [, f;.

Initialization: During all our experiments, we initialize
the basis factors using the discrete cosine transform (DCT),
while initializing the parameters of the coefficient factors
and projection MLP randomly. We experimentally found
this to improve the quality of the solution as illustrated in

N i1
c, = Z Tiozc; T = H (1—«a;) «a; =1—exp(—0;6;)our ablation study in Table 3a to Table 3e.
i=1 j=1

(6)
where 7T; and «; denote the transmittance and alpha value
of sample ¢ and 6; = ||x;+1 — X;||, is the distance between
neighboring samples. The composition of the learned MLP
and the volume rendering function in Eq. (6) constitute the
projection function P.

2.4. Space Contraction

We normalize the input coordinates x € RP to [0, 1]
before passing them to the coordinate transformations ~y; (x)
by applying a simple space contraction function to x. We
distinguish two settings:

For bounded signals with D-dimensional bounding box
[u, v] (where u, v € RP), we utilize a simple linear map-
ping to normalize all coordinates to the range [0, 1]:

X—u
contract(x) =

(7

vV—u

For unbounded signals (e.g., an outdoor radiance field), we
adopt Mip-NeRF 360’s [3] space contraction function:

<1
Ixlly < ®

contract(x) = {

X
1 x
(2 - W) (HXH2> Ixl, > 1

2.5. Optimization

Given samples {(x,s(x))} from the signal, we minimize
argmin Ex [[|s(x) = 8o(x)ll, + (9)] ©)

where ¥(6) is a regularizer on the model parameters. We
optimize this objective using stochastic gradient descent.

Sparsity Regularization: While using the ¢y norm for
sparse coefficients is desirable, this leads to a difficult opti-
mization problem. Instead, we use a simpler strategy which
we found to work surprisingly well. We regularize our objec-
tive by randomly dropping a subset of the K features of our
model by setting them to zero with probability . This forces
the signal to be represented with random combinations of
features at every iteration, encouraging sparsity and prevent-
ing co-adaptation of features. We implement this dropout

In our implementation, we slightly modify Eq. (8) to map coordinates to a
unit ball centered at 0.5 which avoids negative coordinates when indexing
feature grids.

Multiple Signals: When optimizing for multiple signals
jointly, we share the parameters of the projection function
and basis factors (but not the parameters of the coefficient
factors) across signals. As evidenced by our experiments
in Section 4.3, sharing bases across different signals while
encouraging sparse coefficients improves generalization and
enables reconstruction from sparse observations.

3. Factor Fields As A Common Framework

Advanced neural representations have emerged as a
promising replacement for traditional representations and
been applied to improve the reconstruction quality and ef-
ficiency in various graphics and vision applications, such
as novel view synthesis [65, 32, 54, 2, 36, 31, 10, 58, 55],
generative models [47, 9, 8, 17], 3D surface reconstruction
[39, 60, 56, 62, 25], image processing [ 3], graphics asset
modeling [45, 27, 66], inverse rendering [5, 4, 63, 6, 7, 64],
dynamic scene modeling [44, 30, 41, 29], and scene under-
standing [42, 34] amongst others.

Inspired by classical factorization and learning tech-
niques, like sparse coding [57, 59, 18] and principal com-
ponent analysis (PCA) [46, 33], we propose a novel neural
factorization-based framework for neural representations.
Our Factor Fields framework unifies many recently pub-
lished neural representations and enables the instantiation
of new models in the Factor Fields family, which, as we
will see, exhibit desirable properties in terms of approxi-
mation quality, model compactness, optimization time and
generalization capabilities. In this section, we will discuss
the relationship to prior work in more detail. A systematic
performance comparison of the various Factor Field model
instantiations is provided in Section 4.4.

Occupancy Networks, IMNet and DeepSDF: [35, 14, 40]
represent the surface implicitly as the continuous decision
boundary of an MLP classifier or by regressing a signed
distance value. The vanilla MLP representation provides a
continuous implicit 3D mapping, allowing for the extraction
of 3D meshes at any resolution. This setting corresponds
to our Factor Fields model when using a single factor (i.e.,
N = 1) withv; (x) = x, f1(x) = x, P(x) = MLP(x), thus
§(x) = MLP(x). While this representation is able to gen-
erate high-quality meshes, it fails to model high-frequency
signals, such as images due to the implicit smoothness bias



of MLPs.

NeRF: [36] proposes to represent a radiance field via an
MLP in Fourier space by encoding the spatial coordinates
with a set of sinusoidal functions. This corresponds to
our Factor Fields setting when using a single factor with
T (x) = (sin(xf1),cos(xf1),...,sin(xfL),cos(xfL)),
fi(x) = x and P(x) = MLP(x). Here, the coordinate
transformation - (x) is a sinusoidal mapping as shown in
Fig. 3 (3), which enables high frequencies.

Plenoxels: [16] use sparse voxel grids to represent 3D
scenes, allowing for direct optimization without neural net-
works, resulting in fast training. This corresponds to our
Factor Fields framework when setting N = 1, v;(x) = x,
fi(x) = 3D-Grid(x), and P(x) = x for the density field
while P(x) = SH(x) (Spherical Harmonics) for the radi-
ance field. In related work, DVGO [51] proposes a similar
design, but replaces the sparse 3D grids with dense grids and
uses a tiny MLP as the projection function P. While dense
grid modeling is simple and leads to fast feature queries, it
requires high spatial resolution (and hence large memory) to
represent fine details. Moreover, optimization is more easily
affected by local minima compared to MLP representations
that benefit from their inductive smoothness bias.

ConvONet and EG3D: [43, 8] use a tri-plane representa-
tion to model 3D scenes by applying an orthogonal coordi-
nate transformation to spatial points within a bounded scene,
and then representing each point as the concatenation of
features queried from a set of 2D feature maps. This rep-
resentation allows for aggregating 3D features using only
2D convolution, which significantly reduces memory foot-
print compared to standard 3D grids. The setting can be
viewed as an instance of our Factor Fields framework, with
N =1, v1(x) = Orthogonal-2D(x), f; (x) = 2D-Maps(x)
and P(x) = MLP(x). However, while the axis-aligned
transformation allows for dimension reduction and feature
sharing along the axis, it can be challenging to handle com-
plicated structures due to the axis-aligned bias of this repre-
sentation.

Instant-NGP: [37] exploits a multi-level hash grid to ef-
ficiently model internal features of target signals by hash-
ing spatial locations to 1D feature vectors. This approach
corresponds to our Factor Fields framework when using
N = 1, y1(x) = Hashing(x), f;(x) = Vectors(x) and
P(x) = MLP(x) with L = 16 scales. However, the multi-
level hash mappings can result in dense collisions at fine
scales, and the one-to-many mapping forces the model to
distribute its capacity bias towards densely observed regions
and noise in areas with fewer observations. The concurrent
work VQAD [52] introduces a hierarchical vector-quantized
auto-decoder (VQ-AD) representation that learns an index
table as the coordinate transformation function which allows

for higher compression rates.

TensoRF: [10] factorizes the radiance fields into the prod-
ucts of vectors and matrices (TensoRF-VM) or multiple
vectors (TensoRF-CP), achieving efficient feature queries at
low memory footprint. This setting instantiates our Factor
Fields framework for N = 2, «;(x) = Orthogonal-1D(x),
f1(x) = Vectors(x), v2(x) = Orthogonal-2D(x), f2(x) =
2D-Maps(x) for VM decomposition and N = 3, v;(x) =
Orthogonal-1D(x), f;(x) = Vectors(x) for CP decomposi-
tion. Moreover, TensoRF uses both SH and MLP models for
the projection P. Similar to ConvONet and EG3D, TensoRF
is sensitive to the orientation of the coordinate system due
to the use of an orthogonal coordinate transformation func-
tion. Note that, with the exception of TensoRF [10], all of
the above representations factorize the signal using a single
factor field, that is N = 1. As we will show in Table 3a to
Table 3d, using multiple factor fields (i.e., N > 1) provides
stronger model capacity.

ArXiv Preprints: The field of neural representation learn-
ing is advancing fast and many novel representations have
been published as preprints on ArXiv recently. We now
briefly discuss the most related ones and their relationship
to our work: Phasorial Embedding Fields (PREF) [19] pro-
poses to represent a target signal with a set of phasor volumes
and then transforms them into the spatial domain with an
inverse fast Fourier Transform (iFFT) for compact repre-
sentation and efficient scene editing. This method shares a
similar idea with DVGO and extends the projection function
‘P in our formulation with an iFFT function. Tensor4D [48]
extends the triplane representation to 4D human reconstruc-
tion by using 3 triplane Factor Fields and indexing plane
features with 3 orthogonal coordinate transformations (i.e.,
Orthogonal-2D(x) = (xy, xt,yt), Orthogonal-2D(x) =
(zz,xt, zt), Orthogonal-2D(x) = (yz,yt,zt)). NeRF-
Player [50] represents dynamic scenes via deformation, new-
ness and decomposition fields, using multiple factors similar
to TensoRF. It further extends the features by a time dimen-
sion. D-TensoRF [20] reconstructs dynamic scenes using
matrix-matrix factorization, similar to the VM factorization
of TensoRF, but replacing -+ (x) = Orthogonal-1D(x) and
f1(x) = Vectors(x) with v;(x) = Orthogonal-2D(x) and
fi(x) = 2D-Maps(x). Quantized Fourier Features (QFF)
[28] factorizes internal features into bins of Fourier features,
corresponding to our Factor Fields framework when using
N =1, v1(x) = sinusoidal(x), f; (x) = 2D-Maps(x), and
P(x) = MLP(x) for the 2D signal representation.

Dictionary Field (DiF): Besides existing representations,
our Factor Fields framework enables the design of novel
representations with desirable properties. As an example, we
now discuss the DiF representation which we have already
introduced in Eq. (3). DiF offers implicit regularization,
compactness and fast optimization while also generalizing



across multiple signals. The central idea behind the DiF
representation is to decompose the target signals into two
fields: a global field (i.e., the basis) and a local field (i.e.,
the coefficient). The global field promotes structured signal
signatures shared across spatial locations and scales as well
as between signals, while the local field allows for spatially
varying content. More formally, DiF factorizes the target sig-
nal into coefficient fields f; (x) = c¢(x) and basis functions
fo(x) = b(x) which differ primarily by their respective co-
ordinate transformation: We choose the identity mapping
~1(x) = x for ¢(x) and a periodic coordinate transforma-
tion 2 (x) for b(x), see Fig. 3 (top). As representation of
the two factor fields f; and f; we may choose any of the ones
illustrated in Fig. 1 (bottom-left). To facilitate comparison
with previous representations, we use the sawtooth function
as the basis coordinate transformation -~y and uniform grids
(i.e., 2D Maps for 2D signals and 3D Grids for 3D signals)
as the representation of the coefficient fields f; and basis
functions f5 for most of our experiments. Besides, we also
systematically ablate the number of factors, the number of
levels, the coordinate transformation and the field represen-
tation in Section 4.4.

4. Experiments

We now present extensive evaluations of our Factor Fields
framework and DiF representation. We first briefly discuss
our implementation and hyperparameter configuration. We
then compare the performance of DiF with previously pro-
posed representations on both per-signal reconstruction (op-
timization) and across-signal generalization tasks. At the
end of this section, we examine the properties of our Factor
Fields framework by varying the number of factors NV, level
number L, different types of transformation functions ~;
field representation f;, and field connector o.

4.1. Implementation

We implement our Factor Fields framework using vanilla
PyTorch without customized CUDA kernels. Performance
is evaluated on a single RTX 6000 GPU using the Adam
optimizer [23] with a learning rate of 0.02.

We instantiate DiF using L = 6 levels with frequencies
(linearly increasing) f; € [2.,3.2,4.4,5.6,6.8,8.], and fea-
ture channels K = [4,4,4,2,2,2]" - 27, where 1 controls
the number of feature channels. We use n = 3 for our 2D
experiments and = 0 for our 3D experiments. The model
parameters 6 are distributed across 3 model components:
coefficients 6., basis 0y, and projection function #p. The
size of each component can vary greatly depending on the
chosen representation.

In the following experiments, we refer to the default
model setting as “DiF-Grid”, which implements the coeffi-
cients ¢ and bases b with learnable tensor grids, P(x) =
MLP(x), and «(x) = Sawtooth(x), where Sawtooth(x) =

x mod 1.0. In the DiF-Grid setting, the total number of opti-
mizable parameters is mainly determined by the resolution
of the coefficient and basis grids M¢, M :

L
D D
0] = 10| + [0c| + 0] = 10| + > ML + K- M,
=1
(10)

We implement the basis grid using linearly increasing resolu-
tions M}, € [32, 128]T'% with interval [32, 128] and
scene bounding box [u, v]. This leads to increased resolution
for modeling higher-resolution signals in our experiments.
We use the same coefficient grid resolution M across all L
levels for query efficiency and to lower per-signal memory
footprint.

In the following, the different model variants of our Dic-
tionary factorization are labeled ”"DiF-xx”, where ”xx” in-
dicates the differences from the default setting “DiF-Grid”.
For example, ”-MLP-B” refers to using an MLP basis repre-
sentation, and ”SL” stands for single level.

4.2. Single Signals

We first evaluate the accuracy and efficiency of our DiF-
Grid representation on various multi-dimensional signals,
comparing it to several recent neural signal representations.
Towards this goal, we consider three popular benchmark
tasks for evaluating neural representations: 2D image re-
gression, 3D Signed Distance Field (SDF) reconstruction
and Radiance Field Reconstruction / Novel View Synthe-
sis. We evaluate each method’s ability to approximate high-
frequency patterns, interpolation quality, compactness, and
robustness to ambiguities and sparse observations.

2D Image Regression: In this task, we directly regress
RGB pixel colors from pixel coordinates. We evaluate our
DiF-Grid on fitting four complex high-resolution images,
where the total number of pixels ranges from 4 M to 213 M.
In Fig. 4, we show the reconstructed images with the corre-
sponding model size, optimization time, and image PSNRs,
and compare them to Instant-NGP [37], a state-of-the-art
neural representation that supports image regression and has
shown superior quality over prior art including Fourier Fea-
ture Networks [53] and SIREN [49]. Compared to Instant-
NGP, our model consistently achieves higher PSNR on all
images when using the same model size, demonstrating the
superior accuracy and efficiency of our model. On the other
hand, while Instant-NGP achieves faster optimization ow-
ing to its highly optimized CUDA-based framework, our
model, implemented in pure PyTorch, leads to comparably
fast training while relying on a vanilla PyTorch implementa-
tion without custom CUDA kernels which simplifies future
extensions.

Signed-Distance Field Reconstruction: Signed Distance
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Figure 4: 2D Image Regression. This figure shows images represented using our DiF-Grid model. The respective image
resolutions and numbers of model parameters are shown below each image. Moreover, we also report a comparison to
Instant-NGP (first number) in terms of optimization time and PSNR metrics (Instant-NGP vs Ours) at the bottom using the
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Function (SDF), as a classic geometry representation, de-
scribes a set of continuous iso-surfaces, where a 3D surface is
represented as the zero level-set of the function. We evaluate
our DiF-Grid on modeling several challenging object SDFs
that contain rich geometric details and compare with previ-
ous state-of-the-art neural representations, including Fourier
Feature Networks [53], SIREN [49], and Instant-NGP [37].
To allow for fair comparisons in terms of the training set
and convergence, we use the same training points for all
methods by pre-sampling 8 M SDF points from the target
meshes for training, with 80% points near the surface and the
remaining 20% points uniformly distributed inside the unit
volume. Following the evaluation setting of Instant-NGP, we
randomly sample 16 M points for evaluation and calculate
the geometric IOU metric based on the SDF sign

2.(s(X) > 0) N (3(X) > 0)
2.(s(X) > 0) U (3(X) > 0)

where X is the evaluation point set, s(X) are the ground
truth SDF values, and §(X) are the predicted SDF values.
Fig. 5 shows a quantitative and qualitative comparison
of all methods. Our method leads to visually better results,
it recovers high-frequency geometric details and contains
less noise on smooth surfaces (e.g., the elephant face). The
high visual quality is also reflected by the highest gloU value

gloU = (11)

of all methods. Meanwhile, our method also achieves the
fastest reconstruction speed, while using less than half of
the number of parameters used by CUDA-kernel enabled
Instant-NGP, demonstrating the high accuracy, efficiency,
and compactness of our factorized representation.

Radiance Field Reconstruction: Radiance field recon-
struction aims to recover the 3D density and radiance of each
volume point from as multi-view RGB images. The geome-
try and appearance properties are updated via inverse volume
rendering, as proposed in NeRF [36]. Recently, many en-
coding functions and advanced representations have been
proposed that significantly improve reconstruction speed and
quality, such as sparse voxel grids [16], hash tables[37] and
tensor decomposition[ 1 0].

In Table 1, we quantitatively compare DiF-Grid with
several state-of-the-art fast radiance field reconstruction
methods (Plenoxel [16], DVGO [51], Instant-NGP [37]
and TensoRF-VM [10]) on both synthetic [36] as well as
real scenes (Tanks and Temple objects) [24]. Our method
achieves high reconstruction quality, significantly outper-
forming NeRF, Plenoxels, and DVGO on both datasets, while
being significantly more compact than Plenoxels and DVGO.
We also outperform Instant-NGP and are on par with Ten-
soRF regarding reconstruction quality, while being highly
compact with only 5.1 M parameters, less than one-third of
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Figure 5: Signed-Distance Field Reconstruction. We reconstruct SDFs from 8.0 M training points. We show qualitative
visual comparisons on the top and quantitative comparisons on the bottom including the number of parameters, reconstruction
time and gloU. DiF-Grid and iNGP [37] are trained for 10k iterations, while SIREN [49] and NeRF with Frequency

Encodings [53] are trained for 200k iterations.

TensoRF-VM and one-half of Instant-NGP. Our DiF-Grid
also optimizes faster than TensoRF, at slightly over 10 min-
utes, in addition to our superior compactness. Additionally,
unlike Plenoxels and Instant-NGP which rely on their own
CUDA framework for fast reconstruction, our implementa-
tion uses the standard PyTorch framework, making it easily
extendable to other tasks.

In general, our model leads to state-of-the-art results on
all three challenging benchmark tasks with both high ac-
curacy and efficiency. Note that the baselines are mostly
single-factor, utilizing either a local field (such as DVGO
and Plenoxels) or a global field (such as Instant-NGP). In
contrast, our DiF model is a two-factor method, incorpo-
rating both local coefficient and global basis fields, hence
resulting in better reconstruction quality and memory effi-
ciency.

4.3. Generalization

Recent advanced neural representations such as NeRF,
SIREN, ACORN, Plenoxels, Instant-NGP and TensoRF op-
timize each signal separately, lacking the ability to model
multiple signals jointly or learning useful priors from mul-

Figure 6: Radiance Field Reconstruction. We evaluate our
DiF using NeRF-Synthetic and Tanks and Temples datasets,
our method is able to reconstruct high-quality surface details.

tiple signals. In contrast, our DiF representation not only
enables accurate and efficient per-signal reconstruction (as
demonstrated in Section 4.2) but it can also be applied to gen-
eralize across signals by simply sharing the basis field across
signal instances. We evaluate the benefits of basis sharing
by conducting experiments on image regression from partial
pixel observations and few-shot radiance field reconstruction.



Synthetic-NeRF Tanks and Temples
Method BatchSize  Steps  Time | Size M)}  PSNRT  SSIMT  PSNRT  SSIMT
NeRF [36] 4096 300k ~35h 01.25 31.01 0.947 25.78 0.864
Plenoxels [16] 5000 128k 11.4m 194.5 31.71 0.958 27.43 0.906
DVGO [51] 5000 30k 15.0m 153.0 31.95e  0.957 2841e 0911e
Instant-NGP [37] 10k-85k 30k 03.9m 11.64 @ 32.59 0.960e  27.09 0.905
TensoRF-VM [10] 4096 30k 17.4m 17.95 33.14 0.963 28.56 0.920
DiF-Grid (Ours) 4096 30k 122me  05.10 33.14 0.961 29.00 0.938

Table 1: Novel View Synthesis with Radiance Fields. We compare our method to previous radiance field reconstruction
methods on the Synthetic-NeRF[36] and Tanks and Temples [24] datasets. We report the scores reported in the original papers
whenever available. We also show average reconstruction time and model size for the Synthetic-NeRF dataset to compare the

efficiency of the methods.

For these experiments, instead of DiF-Grid, we adopt DiF-
MLP-B (i.e., (5) in the Table 3d) as our DiF representation,
where we utilize a tensor grid to model the coefficient and
6 tiny MLPs (two layers with 32 neurons each) to model
the basis. We find that DiF-MLP-B performs better than
DiF-Grid in the generalization setting, owing to the strong
inductive smoothness bias of MLPs.

Image Regression from Sparse Observations: Unlike the
image regression experiments conducted in Sec. 4.2 which
use all image pixels as observations during optimization, this
experiment focuses on the scenario where only part of the
pixels are used during optimization. Without additional pri-
ors, a single-signal optimization easily overfits in this setting
due to the sparse observations and the limited inductive bias,
hence failing to recover the unseen pixels.

We use our DiF-MLP-B model to learn data priors by pre-
training it on 800 facial images from the FFHQ dataset[2 ]
while sharing the MLP basis and projection function param-
eters. The final image reconstruction task is conducted by
optimizing the coefficient grids for each new test image.

In Fig. 7, we show the image regression results on three
different facial images with various masks and compare them
to baseline methods that do not use any data priors, includ-
ing Instant-NGP and our DiF-MLP-B without pre-training.
As expected, Instant-NGP can accurately approximate the
training pixels but results in random noise in the untrained
mask regions. Interestingly, even without pre-training and
priors from other images, our DiF-MLP-B is able to capture
structural information to some extent within the same im-
age being optimized; as shown in the eye region, the model
can learn the pupil shape from the right eye and regress
the left eye (masked during training) by reusing the learned
structures in the shared basis functions. As shown on the
right of Fig. 7, our DiF-MLP-B with pre-trained prior clearly
achieves the best reconstruction quality with better structures
and boundary smoothness compared to the baselines, demon-
strating that our factorized DiF model allows for learning

Input Instant-NGP DiF-MLP-B DiF-MLP-B*
Figure 7: Image Regression from Sparse Observations.
Results obtained by fitting each model to all unmasked pixels.
We use randomly placed black squares as masks for the
bottom two rows and an image of text and small icons as
mask for the top row. The symbol * denotes pre-training
of the basis factors using the FFHQ facial image set. Our
pre-trained model (DiF-MLP-B*) learns robust basis fields
which lead to better reconstruction compared to the per-scene
baselines Instant-NGP and DiF-MLP-B.

and transferring useful prior information from the training
set.

Few-Shot Radiance Field Reconstruction: Reconstruct-
ing radiance fields from few-shot input images with sparse
viewpoints is highly challenging. Previous works address
this by imposing sparsity assumptions [38, 22] in per-scene
optimization or training feed-forward networks [61, 12, 26]
from datasets. Here we consider 3 and 5 input views per
scene and seek a novel solution that leverages data priors
in pre-trained basis fields of our DiF model during the opti-
mization task. It is worth-noting that the views are chosen in



a quarter sphere, thus the overlapping region between views
is quite limited.

Specifically, we first train DiF models on 100 Google
Scanned Object scenes [ | 5], which contains 250 views per
scene. During cross-scene training, we maintain 100 per-
scene coefficients and share the basis ¢ and projection func-
tion P. After cross-scene training, we use the mean coef-
ficient values of pre-trained coefficient fields as the initial-
ization, while fixing the pre-trained functions (c and P) and
fine-tuning the coefficient field for new scenes with few-shot
observations. In this experiment, we compare results from
both DiF-MLP-B and DiF-Grid with and without the pre-
training. We also compare with Instant-NGP and previous
few-shot reconstruction methods, including PixelNeRF [01]
and MVSNeRF [ 1], re-train with the same training set and
test using the same 3 or 5 views. As shown in Table 2 and
Fig. 8, our pre-trained DiF representation with MLP basis
provides strong regularization for few-shot reconstruction,
resulting in fewer artifacts and better reconstruction qual-
ity than the single-scene optimization methods without data
priors and previous few-shot reconstruction methods that
also use pre-trained networks. In particular, without any
data priors, single-scene optimization methods (Instant-NGP
and ours w/o prior) lead to a lot of outliers due to overfit-
ting to the few-shot input images. Previous methods like
MVSNEeRF and PixelNeRF achieve plausible reconstructions
due to their learned feed-forward prediction which avoids
per-scene optimization. However, they suffer from blurry
artifacts. Additionally, the strategy taken by PixelNeRF and
MVSNEeRF assumes a narrow baseline and learns correspon-
dences across views for generalization via feature averaging
or cost volume modeling which does not work as effectively
in a wide baseline setup. On the other hand, by pre-training
shared basis fields on multiple signals, our DiF model can
learn useful data priors, enabling the reconstruction of novel
signals from sparse observations via optimization.

4.4. Influence of Design Choices in Factor Fields

Factor Fields is a general framework that unifies many
previous representations with different settings. In this sec-
tion, we aim to analyze the properties of these variations and
offer a comprehensive understanding of the components of
the proposed representation framework. We conduct exten-
sive evaluations on the four main components of our Factor
Fields framework: factor number N, level number L, coordi-
nate transformation function ;, field representation f;, and
field connector o.

We present a comprehensive assessment of the represen-
tations’ capabilities in terms of efficiency, compactness, re-
construction quality, as well as generalizability, with a range
of tasks including 2D image regression (with all pixels), and
per-scene and across-scene 3D radiance field reconstruction.
Note that, the settings in per-scene and across-scene radiance

3 views 5 views

Method Time/ PSNR{ SSIM{ PSNRt SSIM?
iNGP 0338 14.74 0.776 20.79 0.860
DiF-Grid 13:39  18.13 0.805 20.83 0.847
DiF-MLP-B  18:24 1631 0.804 2226 0.900e
Pixe[NeRF  00:00 - 21.37e 0.878 22.73 0.896
MVSNeRF ~ 00:00 © 20.50 0.868 22.76 0.891
PixeINeRF-ft 25:18 22.21+ 0.882  23.67e 0.895
MVSNeRF-ft 13:06e 18.51 0.864 2049 0.887
DiF-Grid*  13:18 ~ 20.77 0871 2541 0915
DiF-MLP-B* 18:44 21.96  0.891+¢ 2691+ 0.927

Table 2: Few-shot Radiance Field Reconstruction. We
show quantitative comparisons of few-shot radiance field re-
construction from 3 or 5 viewpoints regarding optimization
time and novel view synthesis quality (PSNRs and SSIMs).
Results are averaged across 8 test scenes. The results of
Instant-NGP and our DiF models are generated based on per-
scene optimization, while DiF models with * use pre-trained
basis factors across scenes. We train the feed-forward net-
works of PixelNeRF and MVSNeRF using the same dataset
we learn our shared basis factors, and the results of Pixel-
NeRF and MVSNeRF are generated from the networks via
direct feed-forward inference. Our DiF-MLP-B* with pre-
trained MLP basis factors leads to the best reconstruction
quality.

field reconstruction are the same as introduced in Section 4.2
and Section 4.3, while for the 2D image regression task, we
use the same model setting as in Section 4.2 and test on 256
high fidelity images at a resolution of 1024 x 1024 from the
DIV2K dataset [|]. To enable meaningful comparisons, we
evaluate the variations within the same code base and report
their performance using the same number of iterations num-
ber, batch size, training point sampling strategy and pyramid
frequencies. Correspondingly, the results for Instant-NGP,
EG3D, OccNet, NeRF, DVGO, TensoRF-VM/-CP in Tab. 3
are based on our reimplementation of the original methods in
our unified Factor Fields framework with the corresponding
design parameters shown in the tables.

Factor Number N: As illustrated in Eq. (4), the factor
number N refers to the number of factors used to represent
the target signal. We show comparisons between single-
factor models (1,3,5) and two-factor models (2,4,6) in Ta-
ble 3a. Compared to the models (1) iNGP, (3) EG3D and
(5) DiF-no-C which only use a single factor, the models
(2) DiF-Hash-B, (4) TensoRF-VM and (6) DiF-Grid use the
same factor as (1), (3), (5) respectively, but are extended to
two-factor models with an additional factor, leading to 3dB
and 0.35 dB PSNR improvement in image regression and
3D radiance field reconstruction tasks, while also increasing
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Figure 8: Radiance Fields from 5 Views. We visualize
novel view synthesis results of six test scenes, correspond-
ing to the quantitative results in Tab. 2. We show our DiF-
MLP-B model w/ and w/o pre-trained data priors (bottom
two rows) and compare it to Instant-NGP, PixelNeRF and
MVSNEeRF (top three rows). Our model with pre-trained
basis factors can effectively utilize the learned data priors,
resulting in superior qualitative results with fewer outliers
compared to single-scene models (iNGP and ours w/o pri-
ors), as well as sharper details compared to feed-forward
models (PixeINeRF and MVSNeRF).

training time (~ 10%) and model size (~ 5%) as expected.
Despite the marginal computational overhead, introducing
additional factors in the framework clearly leads to better
reconstruction quality and represents the signal more effec-
tively. The multiplication between factors allows the two
factor fields to modulate each other’s feature encoding and
represent the entire signal more flexibly in a joint manner, al-
leviating the problem of feature collision in Instant-NGP and
related problems of other single-factor models. Additionally,
as shown in Table 1, multi-factor modeling (e.g., N >= 2)
is able to provide more compact modeling while maintaining
a similar level of reconstruction quality. Moreover, it allows
for generalization by partially sharing the fields across in-
stances, such as the across-scene radiance field modeling in
the few-shot radiance reconstruction task.

Level Number L: Our DiF model adopts multiple levels
of transformations to achieve pyramid basis fields, similar to
the usage of a set of sinusoidal positional encoding functions

in NeRF [36]. We compare multi-level models (including
DiF and NeRF) with their reduced single-level versions that
only use a single transformation level in Table 3b. Note that
Occupancy Networks (OccNet, row (1)) do not leverage posi-
tional encodings and can be seen as a single-level version of
NeRF (row (2)) while the model with multi-level sinusoidal
encoding functions (NeRF) leads to about 10dB PSNR per-
formance boost for both 2D image and 3D reconstruction
tasks. On the other hand, the single-level DiF models are
also consistently worse than the corresponding multi-level
models in terms of speed and reconstruction quality, despite
the performance drops being not as severe as those in purely
MLP-based representations.

Coordinate Transformation ~,;: In Table 3c, we evalu-
ate four coordinate transformation functions using our DiF
representation. These transformation functions include si-
nusoidal, triangular, hashing and sawtooth. Their transfor-
mation curves are shown in Fig. 3. In general, in contrast
to the random hashing function, the periodic transformation
functions (2, 3, 4) allow for spatially coherent information
sharing through repeated patterns, where neighboring points
can share spatially adjacent features in the basis fields, hence
preserving local connectivity. We observe that the periodic
basis achieves clearly better performance in modeling dense
signals (e.g., 2D images). For sparse signals such as 3D ra-
diance fields, all four transformation functions achieve high
reconstruction quality on par with previous state-of-the-art
fast radiance field reconstruction approaches [51, 37, 10].

Field Representation f;: In Table 3d, we compare vari-
ous functions for representing the factors in our framework
(especially our DiF model) including MLPs, Vectors, 2D
Maps and 3D Grids, encompassing most previous repre-
sentations. Note that discrete feature grid functions (3D
Grids, 2D Maps, and Vectors) generally lead to faster re-
construction than MLP functions (e.g. DiF-Grid is faster
than DiF-MLP-Band DiF-MLP-C). While all variants can
lead to reasonable reconstruction quality for single-signal
optimization, our DiF-Grid representation that uses grids for
both factors achieves the best performance on the image re-
gression and single-scene radiance field reconstruction tasks.
On the other hand, the task of few-shot radiance field recon-
struction benefits from basis functions that impose stronger
regularization. Therefore, representations with stronger in-
ductive biases (e.g., the Vectors in TensoRF-VM and MLPs
in DiF-MLP-B) lead to better reconstruction quality com-
pared to other variants.

Field Connector o:  Another key design choice of our
Factor Fields framework and DiF model is to adopt the
element-wise product to connect multiple factors. Directly
concatenating features from different components is an al-
ternative choice and exercised in several previous works
[36, 8, 37]. In Table 3e, we compare the performance of



the element-wised product against the direct concatenation
in three model variants. Note that the element-wise prod-
uct consistently outperforms the concatenation operation in
terms of reconstruction quality for all models on all applica-
tions, demonstrating the effectiveness of using the proposed
product-based factorization framework.

5. Conclusion and Future Work

In this work, we present a novel unified framework for
(neural) signal representations which factorizes a signal as a
product of multiple factor fields. We demonstrate that Factor
Fields generalizes many previous neural field representations
(like NeRF, Instant-NGP, DVGO, TensoRF) and enables new
representation designs. In particular, we propose a novel
representation — DiF — with Dictionary factorization, as a
new model in the Factor Fields family, which factorizes a
signal into a localized coefficient field and a global basis
field with periodic transformations. We extensively evaluate
our DiF model on three signal reconstruction tasks including
2D image regression, 3D SDF reconstruction, and radiance
field reconstruction. We demonstrate that our DiF model
leads to state-of-the-art reconstruction quality, better or on
par with previous methods on all three tasks, while achiev-
ing faster reconstruction and more compact model sizes than
most methods. Our DiF model is able to generalize across
scenes by learning shared basis field factors from multiple
signals, allowing us to reconstruct new signals from sparse
observations. We show that, using such pre-trained basis fac-
tors, our method enables high-quality few-shot radiance field
reconstruction from only 3 or 5 views, outperforming previ-
ous methods like PixeINeRF and MVSNeRF in the sparse
view / wide baseline setting. In general, our framework takes
a step towards a generic neural representation with high ac-
curacy and efficiency. We believe that the flexibility of our
framework will help to inspire future research on efficient
signal representations, exploring the potential of multi-factor
representations or novel coordinate transformations.
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Design Performance

Name N f;(x) ~i(x) Time Size 2D Images  Radiance Field Few-shot RF
(1) INGP* 1 Vectors Hashing(x)  00:45/12:02/ - 0.92/6.80/ - 34.73/0.906 @ 32.56/0.958® - / -
(2) DiF-Hash-B 2 Vectors; 3D grids Hashing(x)  00:55/13:10/04:45 1.09/4.37/3.28 37.53/0.949 = 32.80/0.960 = 26.62/0.919
(3) EG3D* 1 2D Maps Orthogep(x) - /14:17/ - - 1454/ - -] - 30.01/0.935 -/ -
(4) TensoRF-VM™ 2 2D Maps; Vectors Orthogy 2p(x) - /16:20/13:06 - /4.55/493 - / - 30.47/0.940  26.79/0.908
(5) DiF-no-C 1 3D Grids Sawtooth(x) 00:41/12:55/ - 0.82/4.55/ - 22.28/0.479 31.10/0.947 -/ -
(6) DiF-Grid 2 3D Grids; 3D Grids Sawtooth(x) 01:13/12:10/11:35 0.87/5.10/7.32 39.51/0.963 = 33.14/0.961 © 25.41/0.915 ®

(a) Design Study on Number of Factors V.

Design Performance

Name Nf;(x) ~i(x) Time Size 2D Images  Radiance Field Few-shot RF
(1) OccNet™ 1x x 02:17/100:23/ - 0.38/0.43/ - 13.90/0.437 20.60/0.849 -/ -
(2)NeRF~ 1x Sinusoidal(x)02:18/65:50/ - 0.39/0.44/ - 28.99/0.816 27.81/0.919 -/ -
(3)DiF-Hash-B 2 Vectors; 3D Grids Hashing(x) 00:55/13:10/4:45 1.09/4.37/3.2837.53/0.949 ©32.80/0.960 = 26.62/0.919
(4)DiF-Hash-B-SL 2 Vectors; 3D Grids Hashing(x) 00:41/13:21/03:030.89/4.54/4.5930.97/0.891 31.11/0.941 @ 24.13/0.881 ®
(5) DiF-Grid 2 3D Grids; 3D Grids Sawtooth(x) 01:13/12:10/11:350.99/5.10/7.3239.51/0.963 ©33.14/0.961 © 25.41/0.915
(6)DiF-Grid-SL 2 3D Grids; 3D Grids Sawtooth(x) 00:49/22:35/13:12 0.98/5.11/7.2538.73/0.973 + 31.08/0.942  23.88/0.882

(b) Design Study on Pyramid Levels L.

Design Performance

Name N f;(x) ~i(x) Time Size 2D Images  Radiance Field Few-shot RF
(1) DiF-Hash-B 2 Vectors; 3D Grids Hashing(x) 00:55/13:10/4:45 1.09/4.37/3.28 37.53/0.949 32.80/0.960  26.62/0.919
(2) DiF-Sin-B 2 3D Grids; 3D Grids Sinusoidal(x) 00:55/12:19/08:28 0.99/5.10/7.32 38.21/0.953 @ 32.85/0.961 ® 25.43/0.908
(3) DiF-Tri-B 2 3D Grids; 3D Grids Triangular(x) 00:55/12:49/08:44 0.99/5.10/7.32 39.38/0.962 = 32.95/0.960 = 24.78/0.904
(4) DiF-Grid 2 3D Grids; 3D Grids Sawtooth(x) 01:13/12:10/11:35 0.99/5.10/7.32 39.51/0.963 © 33.14/0.961 © 25.41/0.915

. (c) Design Study on Coordinate Transformations ;.

Design Performance

Name N f;(x) i (x) Time Size 2D Images  Radiance Field Few-shot RF
(1) TensoRF-VM™ 2 2D Maps; Vectors Orthogy 2p(x) - /16:20/13:06 - /4.55/4.93 - / - 30.47/0.940  26.79/0.908
(2) DiF-Grid 2 3D Grids; 3D Grids Sawtooth(x)  01:13/12:10/11:35 0.99/5.10/7.32 39.51/0.963 = 33.14/0.961 © 25.41/0.915
(3) DiF-DCT 2 3D Grids; 3D Grids Sawtooth(x) 00:53/ - / - 0.18/ - / - 23.16/0.606 - / - -/ -
(4) DiF-Hash-B 2 Vectors; 3D Grids Hashing(x)  00:55/13:10/10.15 1.09/4.37/3.28 37.53/0.949 = 32.80/0.960 = 26.53/0.924 @
(5 DiF-MLP-B 2 MLP; 3D Grids ~ Sawtooth(x) 01:24/18:18/18:23 0.18/0.62/2.53 28.76/0.819  29.62/0.932  26.91/0.927
(6) DiIF-MLP-C 2 3D Grid; MLP Sawtooth(x) 01:13/13:38/08:23 0.87/4.54/4.86 34.72/0.910 @ 32.57/0.956 ® 23.54/0.875
(7) TensoRF-CP* 3 Vectorsx3 Orthogip(x) 00:43/28:05/12:42 0.39/0.29/0.29 33.79/0.899 31.14/0.944  22.62/0.867

. (d) Design Study on Field Representations f;.

Design Performance
Name Nf; (x) ~i(x) Time Size 2D Images Radiance Field Few-shot RF
(1) TensoRF-CP* 3 Vectorsx3 Orthogip(x) 00:43/28:05/10:110.39/0.29/0.2933.79/0.899 ©31.14/0.944 » 23.19/0.879
(2) TensoRF-CP*-Cat 3 vectorsx3 Orthogip(x) 00:47/39:05/09:47 0.40/0.31/0.3125.67/0.683 + 26.75/0.905 = 21.43/0.856
(3) TensoRF-VM* 2 2D Maps; vectors  Orthogi 2p(x) - /16:20/12:52 - /4.55/493 - /| - 30.47/0.940 © 26.99/0.911
(4) TensoRF-VM*-Cat2 2D Maps; vectors Orthogy op(x) - /18:35/07:02 - /4.56/4.94 - | - 29.86/0.939 © 24.67/0.885
(5)DiF-Grid 2 3D Grids; 3D Grids Sawtooth(x) 01:13/12:10/11:35 0.99/5.10/7.3239.51/0.963 ©33.14/0.961 © 25.41/0.915
(6) DiF-Grid-Cat 2 3D Grids; 3D Grids Sawtooth(x) 00:51/11:35/06:47 1.00/5.10/7.3237.76/0.946 - 32.95/0.960 - 24.71/0.894

(e) Performance comparison on element-wise product o vs. concatenation.

Table 3: Influence of Design Choices in the Factor Fields Framework. The comparison is done using the same code base
and hyperparameter configuration including number of levels, frequency of each level, etc. Prior methods represented in our
framework are labeled with * due to minor differences with respect to the original publications. Runtime and model size are
reported separately for 2D Images / Radiance Fields / Few-shot Radiance Fields.
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