

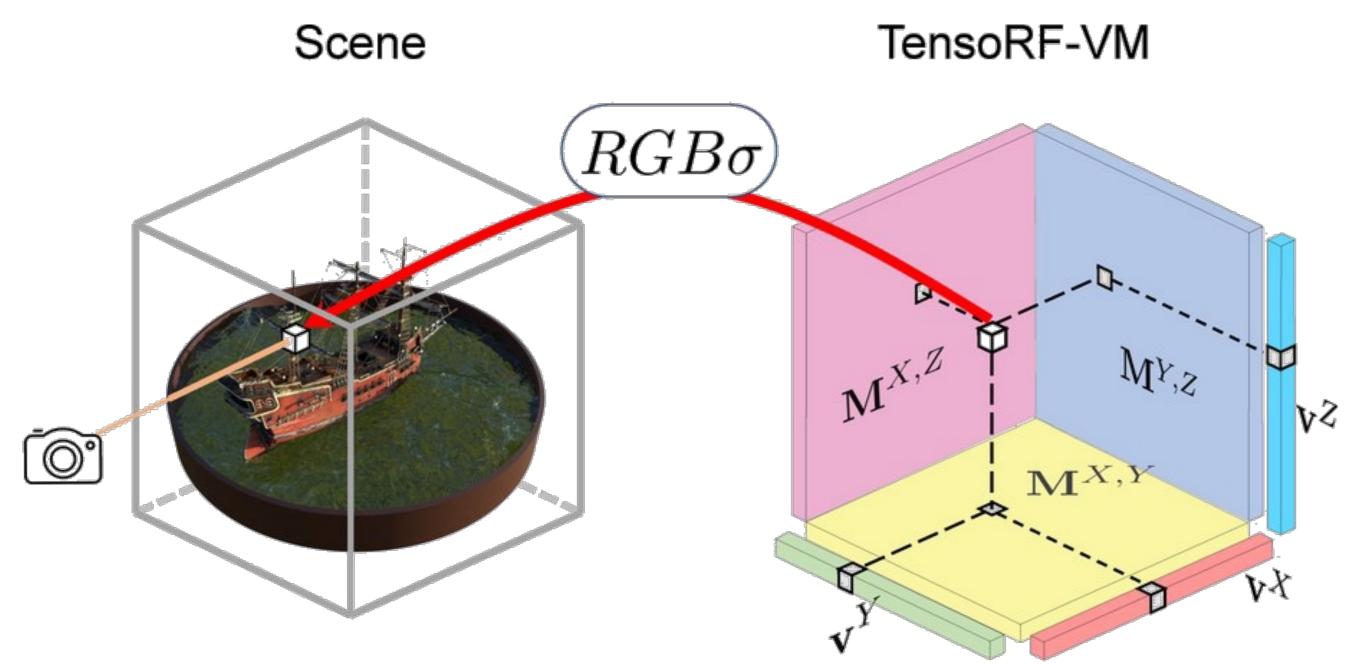
TensorRF: Tensorial Radiance Fields

Anpei Chen^{1*}, Zexiang Xu^{2*}, Andreas Geiger³, Jingyi Yu¹, Hao Su⁴ ¹ShanghaiTech University ²Adobe Research ³University of Tübingen and MPI-IS, Tübingen ⁴UC San Diego * Indicates equal contribution

Scenes Modeling with Tensor Decomposition

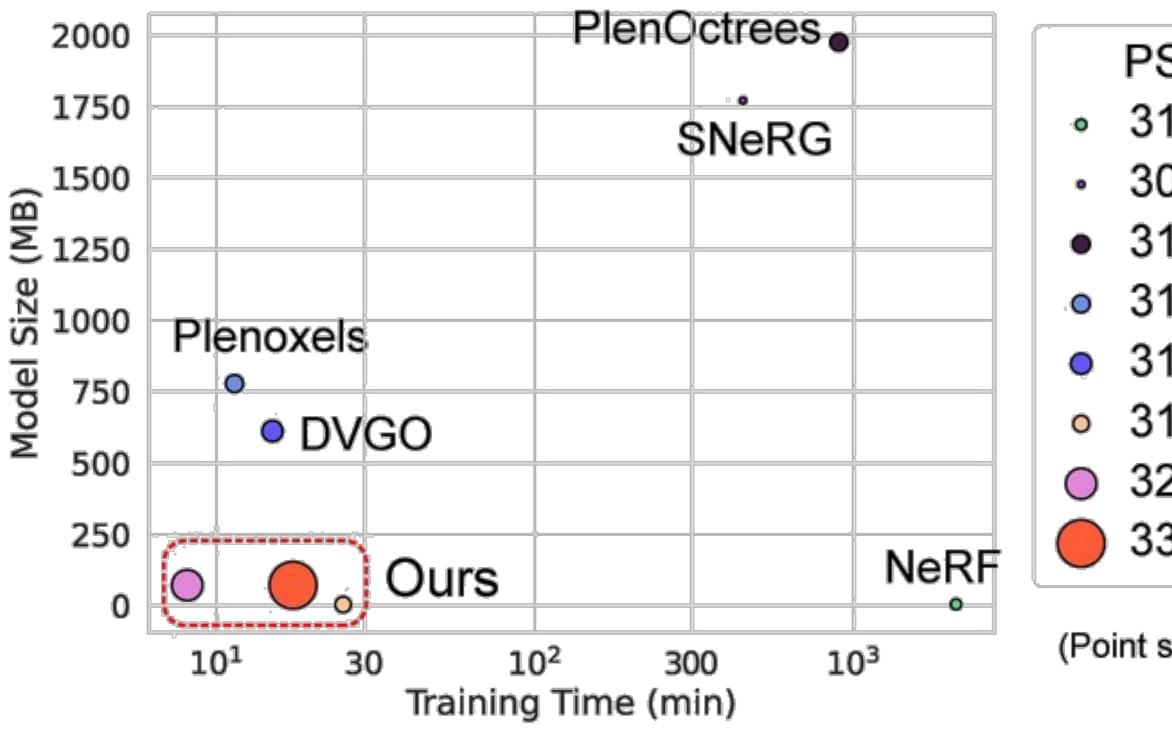
We present a novel approach to model and reconstruct radiance fields. Unlike NeRF that uses pure MLPs,

we consider the full volume field as a 4D tensor and propose to factorize the tensor into a set of vectors and matrices that describe scene appearance and geometry along their corresponding axes.



Performance Overview

Quantitative Results on the Synthetic NeRF Dataset



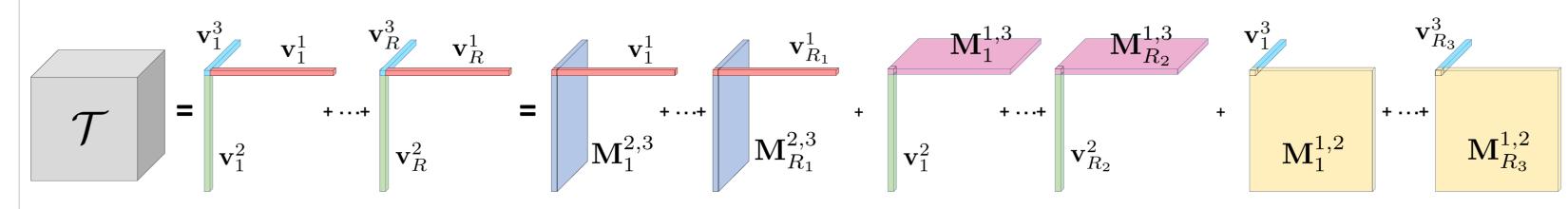
- We demonstrate that TensoRF with CP decomposition can achieve fast reconstruction with better rendering quality and even a smaller model size (**<4MB**) than NeRF.
- Moreover, TensoRF with VM decomposition can further boost our rendering quality to outperform previous state-of-the-art methods and reduce the reconstruction time (<10min only with standard PyTorch implementation).

- 31.01 NeRF
- 30.38 SNeRG
- PlenOctrees 31.71
- 31.71 Plenoxels
- 31.95 DVGO
 - 31.56 Ours-CP-384-30k
 - 32.52 Ours-VM-192-15k
- 33.14 Ours-VM-192-30k

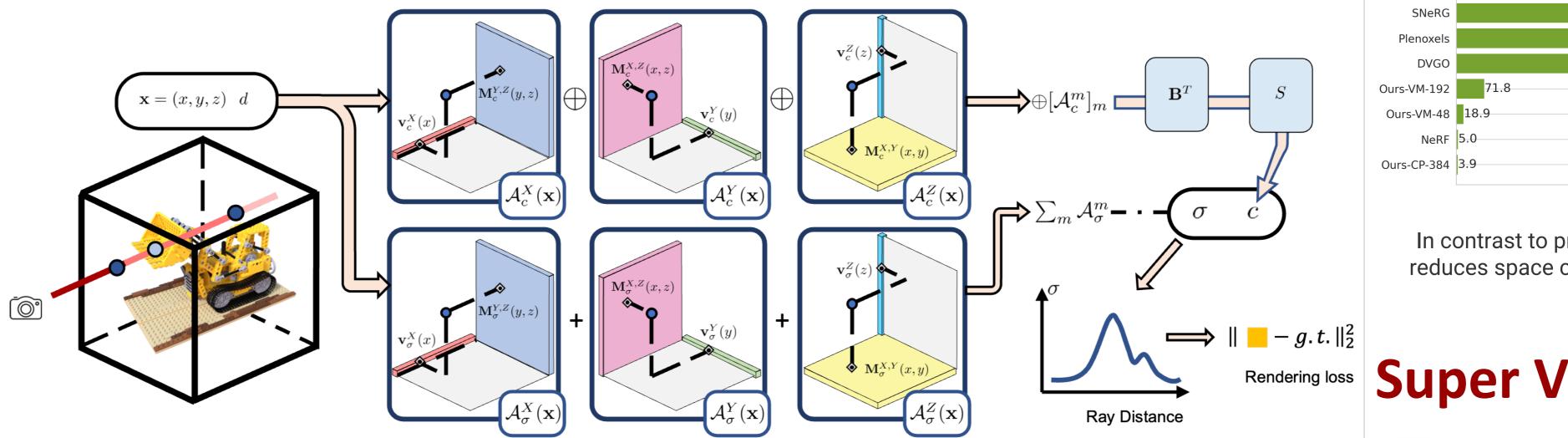
(Point sizes correspond to PNSRs)

Method

We factorize radiance fields into compact components for scene modeling. To doso, we apply both the classic CP decomposition and a new vectormatrix (VM) decomposition; both are illustrated in following figure:



Left: CP decomposition, which factorizes atensor as a sum of vector outer products. Right: our vector-matrix decomposition, which factorizes a tensor as a sum of vector-matrix outer products. Please refer to our paper for more decomposition derails.



We now present our TensoRF representation and reconstruction.

For each shading location $\mathbf{x} = (x,y,z)$, we use linearly/bilinearly sampled values from the vector (V)/matrix (M) factors to compute the corresponding trilinearly interpolated values of the tensor components.

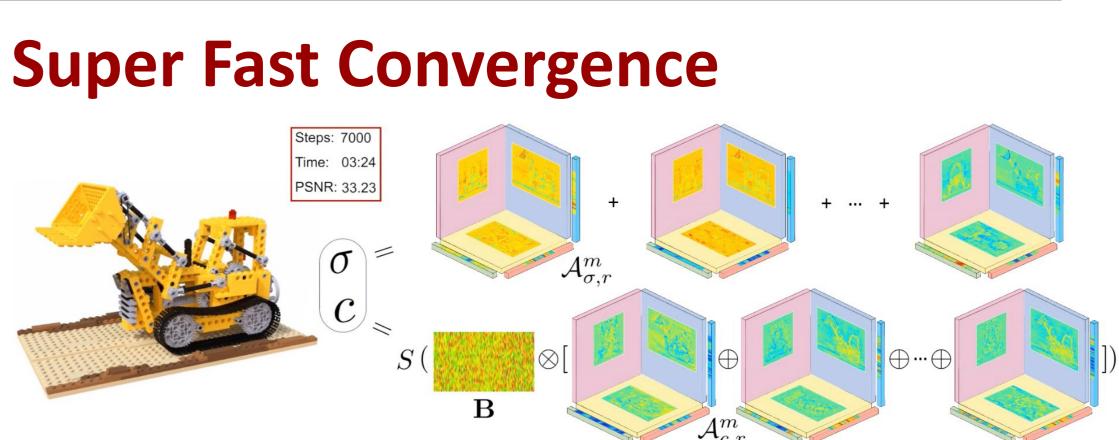
The density component values ($A_{\sigma}(x)$) are summed to get the volume density directly (σ). The appearance values (A_c(x)) are concatenated into a vector $(\bigoplus[A_c^m(x)]_m)$ that is then multiplied by an appearance matrix (**B**) and sent to the decoding function S for RGB color (c) regression.

The decoding function S can be a Spherical Harmonic (SH) function or a fully-connected network (FCN).

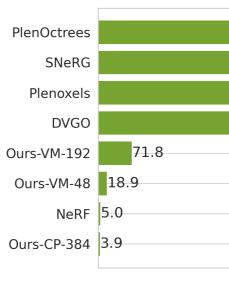
Table

	Synthetic-NeRF					NSVF		TanksTemples		
Method	BatchSize	Steps	Time \downarrow	$Size(MB)\downarrow$	$PSNR\uparrow$	$SSIM\uparrow$	$PSNR\uparrow$	$\mathrm{SSIM}\uparrow$	PSNR↑	$SSIM\uparrow$
SRN [46]	-	-	>10h	-	22.26	0.846	24.33	0.882	24.10	0.847
NSVF [26]	8192	150k	$>48^{*}h$	-	31.75	0.953	35.18	0.979	28.48	0.901
NeRF $[31]$	4096	300k	$\sim \! 35 \mathrm{h}$	5.00	31.01	0.947	30.81	0.952	25.78	0.864
SNeRG [17]	8192	250k	$\sim \! 15h$	1771.5	30.38	0.950	-	-	-	-
PlenOctrees [59]	1024	200k	$\sim \! 15h$	1976.3	31.71	0.958	-	-	27.99	0.917
Plenoxels [43]	5000	128k	11.4m	778.1	31.71	0.958	-	-	27.43	0.906
DVGO [47]	5000	30k	$15.0\mathrm{m}$	612.1	31.95	0.957	35.08	0.975.	28.41	0.911
Ours-CP-384	4096	30k	$25.2\mathrm{m}$	3.9	31.56	0.949	34.48	0.971	27.59	0.897
Our-VM-192-SH	4096	30k	$16.8 \mathrm{m}$	71.9	32.00	0.955	35.30	0.977	27.81	0.907
Ours-VM-48	4096	30k	13.8m	18.9	32.39	0.957	35.34	0.976	28.06	0.909
Ours-VM-192	4096	15k	8.1m	71.8	32.52	0.959	35.59	0.978	28.07	0.913
Ours-VM-192	4096	30k	17.4m	71.8	33.14	0.963	36.52	0.982	28.56	0.920

TEL AVIV 2022

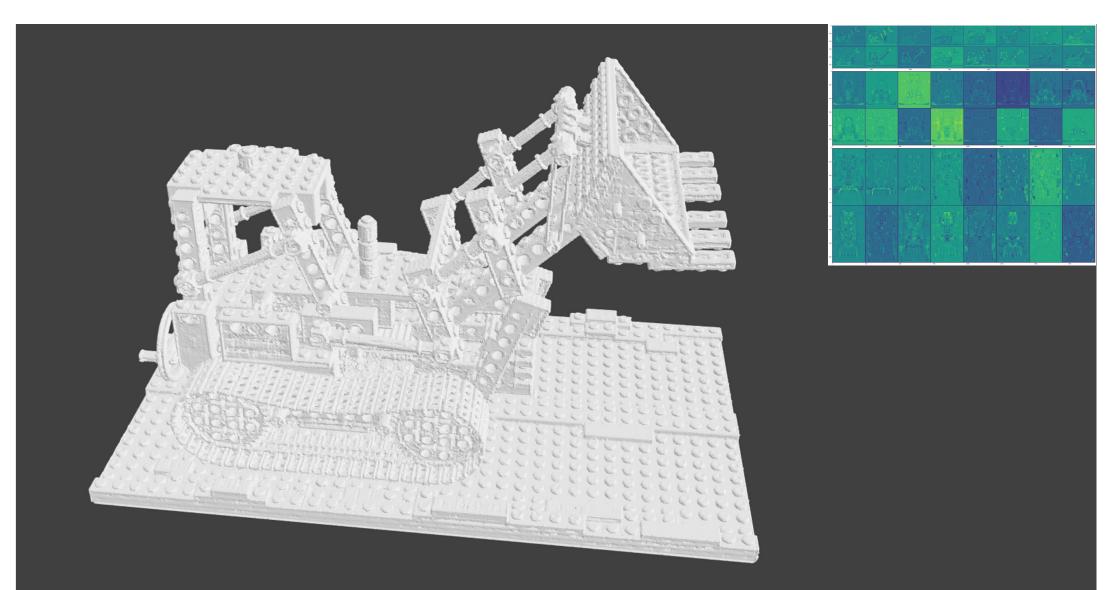


Note that, unlike concurrent works Plenoxels and Instant-ngp that require customized CUDA kernels, our model's efficiency gains are obtained using a standard PyTorch mplementation.



In contrast to previous works that directly reconstruct voxels, our tensor factorization reduces space complexity from $O(n^3)$ to O(n) (with CP) or $O(n^2)$ (with VM), significantly lowering memory footprint.

Our approach can also achieve high-quality radiance field reconstruction for 360° objects and forward-facing scenes.



Top right: here we visualize the trained density basis of the Lego scene, the number of the basis is 16 for each dimension. We normalize the basis with min/max value along each dimension thus the brightness corresponds to their energy. We can also convert the above density basis to a mesh using marching cubes.

Super Compact Memory Footprint

	1976.3
1771.5	
778.1	
612.1	
Madel Cine (MD)	

Super Vivid Details

Geometric Visualization

apchenstu.github.io/TensoRF/