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SNAREF: Differentiable Forward Skinning for
Animating Non-Rigid Neural Implicit Shapes




Neural Implicit Shapes
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Neural implicit representations are useful for 3D human modeling:
» Topological flexibility
» Resolution independent

However:

» Animating such representations is not straightforward

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.



Animating Neural Implicit Shapes

(M

X- o5 >o(x,p)
guu
?

p—1t

Goal:

» Generate implicit shapes in given poses

» Learn shape representation from deformed observations
Key question:

» How to model and learn skeletal deformation of implicit shapes?

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.



Existing Solutions




Animating Implicit Shapes

Canonical Parts Transformed Parts
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Piecewise rigid model: [Deng et al,, ECCV 2020]

» Model shape as parts, and each part can be rigidly transformed

» Discontinuous artifacts at joints

Ground Truth
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Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.



Animating Implicit Shapes

Canonical Shape Skinning Weights Deformed Shape Ground Truth
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Backward skinning: [Jeruzalski et al., ArXiv 2020]  [Mihajlovic et al., CVPR 2021]

» Backward LBS with pose-dependent skinning weights in deformed space

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.



Animating Implicit Shapes

Canonical Shape Skinning Weights Deformed Shape Ground Truth
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Backward skinning: [Jeruzalski et al., ArXiv 2020]  [Mihajlovic et al., CVPR 2021]
» Backward LBS with pose-dependent skinning weights in deformed space
» Does not generalize to unseen poses

» Cannot handle one-to-many mapping

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.



Animating Implicit Shapes

Canonical Shape Skinning Weights Deformed Shape Ground Truth
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This work - forward skinning:

» Forward LBS with pose-independent skinning weights in canonical space

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.
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Animating Implicit Shapes

Canonical Shape Skinning Weights Deformed Shape Ground Truth
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This work - forward skinning:
» Forward LBS with pose-independent skinning weights in canonical space
» Generalization to unseen poses

» Can handle one-to-many mapping

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.
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Differentiable Forward Skinning

Find x*
nn ﬂ T
x* oy (x") Z w; Bx*
uu U =0
B

Correspondence search:

» Given query x/, its canonical correspondences x* satisfy d,,, (x*,B) —x' =0

» x* can be numerically determined via iterative root finding

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021. 1



Differentiable Forward Skinning

Find x*, s.t.
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Multiple correspondences:

» Multiple solutions might exist — apply root finding with multiple initializations
> Rigidly transform the query point with each bone as initialization x9 = B; ' - x/

(2

» Collect valid solutions by convergence X* = {x} | ||d,, (x}, B) — xX||, < €}

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021. 1



Differentiable Forward Skinning
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Occupancy query:
» Model the canonical shape as a single occupancy network
» Condition the canonical shape on pose to model pose-dependent deformations

> Aggregate multiple correspondences o(x’, p) = maxy+cx+{ fs, (x*, p)}

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021. 1



Training Objective
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Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021. 12



Gradients
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» Analytical gradients via implicit differentiation:
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Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021




Results

Backward Skinning NASA Ours Ground Truth

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.



Summary

Differentiable forward skinning:
» |earn forward skinning and shape fields in pose-independent space
» Learn from deformed shapes without direct supervision or prior (e.g., SMPL)

» Generalize to challenging unseen poses at test time

However:
» Root finding is time-consuming (10x slower than occupancy query)
» Each iteration requires a skinning network query

» Requires 3D data = combine with differentiable renderer to learn from images
» Requires accurate poses for training = jointly optimize pose, shape and skinning

» So far only a single subject = generative model of animatable avatars

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021. 15



MetaAvatar: Learning Animatable Clothed
Human Models from Few Depth Images




MetaAvatar
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Goal:

> Controllable avatars learned from few monocular depth observations
» No fully-body scans or per-subject/cloth-type optimization required

» Fast optimization (2 minutes with 8 depth maps as input)

Idea: Meta-learn pose conditioned hypernetwork to predict parameters of neural SDF

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.



MetaAvatar
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SDF
Approach:
» Using learned Inverse LBS, transform input depth frames into canonical pose
» Fine-tune a meta-learned HyperNet to predict parameters of neural SDF

» Given novel poses, our approach generates pose-dependent animated meshes

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021. 18



Meta-learning a SDF
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Meta-learning a SDF:

» 5-layer SIREN network with 256 neurons in each layer: fg-(x)
» Point-based on-surface and off-surface loss function [Gropp et al. 2020]
» Meta-learn network parameters on all subjects using Reptile [Nichol et al. 2018]

» Allows fast fine-tuning on new subject, but no pose-dependent deformations

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021. 19



Meta-learning a pose-conditioned SDF
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Meta-learning a pose-conditioned SDF:
» 5-layer SIREN network with 256 neurons in each layer: fy(x, {By})

» Condition network on bone transformations {B;}

» Does not work very well, leads to overly smooth results

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.
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Meta-learning a pose-conditioned SDF

meta-SIREN

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.
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MetaAvatar
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Meta-learning a pose-conditioned HyperNetwork:
» Learn HyperNetwork g,,({B}) on parameters of neural SDF
» HyperNetwork predicts residuals to meta-learned SDF parameters ¢*

> At test time, fine-tune parameters v of HyperNetwork

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.
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Learning with Raw Sensor Inputs

Input Output
8 rendered monocular depth frames with Canonical body driven by novel poses

estimated SMPL from PTF

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.
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Fine-tuning on Kinect Data

Input Output )
8 filtered monocular depth frames with Canonical body driven by novel poses

estimated SMPL from POSEFusion

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.

Output
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Fine-tuning on Reduced Data

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.
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Fine-tuning on Reduced Data
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Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.
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Comparison to Baselines

Input: Depth Images Input: Dense Full Scans

SCANimate
uses artificial
hands and feet
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SCANimate (Saito et al. CVPR21)

Input: Watertight Meshes Input: Watertight Meshes

LEAP (Mihajlovic et al. CVPR21) NASA (Deng et alt ECCV20)|

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.
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Summary

MetaAvatar:
» MetaAvatar enables generation of controllable clothed human avatars
» Meta-learning allows for fast subject-specific fine-tuning from few depth images
» MetaAvatar enables realistic clothed avatars in 2 minutes from 8 depth maps
» HyperNetworks are required to capture detailed pose dependent deformations
>

Learned Inverse/Forward LBS models and bone transformations required as input

Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurlPS, 2021.
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Thank you!

http://autonomousvision.github.io
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