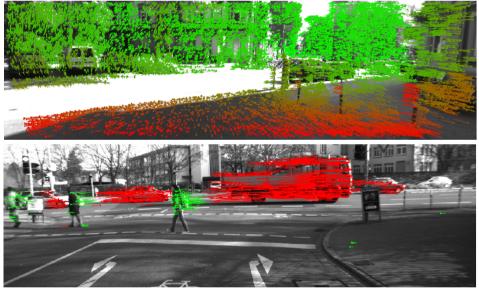
Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

Introduction


- Localization is a critical part of any autonomous system
- GPS has limited availability; can be blocked or degraded
- Place recognition techniques rely on visiting locations before localization \

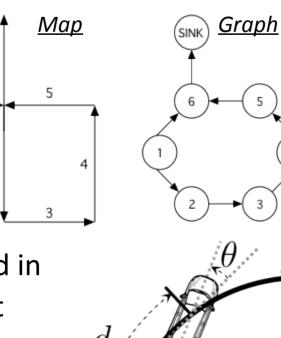
[Dellaert et al, ICRA 1999; Thrun et al, AI 2001; Hays and Efros, CVPR 2008; Schindler et al, CVPR 2008; Crandall et al, WWW 2009; Kalogerakis et al, ICCV 2009]
Humans are able to localize given only a map of a region, can

- we do the same with a vision system?
- High-quality community developed maps are now freely available (OSM), making this a low-cost option
- We exploit the visual odometry to localize a vehicle in a given map to an accuracy of 3.1m on average

• **Source code:** http://www.cs.toronto.edu/~mbrubake

[Geiger et al, IV 2011]

Localization using Visual Odometry


- Motion provides weak cues about location
- > Turns, curves and straight driving can limit possible locations in a region
- \succ Short sequences can be highly ambiguous
- Visual odometry is noisy and suffers from drift over longer sequences
- Approach must be able to cope with high degree of uncertainty and ambiguity

Map-based Location Representation

- Map data is conveniently represented as a graph
- \succ Nodes u represent street segments

Edges represent connectivity between streets

- Given the street node, the vehicles position represented in terms of position and orientation on the street segment
- $\succ d$ is the distance from the start of the street segment
- $\succ \theta$ is the heading relative to the street segment

Marcus A. Brubaker[•], Andreas Geiger⁺ and Raquel Urtasun[•] • Toyota Technological Institute at Chicago, + Karlsruhe Institute of Technology & MPI Tübingen

Probabilistic Localization with Visual Odometry

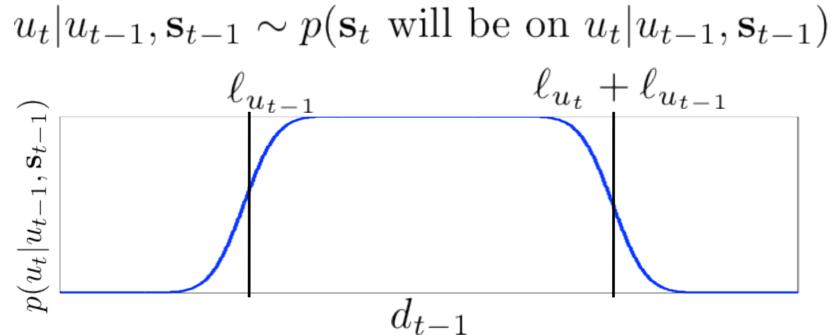
• The unknown state includes

 $> u_t$ is the current street segment, and

$$\mathbf{s}_t = (d_t, \theta_t, d_{t-1}, \theta_{t-1})$$

• Odometry observations \mathbf{y}_t are assumed to be corrupted with IID Gaussian noise

$$\mathbf{y}_t | u_t, \mathbf{s}_t \sim \mathcal{N}\left(\mathbf{M}_{u_t} \mathbf{s}_t, \Sigma_{u_t}^{\mathbf{y}}\right)$$


where $\mathbf{M}_{u_{t}}$ computes the change in position and orientation

• A second order linear process, corrupted by Gaussian noise, is assumed for the continuous pose variables \mathbf{S}_t

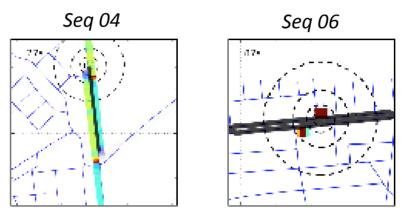
$$\mathbf{s}_t | u_t, u_{t-1}, \mathbf{s}_{t-1} \sim \mathcal{N} \left(\mathbf{A}_{u_t, u_{t-1}} \mathbf{s}_{t-1} + \mathbf{b}_{u_t, u_{t-1}}, \Sigma_{u_t}^{\mathbf{s}} \right)$$

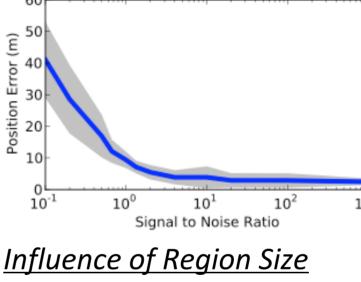
where $\mathbf{A}_{u_t,u_{t-1}}$ computes a constant velocity model

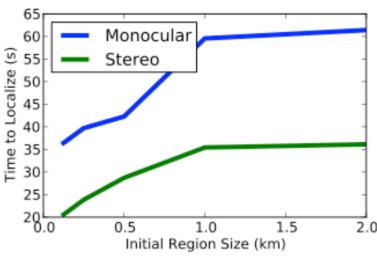
• Given the length of street segments ℓ_{μ} and the connectivity defined by the street graph, one can derive the street transition probability to be:

• To represent the posterior

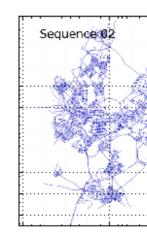
$$p(u_t, \mathbf{s}_t | \mathbf{y}_{1:t}) = p(\mathbf{s}_t | u_t, \mathbf{y}_{1:t}) p(u_t | \mathbf{y}_{1:t})$$


• Continuous portion represented with Mixture of Gaussians


$$p(\mathbf{s}_t | u_t, \mathbf{y}_{1:t}) = \sum_{i=1}^{N_{u_t}} \pi_{u_t}^{(i)} \mathcal{N}\left(\mathbf{s}_t | \mu_{u_t}^{(i)}, \Sigma_{u_t}^{(i)}\right)$$

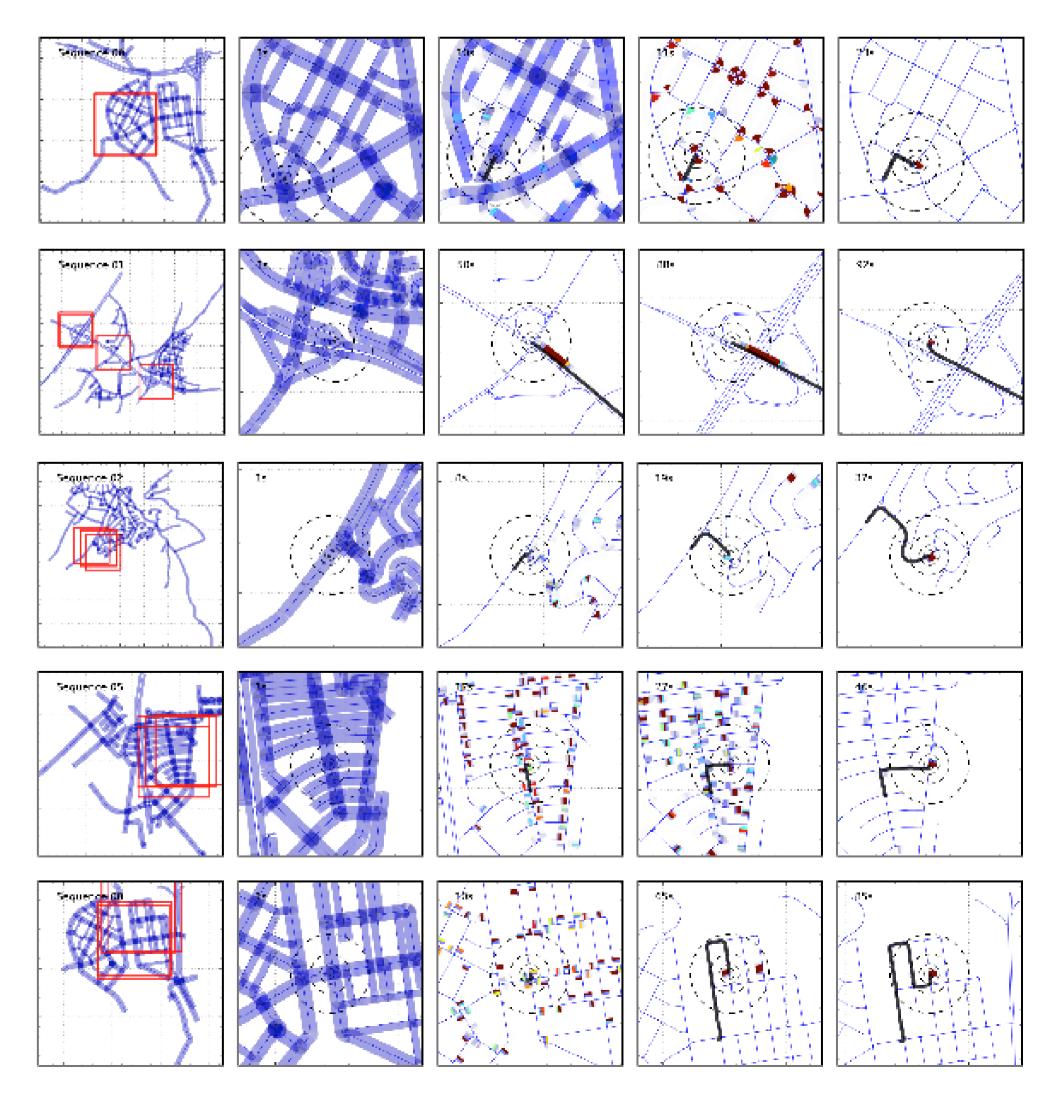

- Inference exploits Gauss-Linear structure of the model using a mix of Kalman filter-like updates and Monte Carlo approximations
- Derive a general algorithm to simplify mixture models to prevent the computational costs from growing

Experimental Results


- Method validated on visual odometry sequences from the KITTI dataset [Geiger et al, CVPR 2012]
- Stereo and monocular odometry computed LIBVISO2 [Geiger et al, IV 2011]
- Error measure: heading angle and position
- GPS-based odometry and map projection error computed for comparison

Large Scale Maps

Ambiguous Sequences


Robustness to Noise


• 18km² with 2,150km of road

• See video for more results

01	02	03	04	05	06	07	08	09	
*	8.1m	18.8m	*	5.6m	*	15.5m	45.2m	5.4m	
3.8m	4.1m	4.8m	*	2.6m	*	$1.8\mathrm{m}$	2.4m	4.2m	
2.5m	2.2m	$6.9\mathrm{m}$	*	2.7m	*	$1.5\mathrm{m}$	2.0m	$3.8\mathrm{m}$	4
1.3m	1.0m	$2.5\mathrm{m}$	$3.9\mathrm{m}$	$1.3\mathrm{m}$	$1.0\mathrm{m}$	$0.6\mathrm{m}$	1.1m	1.2m]
*	1.5°	2.4°	*	2.0°	*	1.3°	10.3°	1.6°	
2.7°	1.3°	1.6°	*	1.4°	*	1.9°	1.2°	1.3°	
1.0°	0.8°	1.4°	*	1.2°	*	1.5°	1.0°	0.9°	
	* 3.8m 2.5m 1.3m * 2.7°	$\begin{array}{c cccc} * & 8.1m \\ 3.8m & 4.1m \\ 2.5m & 2.2m \\ 1.3m & 1.0m \\ & * & 1.5^{\circ} \\ 2.7^{\circ} & 1.3^{\circ} \end{array}$	$\begin{array}{c cccccc} * & 8.1m & 18.8m \\ \hline 3.8m & 4.1m & 4.8m \\ 2.5m & 2.2m & 6.9m \\ \hline 1.3m & 1.0m & 2.5m \\ \hline * & 1.5^{\circ} & 2.4^{\circ} \\ 2.7^{\circ} & 1.3^{\circ} & 1.6^{\circ} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

