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Introduction Probabilistic Localization with Visual Odometry Experimental Results

e Localization is a critical part of any autonomous system  The unknown state includes  Method validated on visual odometry sequences from the KITTI dataset [Geiger et al, CVPR 2012]

* GPS has limited availability; can be blocked or degraded

* Place recognition techniques rely on visiting locations before localization

[Dellaert et al, ICRA 1999; Thrun et al, Al 2001; Hays and Efros, CVPR 2008;

Schindler et al, CVPR 2008; Crandall et al, WWW 2009; Kalogerakis et al, ICCV 2009]
« Humans are able to localize given only a map of a region, can

» Ut is the current street segment, and
> St = (dt; O, di—1, gt—l)

Odometry observations Y ¢ are assumed to be corrupted with 11D

Gaussian noise
Yi|tg, 8¢ ~ N (Mutst:ﬂ EL)

e Stereo and monocular odometry computed LIBVISO2 [Geiger et al, IV 2011]

* Error measure: heading angle and position

 GPS-based odometry and map projection error computed for comparison

Ambiguous Sequences

we do the same with a vision system? seq 04 cou 06 00 | or | 02 03 04 | 05 | 06 07 08 09 | 10 || Average
h M t th h . iti d ientati —— q _ Monocular || 15.6m * 8.1m | 18.8m * 5.6m * 15.5m | 45.2m | 5.4m * 18.4m
o ngh-quahty Community developed maps are now freely where Uy COmMpPULES the change In PosItion and orientation o 2 Stereo 21m | 3.8m | 4.1m | 4.8m * 2.6m * 1.8m | 24m | 42m | 3.9m 3.1m
. . . . 2 GPS 1.8m | 2.5m | 2.2m | 6.9m * 2.7Tm * 1.5m 2.0m | 3.8m | 2.5m 2.4m
available (OSM), making this a low-cost option A second order linear process, corrupted by Gaussian noise, is ~ Map 0.8m | 1.3m | 1.0m | 25m | 3.9m | 1.3m | 1.0m | 0.6m | Lim | 1.2m | Lim | 1.44m
assumed for the continuous pose variables S 77 oMonocular || 2.0° | * | 1.5° | 24° | % 1 20° | * | 13° | 10.3° | 1.6° | * 3.6°
* We exploit the visual odometry to localize a vehicle in a given P t g Stereo 120 | 270 | 1.3° | 160 | ¢ | 14° | * | 190 | 120 | 1.3° | 1.3° || 1.3°
N (A b ys v = GPS 1.0° | 1.0° | 0.8° | 1.4° < | 120 | % |15 | 1.0° | 0.9° | 1.0° 1.0°
Sﬁluﬁauﬁ—lﬁst—l ™~ we g1 St—1 T Dugug g Uy

map to an accuracy of 3.1m on average
* Source code: http://www.cs.toronto.edu/~mbrubake
Localization using Visual Odometry

* Motion provides weak cues about location

» Turns, curves and straight driving can limit
possible locations in a region

» Short sequences can be highly ambiguous

» Visual odometry is noisy and suffers from
drift over longer sequences

* Approach must be able to cope with high

where A,,, ,,_, computes a constant velocity model

Given the length of street segments £,, and the connectivity
defined by the street graph, one can derive the street transition
probability to be:

Ug|ug_1,8;-1 ~ p(s; will be on wuy|us_1,8;_1)

¢ U, + 1

Ut —1 U —1

p(“t'”t—l: St—l)
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Map data is conveniently represented as a graph ., °| “ oo p(ut} Sy ‘YI:t) — p(st ‘“t: yl:t)p(’ut |}71:t) Large Scale Maps
> Nodes U represent street segments ; 4 (0 (& e Continuous portion represented with Mixture of Gaussians e 18km?2 with 2,150km of road
» Edges represent connectivity between streets
& P 4 v (& e See video for more results

e Given the street node, the vehicles position represented in
terms of position and orientation on the street segment

> (l is the distance from the start of the street segment

> 0 Is the heading relative to the street segment

N,
p(se|ue, y1:t) = Z’FTSBN (Sf‘ﬁgju E«Eff)
=1

Inference exploits Gauss-Linear structure of the model using a mix
of Kalman filter-like updates and Monte Carlo approximations

Derive a general algorithm to simplify mixture models to prevent
the computational costs from growing
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