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Related Work



Conditional Imitation Learning

Conditional Imitation Learning:
I Direct mapping: Observations→ actions
I Conditioned on command (“left”, “straight”, . . . )
I Labeled training data obtained automatically
I Inertia problem⇒ speed prediction
I Does not generalize well to new environments
I Large training variance

(wrt. initialization, data sampling)

Codevilla, Santana, Lopez and Gaidon: Exploring the Limitations of Behavior Cloning for Autonomous Driving. ICCV, 2019. 6



Conditional Affordance Learning

Conditional Affordance Learning:
I Map: Observations→ affordances→ actions
I Affordances: angle wrt. road, distance to lane

boundaries or other cars, etc.
I Decoupling of perception and action
⇒Better generalization

I Rule-based controller
I Misspecification of affordances

Sauer, Savinov and Geiger: Conditional Affordance Learning for Driving in Urban Environments. CoRL, 2018. 7



Does Computer Vision Matter for Action?

Does Computer Vision Matter for Action?
I Analyze various intermediate representations:

segmentation, depth, normals, flow, albedo
I Intermediate representations improve results
I Consistent gains across simulations / tasks
I Depth and semantic provide largest gains
I Better generalization performance

Zhou, Krähenbühl and Koltun: Does computer vision matter for action? Science Robotics, 2019. 8



Latent Space Distillation

I Minimizes distance between embedding of privileged teacher and student

Zhao, He, Liang, Huang, Van den Broeck and Soatto: LaTeS: Latent Space Distillation for Teacher-Student Driving Policy Learning. ARXIV, 2019. 9



Related Findings

I Müller, Dosovitskiy, Ghanem and Koltun: Driving policy transfer via modularity and
abstraction. In CoRL, 2018.

I Mousavian, Toshev, Fiser, Kosecka, Wahid and Davidson: Visual representations
for semantic target driven navigation. In ICRA, 2019.

I Sax, Emi, Zamir, Guibas, Savarese and Malik: Learning to navigate using mid-level
visual priors. In CoRL, 2019.

I Wang, Devin, Cai, Yu and Darrell: Deep object centric policies for autonomous
driving. In ICRA, 2019.

But: So far no systematic study on label efficiency and representation granularity
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Label-Efficient Visual Abstractions



Visual Abstractions
What is a good visual abstraction?
I Invariant (hide irrelevant variations from policy)
I Universal (applicable to wide range of scenarios)
I Data efficient (in terms of memory/computation)
I Label efficient (require little manual effort)

Train

Test

Pixel Space Representation Space

Figure Credit:
Alexander Sax

Semantic segmentation:
I Encodes task-relevant knowledge (e.g. road is drivable) and priors (e.g., grouping)
I Can be processed with standard 2D convolutional policy networks

Disadvantage:
I Labelling time: ∼90 min for 1 Cityscapes image
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Label Efficient Visual Abstractions

Research Questions:
I What is the trade-off between annotation time and driving performance?
I Can selecting specific semantic classes ease policy learning?
I Are visual abstractions trained with few images competitive?
I Is fine-grained annotation important?
I Are visual abstractions able to reduce training variance?
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Label Efficient Visual Abstractions

Model:
I Visual abstraction network aψ : x 7→ s

I Control policy πθ : s,n, v 7→ c

I Composing both yields c = πθ(aφ(x))

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 14



Label Efficient Visual Abstractions

Datasets:
I ns images annotated with semantic labels S = {xi, si}ns

i=1

I nc images annotated with expert driving controls C = {xi, ci}nc
i=1

I We assume ns � nc

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 14



Label Efficient Visual Abstractions

Training:
I Train visual abstraction network aφ(·) using semantic dataset S
I Apply this network to obtain control dataset Cφ = {aφ(xi), ci}nc

i=1

I Train control policy πθ(·) using control dataset Cφ

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 14



Control Policy
Model:
I CILRS [Codevilla et al., ICCV 2019]

Input:
I Visual abstraction s

I Navigational command n

I Vehicle velocity v
Output:
I Control ĉ and velocity v̂

Loss:
I L = ||c− ĉ||1 + λ ||v − v̂||1

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 15



Visual Abstractions

Privileged Segmentation (14 classes):
I Ground-truth semantic labels for 14 classes
I Upper bound for analysis

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 16



Visual Abstractions

Privileged Segmentation (6 classes):
I Ground-truth semantic labels for 2 stuff and 4 object classes
I Upper bound for analysis

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 16



Visual Abstractions

Inferred Segmentation (14 classes):
I Segmentation model trained on 14 classes
I ResNet and Feature Pyramid Network (FPN) with segmentation head

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 16
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Visual Abstractions

Hybrid Detection and Segmentation (6 classes):
I Segmentation model trained on 2 stuff classes: road, lane marking
I Object detection trained on 4 object classes: vehicle, pedestrian, traffic light (r/g)

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 16



Experiments



Driving Task Evaluation

Training Town Test Town

I CARLA 0.8.4 NoCrash benchmark
I Random start and end location
I Metric: Percentage of successfully completed episodes (success rate)

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 18



Traffic Density

Empty Regular Dense

I Difficulty varies with number of dynamic agents in the scene
I Empty: 0 Agents Regular: 65 Agents Dense: 220 Agents

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 19



Weathers

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 20



Identifying Most Relevant Classes (Privileged)
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I 14 classes: road, lane marking, vehicle, pedestrian, green light, red light, sidewalk,
building, fence, pole, vegetation, wall, traffic sign, other

I 7 classes: road, lane marking, vehicle, pedestrian, green light, red light, sidewalk,
building, fence, pole, vegetation, wall, traffic sign, other

I 6 classes: road, lane marking, vehicle, pedestrian, green light , red light, sidewalk
I 5 classes: road, lane marking, vehicle, pedestrian, green light, red light

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 21



Identifying Most Relevant Classes (Privileged)
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I Moving from 14 to 6 classes does not hurt driving performance (on contrary)
I Drastic performance drop when lane markings are removed

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 22



Identifying Most Relevant Classes (Privileged)

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 23



Identifying Most Relevant Classes (Inferred)

83
74

100
86

Number of Classes

Su
cc

es
s 

Ra
te

0

25

50

75

100

6 14

Empty

64 56
76 72

Number of Classes

Su
cc

es
s 

Ra
te

0

25

50

75

100

6 14

Regular

30 1926 24

Number of Classes

Su
cc

es
s 

Ra
te

0

25

50

75

100

6 14

Dense

59
50

67 61

Number of Classes

Su
cc

es
s 

Ra
te

0

25

50

75

100

6 14

Standard

Privileged

Overall

I Small performance drop when using inferred segmentations
I 6-class representation consistently improves upon 14-class representation
I We use the 6-class representation for all following experiments

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 24



Number of Annotated Images
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I No significant differences between agents trained on 6400 or 1600 samples
I Slight drop when using 400 images
I Prior work exploiting semantics on CARLA uses millions of annotated images

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 25



Hybrid Representation
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Hybrid Standard

I Performance of hybrid representation matches standard segmentation
I Annotation time (segmentation): ∼ 300 seconds per image and per class
I Annotation time (hybrid): ∼ 20 seconds per image and per class

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 26



Hybrid Representation

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 27



Variance Between Training Runs

Task Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Mean ↑ Std ↓ CV ↓
CILRS

Empty 26 44 42 48 46 41.20 8.79 0.21
Regular 24 26 30 32 40 30.40 6.23 0.20
Dense 0 2 4 4 18 5.60 7.13 1.27
Overall 17 24 25 28 34 25.60 6.18 0.24

Hybrid
Empty 76 80 82 78 90 81.20 5.40 0.06
Regular 64 68 72 72 72 69.60 3.57 0.05
Dense 28 22 18 34 22 24.80 6.26 0.25
Overall 55 56 57 61 61 58.00 2.82 0.04

I Our approach significantly reduces standard deviation & coefficient of variation

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 28



Comparison to State-of-the-Art

Task CAL CILRS LaTeS Standard Hybrid Expert
Train Weather

Empty 36±3 65±2 92±1 91±2 87±1 96±0
Regular 26±2 46±2 74±2 77±1 82±1 91±0
Dense 9±1 20±1 29±3 27±7 41±1 41±2

Test Weather
Empty 25±3 71±2 83±1 95±1 79±1 96±0
Regular 14±2 59±4 68±7 75±6 71±1 92±0
Dense 10±0 31±3 29±2 29±5 32±5 45±2

I CAL: Conditional Affordance Learning [Sauer et al., CoRL 2018]
I CILRS: Conditional Imitation Learning [Codevilla et al., ICCV 2019]
I LaTeS: Latent Space Distillation [Zhao et al., Arxiv 2019]

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 29



Qualitative Results

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 30



Summary



Summary

I Exploiting visual abstractions leads to more robust driving models
I Higher segmentation accuracy does not necessarily imply better driving
I Only few of the commonly used classes are relevant for driving task
I Lane marking class is critical for good performance
I Only few annotations are required (400 / 1600)
I Hybrid representations further reduce annotation costs at similar performance
I Box-based representations can improve performance on dynamic classes
I Training variance is high in behavior cloning and should always be reported
I Visual abstractions can significantly lower training variance

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 32



Summary

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020. 33
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KITTI-360

Xie, Kiefel, Sun, Geiger: Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. CVPR, 2016. 35



KITTI-360
Sensors:
I Front-facing stereo camera
I 360◦ fisheye cameras
I Velodyne HDL 64 laser scanner
I SICK pushbroom laser scanner
I IMU/GPS localization system

Features:
I Driving distance: 73.7 km Frames: 4 × 83,000
I All frames accurately geolocalized (⇒ OpenStreetMap)
I Semantic label definition consistent with Cityscapes, 19 classes for evaluation
I Each instance assigned with a consistent instance ID across all frames

Xie, Kiefel, Sun, Geiger: Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. CVPR, 2016. 36



3D Annotations

RGB Bounding Box

Semantic Instance
Xie, Kiefel, Sun, Geiger: Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. CVPR, 2016. 37



2D Annotations

Semantic Instance

Confidence Bounding Box

Xie, Kiefel, Sun, Geiger: Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. CVPR, 2016. 38



Thank you!
http://autonomousvision.github.io

http://autonomousvision.github.io

