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1. Kabsch Algorithm
The goal of the Kabsch algorithm is to provide a rotation

as the solution of bringing two lists of points as close to-
gether as possible. In this paper, we only need a specialized
form

Tr = argmin
T∈R4×4

∑
pi∈Pt

wi ∥(T − I4)pi − fi∥2 (1)

to solve with

Tr =

(
Rr tr
0 1

)
. (2)

The solution for the translation offset is simply the mean
flow

tr =
1

W

∑
i

wifi (3)

with W =
∑

i wi being the sum of the weights. Substi-
tuting this back into the original optimization we get the
normal form for the Kabsch algorithm

Rr = argmin
R∈R3×3

∑
pi∈Pt

wi ∥Rpi − (pi + fi − tr)∥2 . (4)

The Kabsch algorithm defines the solution via the cross-
covariance matrix H ∈ R3×3

H(ij) =
1

W

∑
k

wkp
(i)
k

(
p
(j)
k + f

(j)
k − t(j)r

)
(5)

where we use xT = (x(1), x(2), x(3)) as component nota-
tion. The solution is then given as

Rr = V

1 0 0
0 1 0
0 0 d

UT (6)

using the singular value decomposition (SVD) H = UΣV T

and the correction value d = sign(det(V UT )) for ensuring
a proper rotation.

As most deep learning frameworks provide SVDs as dif-
ferentiable operators, and with H being differentiable w.r.t.
the flow and the weights, the resulting transform Tr is also
differentiable w.r.t. those components.

As the above equations make clear, the global scaling of
the weights does not matter for the result, agreeing with our
intuition. In fact, the division by the sum of weights in (5)
is not even necessary, as the SVD stores any global scale in
the unused diagonal matrix Σ.

2. Computation of Confidence Weights
Using the confidence logits we need to compute a set of

weights for the above Kabsch algorithm. In our initial ex-
periments, we first tried a softmax activation, however, we
found it to be quite unstable and generalizes badly to un-
seen inputs. We attribute this behavior to the fact that a
few outliers in the logit distribution contain almost all the
weight after activation. Activating each logit independently
with the sigmoid function alleviates the problem as all high
logit values get mapped to roughly the same weight of 1.
We now have to deal only with a numerical issue when
all logits are quite low, e.g. below -100 for 32-bit floating-
point-precision. Then the sigmoid function maps all values
to exactly 0, leaving the Kabsch algorithm with nothing to
optimize. We avoid this problem by normalizing the sum
beforehand which theoretically does not change the result,
however, we provide a fused computation for the sigmoid
activation and normalization such that we have a numeri-
cally stable set of weights.

Defining mi = [σ(lcls,i) ≥ pstat] as the mask for static
points our goal is to compute

wi =
miσ(lwgt,i)∑

j|mj=1 σ(lwgt,j)
(7)

with

σ(x) =
1

1 + e−x
= ex

1

1 + ex
= exσ(−x) . (8)

From the identity above it is easy to check that

σ(x) = emin(x,0)σ(|x|) =

{
e0σ(x) for x ≥ 0

exσ(−x) for x < 0
(9)

holds. Using this in (7) with l−wgt,i = min(lwgt,i, 0) we
have

wi =
miσ(|lwgt,i|) exp(l−wgt,i)∑

j|mj=1 σ(|lwgt,j |) exp(l−wgt,j)
. (10)
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In the above equation, the sigmoid activations are now nu-
merically stable between 0.5 and 1. The well-known trick
of shifting all exponents about s = maxi|mi=1 l

−
wgt,i in the

above expression makes the whole expression numerically
stable

wi =
miσ(|lwgt,i|) exp(l−wgt,i − s)∑

j|mj=1 σ(|lwgt,j |) exp(l−wgt,j − s)
(11)

as the largest term of the sum in the denominator is now at
least as large as σ(|s|)e0 ≥ 0.5 and therefore the denomi-
nator is well above 0.

3. Moving Classification Threshold

The result of any classification task depends strongly on
the chosen threshold based on the predicted scores. Fig. 1
shows how differently trained networks generate different
distributions for the classification scores and how some met-
rics vary when changing the threshold pthresh for that score
σ(lcls,i). We are interested in optimizing the scene flow for
the stationary and the moving points, therefore, we want
to select the optimal threshold for the AEE 50-50 metric.
As the classification is already used during training as a
mask to improve the results of the resulting rigid transform
Tr we need an online mechanism selecting this threshold.
As the scores are bounded between 0 and 1 we do this by
keeping a moving average of the AEE 50-50 metric mk for
R = 100, 000 different thresholds pk, resulting in different
possible aggregated flows f (k)agg,i.

For the supervised training, the update rule is

m′
k = mkα

Nt +(1−αNt)
1∑
i ci

Nt∑
i=1

ci|fgt,i−f
(k)
agg,i| (12)

with Nt being the number of points in the currently pro-
cessed point cloud, α being the decay factor of the expo-
nential moving average per point, and ci being a pointwise
weighting factor which is 1 for stationary points and Nmov

Nstat

for moving points. The last ratio is measured across the
whole training set and the weights, therefore, account for
the fact that we are interested in an optimal AEE 50-50 com-
pared to optimizing AEE. The update rule also accounts for
the current size of the point cloud and gives more weight to
large point clouds as it would happen if we would update for
every point individually. As we initialize the moving met-
rics with 0, we compute an unbiased estimate through also
tracking a bias counter b′k = bkα

Nt +(1−αNt) and simply
dividing the above computed metric by it: m̂k = mk/bk.

For the exponential moving average to ”forget” after ev-
ery 5,000 training iterations, we set α to 1− 1

5000⟨Nt⟩ , where
⟨Nt⟩ is the average point cloud size of the used dataset.
Based on the unbiased estimates m̂k we simply look for
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Figure 1: Different metrics across changing thresholds for
supervised training on nuScenes: The vertical line repre-
sents the moving threshold computed online during train-
ing. The yellow curve represents AEE 50-50 on the test set.
Selecting all points as moving gives the best result for the
moving AEE but the worst for stationary AEE. The oppo-
site is true when classifying all points as stationary and us-
ing the improved rigid motion result. However, the moving
AEE increases much more dramatically if points are classi-
fied wrongly as static and the optimal threshold is therefore
around 40% moving points. Our moving average predicts
just about over 50% moving, however, the AEE 50-50 is
very flat in this area, and our achieved AEE 50-50 of 6.4cm
is just 1mm lower than the optimal threshold.

the best, therefore, smallest value and choose the corre-
sponding threshold pk as the optimal threshold pthresh =
argmin pk

m̂k. The whole update step can be easily vector-
ized and implemented efficiently using standard deep learn-
ing framework components including cumulative sums and
sorting of the classification scores and is implemented sim-
ilar to computing efficiently precision-recall-curves.

In the case of self-supervised trainings, we do not use the
weights ci as they already make use of labeled quantities,
namely if a point is moving or stationary. We also can not
use the ground truth flow and therefore replace the endpoint
error term through the k-NN error term ei(f

(k)
aggr,i) defined

in the paper in (4):

m′
k = mkα

Nt + (1− αNt)

Nt∑
i=1

|ei(f (k)aggr,i)| (13)

Losing the controlled weighting and accurate error esti-
mation negatively influences moving averages and the ac-
curacy, however, we found it to work reasonably well.
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Figure 2: Different metrics across changing thresholds for
self-supervised training on nuScenes: The vertical line rep-
resents the moving threshold computed online during train-
ing using the kNN residuals. The fact that stable self-
supervised training criteria are more challenging to formu-
late for Scene Flow, leads to a larger gap between the opti-
mal and learned threshold for self-supervised training.

Fig. 2 shows the same information as Fig. 1 only for a self-
supervised training corresponding to the third row of Table
7 of the paper. Where in the supervised case the AEE 50-50
score from our moving threshold computation is just 1mm
short compared to the optimal AEE 50-50, it is in the self-
supervised case already more than 0.6cm worse than the op-
timal threshold could have been.

4. Robust Outlier Metric
The outlier metric used by previous works [4, 1, 6, 7] de-

fines a point as an outlier if its predicted flow vector has an
endpoint error >30cm or a relative error >10%. However,
we believe this metric has several drawbacks:

• The name and intuition about this metric are mislead-
ing. A predicted flow of 1.2cm length for a ground
truth flow of only 1.0cm would be already considered
an outlier where most people would classify this as
normal noise.

• It also contradicts the accuracy metrics. The case men-
tioned above would not only be classified as an outlier
but also as strict accurate (<5cm) and relaxed accurate
(<10cm).

• The definition itself is not minimal. The case where
the endpoint error is greater than 30cm but smaller

Table 1: Self-supervised training & evaluation on nuScenes
- comparison of metrics ROutl and Outl

Moving Static
ROutl↓ Outl↓ ROutl↓ Outl↓

Zero 0.5783 1.0000 0.6838 1.0000
PointPWCNet (PPWC) 0.3848 0.9395 0.1800 0.8508
PoseFlowNet (PF) 0.9364 1.0000 0.0035 1.0000
Ours 0.1309 0.8125 0.0630 0.5286

than 10% basically does not exist, as this would re-
quire a ground truth flow larger than 3m, or account-
ing for 10Hz sample frequency 30m/s=108km/h. This
rarely occurs in the city-based datasets and therefore
the 30cm condition is superfluous.

To avoid these drawbacks, we introduce a robust outlier
metric ROutl which we report instead for the two newly in-
vestigated datasets, nuScenes and CARLA. It is defined as
the relative portion of points that have a predicted endpoint
error >30cm and relative error >30%. We believe it to not
suffer from any of the drawbacks mentioned above:

• Requiring both the relative and absolute conditions to
hold removes counting the small noise on an almost 0
ground truth flow to not be counted as an outlier. Also
requiring a 30% error instead of 10% separates it well
from the relaxed accuracy, following more closely the
intuition of the name outlier.

• A flow classified as a robust outlier can now never be
at the same time (relaxed) accurate as those definitions
are mutually exclusive.

• The definition is now minimal. A prediction for a small
flow ground truth flow of up to 1m with 30% < 30cm
needs to meet the absolute condition to be counted as
an outlier, where a prediction of a large flow ground
truth of above 1m or 36km/h needs to meet the relative
condition.

Also, the robust outliers are counted as outliers by the old
metric, so the robust outlier metric always reports a lower
number. Table 1 shows a comparison of the two metrics
and how they behave in relation to each other. Especially
for moving points, the Outl metric is very close to 100% for
all methods and thus does not convey a lot of information.
ROut discriminates better between the methods.

5. Classification
We evaluate the classification using the following met-

rics (where TP: true positive, TN: true negative, FP: false
positive, FN: false negative):

• accuracy: acc = TP+TN
TP+TN+FP+FN



Table 2: Classification results for self-supervised and super-
vised training for different training datasets, evaluated on
KITTI-SF. Acc, mIoU & sens are the resulting values that
are obtained when the threshold is optimized w.r.t. AEE 50-
50 (in the self-supervised case via kNN residuals as proxy).
Opt acc & opt mIoU are scores that could achieved if the
threshold were selected w.r.t. optimal classification, irre-
gardless of Scene Flow estimation performance, a tradeoff
that is also discussed in Fig. 1

Train Dataset acc mIoU sens opt acc opt mIoU
Self-

Super-
vised

KITTI-RL 0.601 0.429 0.835 0.747 0.581
nuScenes 0.491 0.308 0.906 0.835 0.699
CARLA 0.443 0.246 0.991 0.765 0.613

Super-
vised

nuScenes 0.861 0.754 0.942 0.925 0.855
CARLA 0.610 0.416 0.418 0.650 0.434

• sensitivity: sens = TP
TP+FN

• mean intersection over union: mIoU =
0.5( TP

TP+FP+FN + TN
TN+FP+FN )

On KITTI Stereo Flow (KITTI-SF), a mIoU of 34% can
be achieved by guessing that a point is moving with a prob-
ability of pmov,guess = 0.31. This can be shown using the
knowledge that roughly 40% of points in the dataset are
moving (pgt = 0.4), and from the optimality criteria for
the binary classification: ∂mIoU

∂pmov,guess
= 0 and ∂(IoUmov+IoUstill)

∂pmov,guess

= 0. As already briefly mentioned in the paper, Table 2
shows that our method achieves a mIoU score of 42.9%
on KITTI-SF when trained self-supervised on KITTI-RL.
The results show, that like for Scene Flow estimation, the
domain gap from KITTI-RL to KITTI-SF seems to be the
smallest and leads to the best performance achieved through
self-supervision. The domain gap from simulated CARLA
data to KITTI-SF is obviously larger than from nuScenes to
KITTI-SF, which can explain the performance gap between
the two datasets when evaluating on KITTI-SF for both the
self-supervised and the supervised case. A few example im-
ages for motion segmentation by the network trained using
self-supervision can be seen in Fig. 3.

Once again, when comparing optimal scores and those
optimized for AEE 50-50 in Table 2, it becomes clear that
there is a tradeoff between optimal performance on the
Scene Flow task (AEE 50-50) and optimal performance in
terms of classification, as discussed in Section 3.

6. Architecture & Parameter Details
6.1. Training

We use the RMSProp optimizer with 0.0001 for the
learning rate, with warm-up and decay. For the first 2k steps
of the training, the learning rate is exponentially increased,
starting from 0.0 to 0.0001. After that, exponential decay is

applied with a ratio of 0.5 every 60k steps. While we chose
the batch size of 1 during training, we use a batch of point
clouds to perform ”forward” and ”backward” predictions.

6.2. PillarFeatureNet

The Pillar Feature Net (PFN) is used to create the Bird’s-
Eye-View (BEV) feature maps consumed It, It+1 by the
RAFT backbone. We use the default configuration of the
PFN introduced in [3] almost every aspect, with minor de-
viations described in the following: In their original pa-
per, Lang et al. used batch normalization, but due to
the small batch size in our experiment, we swap regular
batch normalization for batch renormalization [2]. This is
then followed by ReLU activation, like in the original pa-
per. In our experiments, the spatial BEV dimensions are
H = 640,W = 640 and C = 64 feature channels are used:
It, It+1 ∈ RH×W×C , but any reasonable combination of
spatial and feature dimensions can work. We do not use the
reflectivity/intensity channel of the point clouds, as the us-
age would break generalization when training on KITTI-RL
and evaluating on KITTI-SF, where the network has to gen-
eralize from LiDAR point cloud data to stereo camera point
cloud data.

6.3. RAFT

We use the parameters and configuration of the model
called RAFT-S introduced in [5] whenever possible, for
example, like in the original paper, the output of the con-
text network (see [5]) has 160 channels and is divided into
the initial hidden state h0 with 96 channels and the en-
coded scene context with 64 channels. Like in the original
RAFT-S as introduced by Teed et al. [5], we use 4 cor-
relation levels with a correlation lookup radius of 3 each.
Also, like in the original paper, the ConvGRU in the Update
Block estimates flow at 1/8th of the original input resolu-
tion: F ∈ RH/8×W/8×2. As an extension to the original
RAFT-S, we introduce logits Lcls and confidence weights
Lwgt, which are handled equivalently to the flow map, in
the case of the logits with an additional encoder & decoder.
The encoders in the Update Block use 2D convolutional lay-
ers with 64 and 32 channels each with ReLU activation,
as depicted in Fig. 4. The Flow-Head (like in the RAFT-
S paper version) and additional Classification-Head each
use two convolutions, 128 filters each with ReLU activation
Unlike in the original paper, no mask for upsampling the
predictions to full resolution is learned, instead bilinear up-
sampling is used. For training and inference, six iterations
are used in the update block to refine the result.

7. Transferability of the SLIM Loss Frame-
work onto PointPWC

Our ablation study shows an improvement of our RAFT
network over the other baseline methods, without applying



Figure 3: Motion segmentation by our self-supervised network trained on KITTI-RL evaluated on KITTI-SF. Left: Ground
truth motion segmentation, Right: Predicted motion segmentation by our network, brighter colors indicate higher dynamic-
ness.

our novel loss framework (Table 7, row 1). In addition, it
demonstrates that motion segmentation and Kabsch regular-
ization for rigid static flow boost SLIM’s performance when
trained self-supervised (row 2+3).

To investigate the relationship between the network ar-

chitecture and the performance boost provided by our loss
framework we present results of our SLIM loss applied to
another model.

PoseFlowNet [6] already has a mechanism to deal with
the rigid scene motion so our loss cannot be directly applied
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Figure 4: Update Block annotated with the number of chan-
nels for tensors and filters for convolutions.

onto that architecture. However, PointPWC has a suitable
architecture to test the transferability of our proposed losses.
We extend the PPWC architecture with the necessary logits
to apply our loss framework (classification & confidence),
as well as the necessary Kabsch regularization (from here
on out referred to as PPWC-MOD), and apply the SLIM
loss framework to each of the four pyramid levels. As the
application of SLIM’s losses requires cyclic consistency as
a self-supervised training signal, we additionally extend the
training regime of PointPWC to do forward and backward
scene flow estimation by adding an inference step for the
time-reversed input point clouds.

Table 3 shows that the above-introduced modifications
result in a worse performance than the baseline PPWC (row
1,4). Further investigations into this matter reveal that the
cyclic training routine does not harmonize well with PPWC.
Therefore, we present the results of two more training con-
figurations: The PPWC trained on cyclic samples (with-
out any other modification) (row 2) and the PPWC-MOD
without cyclic sampling and training (row 3). These ex-
periments show that SLIM produces slightly better results
compared to the corresponding baselines for some metrics,
but not for all. In the case of non-cyclic training, it is also
shown, that there are only marginal differences. We con-
clude that SLIM’s performance boost also heavily depends
on the chosen network architecture.

8. Runtimes
The runtimes of SLIM and the baselines are reported in

Table 4. Please note that SLIM does not make use of the
optimizations reported in [5].

9. Failure Cases
Our network predicts quite accurate static flow and thus

has no problem distinguishing cars as moving even when

Table 3: Ablation study on nuScenes for PPWC[7]. Flow
directions during training: f: forward, r: reverse. f+r: train-
ing using both forward and reverse time. f&r: training using
both forward and reverse time with explicit cyclic consis-
tency between forward and reverse predictions.
∗: SLIM loss without cyclic consistency

network loss flow dirs Mov. Stat. 50-50
arch. framework training AEE AEE AEE

PPWC orig f 0.3539 0.1974 0.2756
PPWC orig f+r 0.6432 0.5457 0.5945

PPWC-MOD SLIM∗ f 0.3837 0.1475 0.2656
PPWC-MOD SLIM f&r 0.4005 0.2284 0.3145

Table 4: Runtimes as reported by the authors of each
method. The runtime for RAFT-S has been measured us-
ing an implementation optimized for half-precision, SLIM
(TensorFlow, 6 RAFT stages, unoptimized) takes 443 ms on
a single Tesla V100 GPU.

Method Runtime
PPWC [7] 117 ms
PF [6] 491 ms
RAFT-S [5] 50 ms
SLIM 443 ms

Figure 5: Very dynamic scene leads to flow outliers on the
static pole in the background (top left). (red: outlier, blue:
accurate)

having the same speed as the sensor as long as there are
some static objects present. Most scenes in the NuScenes
dataset have more than 90% of static points. Even for scenes
with the lowest amount of static points of around 20% the
flow estimates for the dominant dynamic objects is correct
and only a few static elements fail, see Figure 5.
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