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1. Overview

In this supplement, we provide the architectural and
training details of our framework in sections. We also pro-
vide several qualitative results for neural deferred rendering
and intrinsic image decomposition.
In section 2, we describe the architecture of our neural de-
ferred renderer (R), intrinsic image decomposition network
(H), image discriminator DI and intrinsics discriminator
DM . In section 3, we present various training hyperparam-
eters and training schedule. Section 4.1 contains qualita-
tive comparisons between the rendering produced by our
method and those produced by baselines. Section 4.2 con-
tains qualitative comparisons between the intrinsic decom-
positions produced by our method and those produced by
baselines. We will release our code upon publication

2. Network Architectures

This section provides the architectures for each of the
networks used in our work.

2.1. Neural Deferred Renderer

The input to this network consists of albedo (H×W×3),
normals (H×W ×3) and reflections (H×W ×3) concate-
nated into a single data block of size H ×W × 9, where H
is the image height of 256 and W is image width of 512 To
achieve high resolution image synthesis, we use the coarse-
to-fine generator introduced in [4]. The input first goes
through a set of convolutions with a kernel size 7 × 7 and
512 channels with stride 1 followed by two convolutional
layers with a kernel size of 3 × 3 each with 512 channels
and stride of 2. Next, we use a series of 9 ResNet blocks
each with a kernel size 3 × 3 and 256 channels. Finally,
we use two transpose convolutional layers to upsample the
features. The first has a kernel size 3× 3 and stride 2. This
is followed by a transpose convolutional layer with kernel
size 7 × 7 and stride 1 which produces 3 output channels.
The final output of the generator is a 3 channel RGB image
Î of size 256× 512× 3.

2.2. Intrinsic Image Decomposition Networks

We use three networks H = {HN , HA, HF } for esti-
mating the surface normals N , Albedo A and environment
reflections F , respectively, from an image I . The input im-
age first goes through a set of convolutions with a kernel
size 5 × 5 with a stride 1 and 512 channels followed by
two convolution layers of size 3 × 3 with stride 2 and 256
channels. This is followed by 5 Resnet blocks each with a
kernel size 3 × 3. Finally, we use transpose convolutional
layers with a kernel size 3 × 3 with stride 1 to upsample
these features. The last transpose convolution layer has a
kernel size of 7 × 7 and stride 1 which produces output of
size 256× 512× 3. All networks inH have the same archi-
tecture described above.

2.3. Discriminator networks

The image discriminator network takes an RGB image
as input. We use a multi-scale PatchGAN discriminator
[4] which comprises two fully-convolutional networks that
classify the local image patches. The first operates on the
full resolution of the image and the second operates on the
image downscaled by a factor of 2. Each discriminator
network consists of 4 convolutional layers each with ker-
nel size 4 × 4, stride 2 and filter numbers of 64, 128, 256
and 512. At the end, a convolutional layer with kernel size
1 × 1 and stride 1 combines the features into a 1 channel
output. The discriminators output a realism score for each
patch instead of a single prediction per image. The intrin-
sics discriminatorDM has the same architecture except that
the input is a 9-channel stack combining all three intrinsic
maps.

3. Training Details

Our code is implemented in Pytorch [3]. We will re-
lease all code and training models required to reproduce the
results. We train all our networks from scratch by initializ-
ing all weights with a normal distributionN(0,0.2)and zero
bias. The learning rate for all networks is 0.0001. We use
Adam[2] optimizer with betas (0.9, 0.99) and no weight de-
cay. We train the networks for 30 epochs.

1



4. Visual Results
In this section we qualitatively compare our results to

other baselines for the task of Neural Deferred Rendering
and Intrinsic Image Decomposition. We compare our re-
sults to CycleGAN[5], MUNIT[1] and our own baselines.

4.1. Neural Deferred Rendering Results

Figures 1, 2, 3, 4, 5 illustrate renderings produced by
our model compared to those produced by other baseline
methods.

4.2. Intrinsic Image Decomposition Results

Figures 6, 7, 8, 9 illustrate intrinsic image decomposi-
tions produced by our model compared to those produced
by other baseline methods.
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Figure 1: Qualitative Comparison with baselines on Neural Rendering. Inputs to the network illustrated in top left
are intrinsic maps consisting of normals, albedo and reflections. Our full model produces highly photorealistic images which
preserve input geometry, albedo and reflections. The model trained without shared discriminator (w/o shared discr.), produces
images with significant artefacts especially near the wheels. The model trained without decomposition cycle (w/o Decomp
cycle), can produce inconsistent images that don’t match the input normals, albedo. Both CycleGAN and MUNIT produce
significantly worse images with strong artifacts compared to our model.



Figure 2: Qualitative Comparison with baselines on Neural Rendering. Inputs to the network illustrated in top left
are intrinsic maps consisting of normals, albedo and reflections. Our full model produces highly photorealistic images which
preserve input geometry, albedo and reflections. The model trained without shared discriminator (w/o shared discr.), produces
images with significant artefacts especially near the wheels. The model trained without decomposition cycle (w/o Decomp
cycle), can produce inconsistent images that don’t match the input normals, albedo. Both CycleGAN and MUNIT produce
significantly worse images with strong artifacts compared to our model.



Figure 3: Qualitative Comparison with baselines on Neural Rendering. Inputs to the network illustrated in top left
are intrinsic maps consisting of normals, albedo and reflections. Our full model produces highly photorealistic images which
preserve input geometry, albedo and reflections. The model trained without shared discriminator (w/o shared discr.), produces
images with significant artefacts especially near the wheels. The model trained without decomposition cycle (w/o Decomp
cycle), can produce inconsistent images that don’t match the input normals, albedo. Both CycleGAN and MUNIT produce
significantly worse images with strong artifacts compared to our model.



Figure 4: Qualitative Comparison with baselines on Neural Rendering. Inputs to the network illustrated in top left
are intrinsic maps consisting of normals, albedo and reflections. Our full model produces highly photorealistic images which
preserve input geometry, albedo and reflections. The model trained without shared discriminator (w/o shared discr.), produces
images with significant artefacts especially near the wheels. The model trained without decomposition cycle (w/o Decomp
cycle), can produce inconsistent images that don’t match the input normals, albedo. Both CycleGAN and MUNIT produce
significantly worse images with strong artifacts compared to our model.



Figure 5: Qualitative Comparison with baselines on Neural Rendering. Inputs to the network illustrated in top left
are intrinsic maps consisting of normals, albedo and reflections. Our full model produces highly photorealistic images which
preserve input geometry, albedo and reflections. The model trained without shared discriminator (w/o shared discr.), produces
images with significant artefacts especially near the wheels. The model trained without decomposition cycle (w/o Decomp
cycle), can produce inconsistent images that don’t match the input normals, albedo. Both CycleGAN and MUNIT produce
significantly worse images with strong artifacts compared to our model.



Figure 6: Qualitative Comparison with baselines on Intrinsic Image Decomposition. The top row indicates the real image
input. The second row contains predicted normal maps. Third row contains predicted albedo. Last row contains predicted
reflections. CycleGAN produces extremely noisy decompositions with artifacts. MUNIT predictions do not correspond well
to the input image. Alongside, the reflections and albedo are noisy. Our full model is able to generalize to real world data
and hence estimates accurate intrinsic maps. The model w/o shared discr. leads to high frequency artefacts in reflections and
normals. Our model without decomposition cycle (w/o Decomp. cycle) also recovers noisy albedo and normals since the
networks to overfit only to synthetic data leading to poor generalization to real images.



Figure 7: Qualitative Comparison with baselines on Intrinsic Image Decomposition. The top row indicates the real image
input. The second row contains predicted normal maps. Third row contains predicted albedo. Last row contains predicted
reflections. CycleGAN produces extremely noisy decompositions with artifacts. MUNIT predictions do not correspond well
to the input image. Alongside, the reflections and albedo are noisy. Our full model is able to generalize to real world data
and hence estimates accurate intrinsic maps. The model w/o shared discr. leads to high frequency artefacts in reflections and
normals. Our model without decomposition cycle (w/o Decomp. cycle) also recovers noisy albedo and normals since the
networks to overfit only to synthetic data leading to poor generalization to real images.



Figure 8: Qualitative Comparison with baselines on Intrinsic Image Decomposition. The top row indicates the real image
input. The second row contains predicted normal maps. Third row contains predicted albedo. Last row contains predicted
reflections. CycleGAN produces extremely noisy decompositions with artifacts. MUNIT predictions do not correspond well
to the input image. Alongside, the reflections and albedo are noisy. Our full model is able to generalize to real world data
and hence estimates accurate intrinsic maps. The model w/o shared discr. leads to high frequency artefacts in reflections and
normals. Our model without decomposition cycle (w/o Decomp. cycle) also recovers noisy albedo and normals since the
networks to overfit only to synthetic data leading to poor generalization to real images.



Figure 9: Qualitative Comparison with baselines on Intrinsic Image Decomposition. The top row indicates the real image
input. The second row contains predicted normal maps. Third row contains predicted albedo. Last row contains predicted
reflections. CycleGAN produces extremely noisy decompositions with artifacts. MUNIT predictions do not correspond well
to the input image. Alongside, the reflections and albedo are noisy. Our full model is able to generalize to real world data
and hence estimates accurate intrinsic maps. The model w/o shared discr. leads to high frequency artefacts in reflections and
normals. Our model without decomposition cycle (w/o Decomp. cycle) also recovers noisy albedo and normals since the
networks to overfit only to synthetic data leading to poor generalization to real images.



Figure 10: Qualitative Comparison with baselines on Intrinsic Image Decomposition. The top row indicates the real im-
age input. The second row contains predicted normal maps. Third row contains predicted albedo. Last row contains predicted
reflections. CycleGAN produces extremely noisy decompositions with artifacts. MUNIT predictions do not correspond well
to the input image. Alongside, the reflections and albedo are noisy. Our full model is able to generalize to real world data
and hence estimates accurate intrinsic maps. The model w/o shared discr. leads to high frequency artefacts in reflections and
normals. Our model without decomposition cycle (w/o Decomp. cycle) also recovers noisy albedo and normals since the
networks to overfit only to synthetic data leading to poor generalization to real images.


