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Abstract—125 years after Bertha Benz completed the first

overland journey in automotive history, the Mercedes Benz

S-Class S 500 INTELLIGENT DRIVE followed the same route

from Mannheim to Pforzheim, Germany, in fully autonomous

manner. The autonomous vehicle was equipped with close-to-

production sensor hardware and relied solely on vision and radar

sensors in combination with accurate digital maps to obtain a

comprehensive understanding of complex traffic situations. The

historic Bertha Benz Memorial Route is particularly challenging

for autonomous driving. The course taken by the autonomous

vehicle had a length of 103 km and covered rural roads, 23

small villages and major cities (e.g. downtown Mannheim and

Heidelberg). The route posed a large variety of difficult traffic

scenarios including intersections with and without traffic lights,

roundabouts, and narrow passages with oncoming traffic. This

paper gives an overview of the autonomous vehicle and presents

details on vision and radar-based perception, digital road maps

and video-based self-localization, as well as motion planning in

complex urban scenarios.

Index Terms—Autonomous driving, stereo vision, radar sens-

ing, self-localization, motion planning, digital maps.

I. INTRODUCTION

I
N August 1888, Bertha Benz and her two sons began
the first cross-country automobile journey in the world.

Without telling her husband Carl Benz, she drove his Benz
Patentmotorwagen Number 3 from Mannheim to Pforzheim, a
route with a one-way distance of more than 100 km (approx.
65 miles) through southern Germany. Today, this overland
journey is received as a pioneering event in the history
of automobiles. Not only did Bertha Benz demonstrate the
maturity of Carl Benz’s gasoline engine. The public reactions
on her maiden voyage paved the ground for her husband’s
economic success and the acceptance of the automobile in
society. 125 years later, a Mercedes Benz S-Class prototype
vehicle revisited the Bertha Benz Memorial Route, yet this
time in a fully autonomous manner.
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The last two decades have seen tremendous advances in
autonomous driving and we can only give a non-exhaustive
review of some important work here. Early European contribu-
tions started within the PROMETHEUS project in the 1990s,
cf. [1]–[3]. The probably most renowned autonomous drive
of the team was a tour in 1995 from Munich, Germany, to
Odense, Denmark, at velocities up to 175 km/h with about
95% autonomous driving. In the U.S. similar research had been
conducted. In the ’No hands across America’ tour, Pomerleau
and Jochem drove from Washington DC to San Diego with
98% automated steering yet manual longitudinal control [4].

Activities in this century have strongly been characterized
by several public challenges. The Defense Advanced Research
Projects Agency (DARPA) organized a first Grand Challenge
for autonomous off-road ground vehicles in March 2004 and
a second challenge in October 2005, e.g. [5]. The third
DARPA Challenge was held in November 2007. In this Urban
Challenge, vehicles had to drive through a mock up urban
environment on a closed airfield in Victorville, California.
Compared to the previous challenges this competition included
some interaction with other vehicles, while other features like
pedestrians, bicyclists, or traffic lights were still absent. Most
successful teams in the DARPA challenges employed high-
end laser scanners coupled with radars while computer vision
played at most a secondary role (e.g. [6], [7]). High-precision
GPS/INS was used for localization. The Grand Cooperative
Driving Challenge 2011 (GCDC) was the first international
competition to implement highway platooning scenarios of
cooperating vehicles connected with communication devices,
e.g. [8].

Several teams around the world are continuously advancing
the field of autonomous driving. Among the publicly most
noticed activities is the impressive work by Google that
extends experience gained in the Urban Challenge. A roof-
mounted high-end laser scanner and a detailed map, recorded
in a prior manual drive, provide the main information about the
driving environment. In July 2013, the team around Broggi [9]
performed another impressive autonomous driving experiment
in public traffic near Parma, Italy. Interesting work that aims
for autonomous driving with close to production vehicles is
presented in [10].

Compared to previous works on autonomous vehicles, we
find the Bertha Benz Memorial Route is unique in difficulty
and variability of encountered traffic scenarios. The route
comprises overland passages, urban areas as e.g. Mannheim
and downtown Heidelberg and 23 small villages, partly with
narrow streets (Fig. 1). The autonomous vehicle handled traffic
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Fig. 1. The Bertha Benz Memorial Route from Mannheim to Pforzheim
(103km). The route comprises rural roads, urban areas (e.g. downtown
Heidelberg) and small villages and contains a large variety of different traffic
situations as e.g. intersections with and without traffic lights, roundabouts,
narrow passages with oncoming vehicles, pedestrian crossings, etc.

lights, pedestrian crossings, intersections and roundabouts in
real traffic. It had to react on a variety of objects includ-
ing parked cars, preceding and oncoming vehicles, bicycles,
pedestrians and trams. Besides facing the challenges of the
historic Bertha Benz Route, our second goal was to realize
autonomous driving based on close-to-market sensors. Our
robot relies solely on the sensor setup of a standard 2013
S-Class vehicle and additional radar and vision sensors for
object detection and free-space analysis, traffic light detection
and self-localization.

In the remainder of this paper, we will provide an overview
of the experimental vehicle used for the Bertha Benz drive.
The system architecture of our robot is outlined in Fig. 2.
As stated earlier, the main sensing components are cameras
and radar sensors. These will be reviewed in Sec. II. Another
important source of information is a detailed digital map (cf.
Sec. III). This map contains the position of lanes, the topology
between them as well as attributes and relations defining
traffic regulations (e.g. right-of-way, relevant traffic lights, and
speed limits). An important prerequisite for using such digital
maps is a precise map relative localization. In this work,
we employ two complementary vision algorithms — point
feature based localization and lane marking based localization
— to accomplish this task (Sec. IV). The objective of the
motion planning modules (cf. Sec. V) is to derive an optimal
trajectory, i.e. the path of the vehicle as a function of time,
from the given sensor and map information. This trajectory is
transformed into actuator commands by respective lateral and
longitudinal controllers (Sec. V-C). All standard emergency
braking systems available in our Mercedes-Benz S-Class S
500 INTELLIGENT DRIVE are activated in our prototype ve-
hicle and underlie our autonomous driving function, such that

Fig. 2. System overview of the Bertha Benz experimental vehicle.

emergency braking need not be considered in the trajectory
planning and control modules, cf. Secs. V and V-C. A specific
human-machine-interface has been designed to inform the
operator of the vehicle about current driving maneuvers. For
limited space, however, the latter two components are not
discussed here. Before concluding the paper, we summarize
our experimental results on the Bertha Benz Memorial Route
in Sec. VI.

II. PERCEPTION

Precise and comprehensive environment perception is the
basis for safe and comfortable autonomous driving in complex
traffic situations such as busy cities. As mentioned above, we
modified the serial-production sensor setup already available in
our S-Class vehicles as follows: Four 120◦ short-range radars
were added for better intersection monitoring and two long
range radar mounted to the sides of the vehicle in order to
monitor fast traffic at intersections on rural roads. The baseline
of the Bertha’s existing stereo camera system was enlarged
to 35 cm for increased precision and distance coverage. For
traffic light recognition and pedestrian recognition in turning
maneuvers, an additional wide angle-monocular color camera
was mounted on the dash-board. A second wide-angle camera
looking backwards was added for self-localization described
in Sec. IV. The complete sensor setup is shown in Fig. 3.
The main objectives of these sensors are free-space analysis
(Can Bertha drive safely along the planned path?), obstacle
detection (Are there obstacles in Bertha’s path? Are obsta-
cles stationary or moving? How do they move?), and object
classification (What is the type of obstacles and other traffic
participants, e.g. pedestrians, bicyclists, or vehicles?).

Although various perception systems are already on board
for advanced driver assistance, including fully autonomous
emergency braking for pedestrians, the existing algorithms had
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to be improved significantly. Previous safety relevant assis-
tance systems necessitate a minimum false positive rate while
keeping the true positive rate sufficiently high. An autonomous
system, however, requires the environment perception module
to detect nearly all obstacles and — at the same time — to
have an extremely low false-positive rate.

A. Stereo Vision — the Stixel Approach

The stereo camera used to understand the environment in
front of the ego-vehicle covers a range of up to 60 m with
a 45◦ field of view. The stereo processing pipeline consists
of four main steps: the dense stereo reconstruction itself,
the computation of super-pixels called stixels, their tracking
over time to estimate the motion of each stixel, and the final
object segmentation. The different processing steps are briefly
illustrated in Fig. 4.

1) Stereo Matching: Given the stereo image pairs, dense
disparity images are reconstructed using semi-global match-
ing (SGM) [11], c.f. Fig. 4a and Fig. 4b. A real-time realization
of this scheme was made available on an efficient, low-power
FPGA-platform by [12]. The input images are processed at
25 Hz with about 400, 000 individual depth measurements per
frame.

2) Stixel Computation: To cope with this large amount of
data, we developed the so called stixel representation [13],
[14]. The idea is to approximate all objects within the three-
dimensional environment using sets of thin, vertically oriented
rectangles. Each stixel is defined by its position, footpoint and
height. All areas of the image that are not covered with stixels
are implicitly understood as free, and thus, in intersection
with the map of the route, as potentially driveable space. To
consider non-planar ground surfaces, the vertical road slope
is estimated as well. Altogether, the relevant 3D content of
the scene is represented by an average of about 300 stixels
only. Just like SGM, the stixel computation is performed on
an FPGA platform.

3) Motion Estimation: Autonomously navigating through
urban environments asks for detecting and tracking other
moving traffic participants, such as cars or bicyclists. In our
setup, this is achieved by tracking single stixels over time using
Kalman filtering following the 6D-vision approach of [15], as
described in [16]. The result of this procedure is given in
Fig. 4c showing both the stixel representation and the motion
prediction of the stixels.

4) Object Segmentation: Up to this point, stixels are pro-
cessed independently, both during image segmentation and
tracking. Yet, given the working principle of this represen-
tation, it is quite likely for adjacent stixels to belong to one
and the same physical object. Thus, when stepping forward
from the stixel to the object level, the knowledge which
stixel belongs to which object is of particular interest, e.g.
for collision avoidance and path planning.

For object segmentation, we rely on the approach presented
in [17]. Besides demanding motion consistency for all stixels
representing the same object, this scheme also makes strong
use of spatial and shape constraints. The optimal segmentation
is obtained by means of graph cuts that — thanks to the

compact representation — runs in less than 1ms on a single
CPU. The segmentation result for the depicted scenario is
given in Fig. 4d.

B. Vehicle and Pedestrian Recognition
The sketched spatio-temporal analysis is complemented by

an appearance based detection and recognition scheme. This
approach detects pedestrians up to 40 m in front of Bertha and
oncoming vehicles up to 200 m. In doing so, we can exploit
class-specific (pedestrian and vehicle) models and increase the
robustness of the visual perception significantly.

Our real-time recognition system consists of three main
modules: region-of-interest (ROI) generation, object classifi-
cation and tracking. All system modules make use of two
orthogonal image modalities extracted from stereo vision, i.e.
gray-level image intensity and dense stereo disparity. This
processing chain is described for the recognition of pedestrians
as an example.

1) ROI Generation: The 3D road profile obtained from
dense stereo vision constraints possible pedestrian locations
regarding the estimated ground plane location, 3D position
and height above ground. Regions of Interest (ROIs) are then
computed in a sliding-window fashion at corresponding scales.

2) Classification: Each ROI is classified by means of a
powerful multi-cue classifier. Here, we are using a Mixture-
of-Experts scheme that operates on a diverse set of image
features and modalities as described in [18]. In particular, we
couple gradient-based features such as histograms of oriented
gradients (HoG) [19] with texture-based features such as local
binary patterns (LBP) or local receptive fields (LRF) [20].
Furthermore, all features operate both on gray-level intensity
as well as dense disparity images to fully exploit the orthog-
onal characteristics of both modalities [18]. Classification is
done using linear support vector machines. Multiple classifier
responses at similar locations and scales are addressed by
applying mean-shift-based non-maximum suppression to the
individual detections, e.g. a variant of [21]. For classifier
training, we use the public Daimler Multi-Cue Pedestrian
Classification Benchmark, as introduced in [22].

3) Tracking: For tracking, we employ an Extended Kalman
Filter (EKF) with an underlying constant velocity model of dy-
namics. As such, the state vector holds lateral and longitudinal
position as well as corresponding velocities. Measurements
are derived from the footpoint of detected pedestrians and the
corresponding depth measurements from stereo vision.

Pedestrians in areas to the side of the vehicle are particularly
relevant in turning maneuvers. Given our limited field-of-
view in the stereo system, we additionally utilize a monocular
variant of the pedestrian system described above, operating
on the wide angle camera that is also used for traffic light
recognition.

Vision-based vehicle detection follows a similar scheme
except for the ROI generation. In the near-range (up to 40m),
ROIs are found using the Stixel World as described in [23].
For higher distances up to 200m, stereo-based ROI generation
cannot be applied. Thus, we rely on a fast monocular vehicle
detector to create search regions for our subsequent Mixture-
of-Experts classifiers as described above.
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Fig. 3. The Bertha Benz experimental vehicle and it’s sensors. Depicted in orange are the sensing fields of the long and mid range radar sensors. Marked in
blue are range and field of view of the used wide angle cameras. The central stereo vision system is shown in green.

(a) Left input image of the stereo camera setup. The ego-vehicle drives
through a narrow urban environment with static infrastructure (buildings,
trees, poles), a parking car on the right as well as an approaching vehicle.

(b) Visualization of the SGM stereo matching result. Red pixels are measured
as close to the ego-vehicle (i.e. dist ≤ 10 m) while green pixels are far away
(i.e. dist ≥ 60 m).

(c) Stixel World representation of the disparity input. Objects are efficiently
described using vertical rectangles. The arrows on the base-points of the
stixels show the estimated object velocity. The color encodes the distance.

(d) Segmentation of the Stixel World into static background/infrastructure
and moving objects. The color represents a group of connected stixels with
similar motion. Brown stixels are flagged as potentially inaccurate.

Fig. 4. Visual outline of the stereo processing pipeline. Dense disparity images are computed from sequences of stereo image pairs. From this data, the
Stixel World is computed, a very compact and efficient intermediate representation of the three-dimensional environment. Stixels are tracked over time for
estimating the motion of objects. This information is used to extract both static infrastructure and moving objects for subsequent processing tasks.

C. Traffic Light Recognition

Stopping at a European traffic light requires a viewing angle
of up to 120◦ to be able to see the relevant light signal right in
front of the vehicle. At the same time, a comfortable reaction
to red traffic lights on rural roads calls for a high image
resolution. We chose a 4 MPixel color imager and a lens
with a horizontal viewing angle of approximately 90◦ as a
compromise between performance and computational burden.

From an algorithmic point-of-view, traffic light recognition
involves three main problems: detection, classification and
selection of the relevant light at complex intersections. To
avoid a strong dependency on the map, we apply an image
based localization method consisting of an off-line and an on-
line step, as follows.

Off-line, an image sequence is recorded while driving
towards the intersection of interest. For these recorded images,
we compute highly discriminative features in manually labeled
regions around the relevant traffic lights. These features are

stored in a data base.

While driving in on-line mode, the features in the actual
image are matched against this data base. The resulting
matching hypotheses allow for both the identification of the
best-matching image in the data base and the determination
of the location of the relevant traffic light in the current
image. The correspondent image regions serve as input for
the subsequent classification step. Classification follows the
principle introduced in [24]. The detected regions of interest
are cropped and classified by means of a Neural Network
classifier. Each classified traffic light is then tracked over time
to improve the reliability of the interpretation.

The classification task turned out to be more complex than
expected. While roughly 2/3 of the 155 lights along the
route were as clearly visible, the rest turned out to be very
hard to recognize (please note that most intersections are
equipped with two or more traffic lights for each lane). Some
examples are shown in Fig. 5. Red lights in particular are
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Fig. 5. Examples of hard to recognize traffic lights. Note, that these examples
do not even represent the worst visibility conditions.

very challenging due to their lower brightness. One reason for
this bad visibility is the strong directional characteristic of the
lights. While lights above the road are well visible at larger
distances, they become invisible when getting closer. Even the
lights on the right side, that one should concentrate on when
getting closer, can become nearly invisible in case of a direct
stop at a red light.

D. Radar Sensors

Monitoring of crossing scenarios in rural roads and the all-
around perception for lane merges, vehicle side surveillance
and round-about monitoring forced us to extend the radar
platform. Three additional long-range radars (left, right, and
rear) and a set of four short-range radars were selected to fulfill
these perception tasks.

While the side long-range radars are mainly used to monitor
crossing traffic in urban and rural intersections up to 200 m,
the two frontal near-range radars have to fulfill various per-
ception tasks at the same time. The reliable detection and
tracking of vulnerable road users like pedestrians and bicycles
in the complete frontal region up to 40 m is one of the
most challenging tasks. Another important scenario is the
robust monitoring of roundabout traffic taking into account
the various topology and infrastructure constraints that were
present on the route. For the side and rear surveillance of
the vehicle the frontal near-range radars are complemented
by the radars integrated at the rear bumper to deliver data of
all moving objects in that area. The near-range radar signal
processing is based on the untracked detection level of the
sensors, called targets. A signal processing chain starting with
an extensive pre-processing of each single sensor followed by
a radar networking stage, clustering algorithm and multi-object
target tracking had been realized to deliver a comprehensive
object list as output of the radar processing unit.

III. DIGITAL ROAD MAP

In this project, a detailed digital road map was used to
support motion planning. Such a map contains significantly
more information than today’s navigation maps. We store all
those static properties of the environment that are necessary
for driving, but cannot be reliably detected by sensors. For
example, we explicitly store the layout of drivable lanes which
is especially hard to detect within intersections.

Our map was created in a semi-automated process based
on imagery from a stereo camera: For each stereo image
pair, a dense disparity image and a 3D reconstruction of the
vehicle’s close environment are computed. These 3D points
are projected onto the world plane and accumulated based
on a reference trajectory (see background of Fig. 6). To
ensure congruency, the same stereo images are also used
for extracting the point feature map and the map containing
visible lane markings, cf. Sec. IV. The reference trajectory was
recorded by a DGPS-aided inertial navigation system whereas
online localization during autonomous driving does not require
such a costly system. For mapping and map maintenance we
employed tools from the OpenStreetMap project (OSM) [25].

The road map consists of lane segments, which in the
following we will refer to as lanelets. A lanelet is a driveable
section of a lane, which — with the exception of lateral
lane changes — has exactly one entry and one exit. Such a
segment is described by two polylines, representing the left
and right margins, respectively. Within the OSM formalism,
we define such a drivable section as a relation containing the
two polylines as members with roles left and right. Nodes
shared by two road sections at the beginning and end define
the predecessor-successor relationship of lane sections. This
establishes a routable, directed graph which represents the
topology of the road network. Fig. 6 shows an example of our
roadmap: Six lanelets are shown (identified with numbers 1–6)
as well as a graph representing the respective lane topology.
To map the Bertha Benz Memorial Route, about two thousand
lanelets were annotated manually.

























Fig. 6. Geometries of lanes and resulting lane topology. Lanelet 4 is
highlighted: the right border is displayed in green, the left in red. Lane
segments are interconnected at the orange dots.

Additional information required to make driving decisions
is supplied in the form of relations. For example the two basic
maneuvers merge and yield, see Sec. V-A5, are both expressed
using the same type of relation: They contain a stop line, a
reference line, and references to the prioritized lanelet for the
yield maneuver or to the lanelet to merge with for the merge
maneuver. The relation has two event points, i.e. approach
and complete, that trigger when the vehicle passes them.
Events are processed by the behavioral state chart which will
be introduced in Sec. V-A. In a similar way, traffic lights are
modeled.

IV. MAP RELATIVE LOCALIZATION

One cornerstone of the presented autonomous system is
the precise localization of the vehicle. The rich information
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from digital road maps as introduced in Sec. III can only
be exploited if a high-precision ego-localization solution is
available. In fact, the sought localization solution is required
to yield map-relative localization estimates with an accuracy
up to 20cm. We developed two complementary map relative
localization algorithms. The first system detects point-shaped
landmarks in the immediate vicinity of the ego vehicle and is
specifically effective in urban areas with large man-made struc-
tures. The other system exploits lane markings and curbstones
as these are reliably detectable in rural areas and translates
observations of these objects into a map-relative localization
estimate.

A. Feature-based Localization
The principle underlying feature based localization is il-

lustrated in Fig. 7a. The top image shows one frame of
a stereo image sequence recorded in a mapping run. The
image at the bottom of Fig. 7a has been acquired during an
autonomous test drive from a rear facing monocular camera.
Clearly both images have been obtained from approximately
the same position and angle, yet at a different time of the
year. The two images are registered spatially by means of
a descriptor based point feature association: salient features
of the map sequence (so-called landmarks shown in blue in
Fig. 7a) are associated with detected features (red) in the
current image of the vehicle’s rear facing camera. Given the
3D positions of these landmarks have been reconstructed from
the stereo image map sequence, it is possible to compute
a 6D rigid-body transformation between both camera poses
that would bring associated features in agreement. Fusing
this transformation with the global reference pose of the
map image and the motion information from wheel encoders
and yaw rate sensors available in the vehicle, an accurate
global position estimate can be recovered. More details on
this feature-based localization can be found in [26]–[28].

In feature-rich environments like urban areas the pro-
posed method yields excellent map-relative localization results
achieving centimeter accuracy in many cases. In suburban and
rural areas, however, the required landmark density may drop
below a required reliability level and needs to be comple-
mented by the method of Section IV-B. In fact, both of these
methods always run in parallel and are fused in a filter frame-
work using unscented Kalman filters. The framework handles
out-of-sequence measurements thereby avoiding issues related
to latency.

B. Lane-Marking-Based Localization
In rural areas often the only static features along the road

are the markings on the road itself. Thus, we extend our
localization algorithms with a localization system relative to
the marked lanes. In a first step, a precise map containing
all visible markings is built. To obtain congruent maps, the
same tools and image data as described in Section III are
used. In addition to the road markings (solid and dashed)
and stop lines, also curbs and tram rails are annotated in
the map. For the online localization step, a local section of
this map is projected into the current image. Road markings

(a)

(b)

Fig. 7. (a) Landmarks that are successfully associated between the mapping
image (top) and online image (bottom) are shown. (b) Detected lane markings
(red), sampled map (blue) and corresponding residuals (green).

are detected in the image and their position is compared
to the map (Fig. 7b). The matching is done with a nearest
neighbor search on the sampled map and the resulting residuals
are minimized iteratively using a Kalman filter. In suburban
areas, the boundary lines of the road are often substituted
with curbs. In this case, we support the measurements with
a curb classifier described in [29]. The complete process of
lane-based localization is described in [30].

V. MOTION PLANNING AND CONTROL

Our approach to motion planning was to separate it into two
distinct tasks (cf. Fig. 2). At the top level is a module we call
behavior generation. It is responsible for translating perceived
objects, information from the digital map, give-way rules,
etc. into geometric constraints. Subsequently, the trajectory
planner computes the desired path of the vehicle as a function
of time. This trajectory is obtained by solving a geometric
problem that has been posed as a nonlinear optimization prob-
lem with nonlinear inequality constraints. Trajectory planning
provides an input to the trajectory controller. It stabilizes the
vehicle and guides it along the planned trajectory. These three
components are addressed in the following subsections.

A. Behavior Generation
Behavior generation can be modeled elegantly using a state

chart notation. Depending on the current driving situation,
behavior generation formulates constraints that stem from the
current driving corridor, static obstacles, dynamic objects, and
yield and merge rules. These constraints will be discussed
below.
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1) State chart: Behavior generation is defined as a hier-
archical, concurrent state machine. The notation used is also
known as a Harel state chart and was first described in [31].
The state chart notation allows for clear and comprehensible
modeling of reactive systems, i.e. systems that are driven
by processing a stream of events. The notation allows for
specification of concurrent states, i.e. setting up multiple state
charts in parallel, which react to the same events, but transition
independently. States can be nested in a hierarchy of super-
and substates, enabling a top-down design of complex reactive
systems.

Fig. 8 shows a part of the state chart that was used
in the project. State names are prefixed with St. The left
part of the figure illustrates the concept of concurrency.
When active, the system is simultaneously running four
state charts, StPathPlanning, StAnalyseObjects,
StManageTrafficLights and StManageGiveWay.
The right part provides a detailed view of the substates
of StManageGiveWay, which defaults to be in state
StApproach (the default state of a state chart is indicated
by a black dot). If the vehicle passes the trigger point
approaching of a right-of-way relation (cf. Sec. III), event
T is triggered and the substate chart transitions to state
StGiveWay. This state contains another nested state chart,
StDriveAutomatically, that will initially remain in state
StSituationUnclear (which always generates a stop line
constraint at the entry of the intersection) until the vehicle
has approached close enough so that its sensors can cover
the intersection completely. For testing purposes, the driver
can overrule the vehicle’s decisions by pulling a lever switch
(event D). The state machine will then transition in state
StDriveManually that will enter an intersection upon
confirmation of the operator.
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Fig. 8. Excerpt from the behavioral state chart.

2) Driving corridor: The sequence of lanelets that form
the route to the destination, or a local section of it, is called
the driving corridor. To determine the driving corridor, the
vehicle pose is matched to exactly one lanelet of the map,
considering the distances to the segment boundaries and the
angle of deviation between the vehicle’s orientation and the
centerline of the segment. Starting from this initial segment,
a shortest path search is expanded within the lane topology
(Sec. III) to determine the complete driving corridor that leads
to the destination. The trajectory planner will use the driving
corridor as a constraint, and asserts that the vehicle stays in
its bounds.

3) Static obstacles: As described in Sec. II, static obstacles
are represented as stixels. For all stixels within bounds of

(a)

(b)

Fig. 9. Preprocessing of obstacle data, respecting the run of the driving
corridor.

the driving corridor, it is decided before trajectory planning
whether the vehicle is supposed to pass them on the left or
right. For this decision, a minimum vertex graph cut is used
(cf. [32]). The structure of the graph to be cut is illustrated
schematically in Fig. 9a. Each individual stixel corresponds
to a node in the graph. The two larger nodes represent the
left and right bound of the driving corridor. Two nodes are
connected if it is geometrically infeasible to pass between the
corresponding stixels, or between the corresponding stixels
and the respective corridor bound. The graph will now be
cut into two sections. This is done in a minimal way, i.e.
by removing the smallest possible amount of nodes required
to separate the left and right corridor bounds. In Fig. 9a, the
graph is cut by removing one node (orange). If the cut set
is not empty, passage at this point is not possible. Behavior
generation will put an active stopline at a suitable position
(orange). After having assigned all stixels to either the left or
right corridor bound, a polygonal hull is computed that defines
the geometric constraint for trajectory planning (Fig. 9b).

Fig. 10. Constraints for an oncoming Object (cyan). The trajectory is only
constrained by polygons of corresponding color.

4) Objects: For reacting correctly towards other traffic
participants, it is essential to anticipate their behavior in the
near future. To achieve this, every object provided by the
sensor system (Sec. II) is associated with one or more lanelets.
For each of these lanelets (Sec. III), a shortest path search
yields all corridors that the object can reach within a limited
time horizon. For each of these corridors, a trajectory for
the object is predicted, assuming that the vehicle follows the
lane and maintains its distance to the right bound. Similar
to the static obstacles, polygons are created for each of the
trajectories. However, because the object is in motion, each
polygon is active for a certain period of time only. In Fig. 10,
these polygons are illustrated schematically for the case of an
oncoming object with colors indicating different time intervals.
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5) Yield and merge: Crossing any intersection can be
expressed in terms of two basic maneuvers: One in which the
own lane is crossed by a prioritized lane (yield type), and one
in which two lane segments converge into one (merge type).
Assume that the ego vehicle is approaching a T-junction with
the intent of turning left and does not have the right of way.
Its path will intersect the lane of traffic approaching from the
left, which it will have to yield to. Immediately after this, it
has to merge into the traffic approaching from the right. The
two maneuvers cannot be treated strictly one after the other,
but they must be treated simultaneously. It is the concurrent
nature of the behavioral state chart (Sec. V-A1) that allows for
modeling the two sub-problems separately, but to treat them
simultaneously. Note that driving through a roundabout can be
expressed as a merge maneuver and a subsequent, prioritized,
right turn.

To formulate yield and merge type constraints, objects are
considered in a space-time plane (cf. [33]), which is spanned
by time on the abscissa and distance from the vehicles front
bumper on the ordinate. A yield maneuver implies a space-
time constraint in form of an axis aligned rectangle. A merge
maneuver calls for a more general shape of constraints as
illustrated in Fig. 11b.

(a)

(b) (c)

Fig. 11. Merging into traffic: (a) Top view, white indicates the ego vehicle,
cyan the object vehicle. (b) Top view converted into a 1D arc length repre-
sentation. (c) Space-time constraint computed by assuming a lower estimate
vlow and upper estimate vup for the object vehicle’s speed, respectively.

B. Trajectory Planning

The trajectory planner computes an optimal trajectory
x(t) = (x(t), y(t))T that minimizes the integral

J [x] =
� t0+T

t0

joffs + jvel + jacc + jjerk + jyawr dt

subject to non-linear inequality constraints of the general form
c(x(t)) ≤ 0 provided by the behavior generation module. We

now discuss the individual summands of the integrand. All
summands contain a weighting factor woffs, wvel etc.

joffs(x(t)) = woffs

����
1
2(dleft(x(t)) + dright(x(t))

����
2

is the term to make the trajectory pass in the middle between
the two edges of the corridor. The functions dleft and dright
are the signed distance functions towards the bounds of the
driving corridor, the distance being positive for all points left
of the bound, and negative for all the points to the right. The
term

jvel(x(t)) = wvel |vdes(x(t)) − ẋ(t)|2

represents the quadratic error of the velocity vector of the
trajectory compared to a reference velocity vector vdes. The
absolute value vdes of vdes corresponds to the current speed
limit from the digital map. The direction of the velocity vector
is orthogonal to the gradient of the distance functions of the
corridor, such that the target direction is parallel to the bounds
of the corridor. The two terms described so far specify the
desired behavior of the trajectory: it should follow the middle
of the driving corridor at a specified velocity. They have to be
balanced against the following smoothness terms, which are
motivated by driving dynamics and comfort. The term

jacc(x(t)) = wacc |ẍ(t)|2

penalizes strong acceleration in the transverse and longitudinal
directions, and thus the forces acting on the passengers. The
jerk term

jjerk(x(t)) = wjerk |...x(t)|2

imposes smoothness of the trajectory by dampening rapid
changes in acceleration. The suppression of acceleration and
jerk alone will not prevent rapid changes of direction that
occur when driving along the trajectory. For this purpose, we
introduced a term into the functional which attenuates high
yaw rates:

jyawr(x(t)) = wyawrψ̇(t)2 ,

where the yaw rate is given as the derivative of the tangent an-
gle ψ(t)=arctan ẏ(t)

ẋ(t) . The optimal trajectory must minimize
the described energy functional, but, at the same time, obey
constraints that assure freedom of collision and containment
in the driving corridor. These constraints were described in the
previous section, and we refer to them as external constraints.
Furthermore, there are internal constraints which result from
limits of the vehicle kinematics and dynamics. At low speeds,
the curvature of the trajectory is limited by the steering
geometry of the vehicle, so

|κ(t)| < κmax with κ(t) = ẋ(t)ÿ(t) − ẏ(t)ẍ(t)
3
�

ẋ2 + ẏ2
.

At higher velocities, this the driving limit usually becomes
dominated by the friction limit of the tires. This limit can be
thought of as a circle of forces [34], and

�ẍ(t)� < amax

must hold.
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For minimizing J [x], this variational problem is transformed
to an ordinary constrained extremum problem by applying the
method of finite differences [35]. In the extremum problem,
both the objective function and the constraints are described
via non-linear equations and inequations. As an optimization
method, therefore, the method of sequential quadratic pro-
gramming (SQP) [36] is used.

C. Vehicle Control
The trajectory control module feeds back the pose estimate

of the vision-based localization to guide the vehicle along the
planned trajectory. In this section, we will only discuss lateral
control of the vehicle, as longitudinal control was implemented
using the model predictive controller already described in [8].
The lateral controller is similar to the path tracking controller
of [37] or the lane keeping controller described in [38], but has
enhanced precision and a wider operating range, that covers
tight turns at inner-city intersections as well as driving on
highways.

The lateral control has a feed-forward part for disturbance
compensation and a feed-back control part for stabilization of
the lateral position. In a first step, a desired yaw rate command

˙ψdes is calculated. In a subsequent step, a stationary inverse
single track model is used to transform the desired yaw rate
in a desired steering angle δdes as command input to the
actuator. To ensure steady state accuracy, a steering offset
compensation is adapted during run time using measured yaw
rate and measured steering angle. The full structure is shown
in Fig. 12.

Fig. 12. Schematic structure of the lateral control loop.

The feed-forward control part calculates a desired yaw rate
of the vehicle from the curvature κ of the trajectory at a
near look-ahead point. The look-ahead distance is velocity
dependent to compensate the reaction time of the vehicle
and the steering system. The feed-back control part aims
to minimize the lateral displacement of the vehicle to the
desired trajectory. The two states lateral displacement ye and
its temporal derivative ẏe generated by a Luenberger observer
are used for stabilization. The displacement y provided by the
observer is directly feed back but used for the determination
of a velocity dependent desired track angle θdes. The second
observer state ẏe is used to compute the track angle θmeas. A
P-controller is employed to obtain the feed-back component
of the yaw rate (see Fig. 13).

In the last step, an inverse stationary single track model
is used to compute the required wheel steering angle from
the desired yaw rate. For steady state accuracy, a steering
angle offset observer is used to compensate both deviations
in the inverse single track model as well as a steering angle
offset in the steering actuator. By measuring yaw rate, steering

Fig. 13. Schematic structure of the feed-back control for the lateral position.
f and g are nonlinear functions, k is a constant factor.

angle and velocity, this observer inherently introduces an
integrator behavior within the closed loop system for steady
state accuracy.

VI. RESULTS

In August 2013, the Mercedes-Benz S-Class S 500 IN-
TELLIGENT DRIVE successfully completed the Bertha Benz
Memorial Route in fully autonomous mode. The route was
divided into six intervals that were driven several times in
real traffic at various hours of the day. Splitting the course
was necessary to ensure that operating times of the safety
driver never exceeded 45 minutes. The speed limits along the
route ranged from 30km/h or 50km/h in villages and cities to
100km/h on country roads. About 54km of the route passes
through urban areas. The autonomous vehicle had to handle
155 traffic lights and traversed 18 roundabouts in various
traffic conditions. Numerous pedestrians and bicyclists were
encountered along the road. Some of the most challenging
situations for perception and trajectory planning included
narrow passages where parked vehicles forced our robot to
wait for oncoming traffic.

Sudden human intervention of the safety driver was not
required. In two occasions on our first drive, the vehicle came
to a safe stop behind an obstacle and did not proceed without
intervention of the human operator. In the first situation, the
lane was blocked by a construction site. In the second case,
Bertha stopped behind a delivery van parking in second row.
Since we prohibited the car from entering the opposite lane
by more than one meter, the situation could not be resolved
automatically and the operator had to take back control to
proceed.

The Bertha Benz vehicle has been tuned for a defensive
driving style, e.g. the robot will generally wait for clear
gaps between preceding vehicles before entering a roundabout.
Some passengers thus compared the robot to a human learner
taking driving lessons. Detailed video footage of our experi-
ments can be reviewed on our websites,1 respectively.

VII. CONCLUSION

The experiment presented in this article shows that au-
tonomous driving is feasible — not only on highways but
even in very complex urban areas such as the Bertha Benz
memorial route. The key features that enabled this result are
radar and stereo vision sensing for object detection and free-
space analysis, monocular vision for traffic light detection and

1Available at http://www.youtube.com/Daimler, keyword S 500 Intelli-
gent Drive and http://www.fzi.de/forschung/projekt-details/S 500 Intelligent
Drive.
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object classification, digital maps complemented with vision-
based map-relative localization, versatile trajectory planning
and reliable vehicle control. Compared to other autonomous
vehicle, we believe the S 500 INTELLIGENT DRIVE advances
the state of the art in the variability of handled traffic situations
and in the employed sensor setup. The chosen sensor configu-
ration is closer to current automotive serial production in terms
of cost and technical maturity than in many autonomous robots
presented earlier.

Although the autonomous vehicle successfully completed
the 103 km of the historic route from Mannheim to Pforzheim,
the overall behavior is far inferior to the performance level
of an attentive human driver. A further improvement of the
robot’s ability to interpret a given traffic scenario and to obtain
a meaningful behavior prediction of other traffic participants is
imperative to achieve comparable behavior. We found that the
recognition of traffic lights needs to be improved in terms of
recognition rates, especially at distances above 50m. For traffic
light generation and the generation of digital maps, not only
the technical performance but also the scalability of the chosen
solutions in terms of a commercial roll-out is pivotal. Future
work on autonomous driving should also focus on reducing the
requirements on the accuracy and update frequency of digital
maps. This can only be achieved by improving the sensor setup
regarding robustness, availability and redundancy.
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unstructured environments using an obstacle sensitive cost function,” in
Intelligent Vehicles Symposium, 2008.

[38] H. Fritz, A. Gern, H. Schiemenz, and C. Bonnet, “CHAUFFEUR
assistant: A driver assistance system for commercial vehicles based
on fusion of advanced ACC and lane keeping,” in Intelligent Vehicles
Symposium, 2004.


