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Abstract Current approaches to semantic image and scene

understanding typically employ rather simple object repre-

sentations such as 2D or 3D bounding boxes. While such

coarse models are robust and allow for reliable object de-

tection, they discard much of the information about objects’

3D shape and pose, and thus do not lend themselves well to

higher-level reasoning. Here, we propose to base scene un-

derstanding on a high-resolution object representation. An

object class – in our case cars — is modeled as a deformable

3D wireframe, which enables fine-grained modeling at the

level of individual vertices and faces. We augment that model

to explicitly include vertex-level occlusion, and embed all

instances in a common coordinate frame, in order to infer

and exploit object-object interactions. Specifically, from a

single view we jointly estimate the shapes and poses of mul-

tiple objects in a common 3D frame. A ground plane in that

frame is estimated by consensus among different objects,

which significantly stabilizes monocular 3D pose estima-

tion. The fine-grained model, in conjunction with the ex-

plicit 3D scene model, further allows one to infer part-level

occlusions between the modeled objects, as well as occlu-

sions by other, unmodeled scene elements. To demonstrate

the benefits of such detailed object class models in the con-

text of scene understanding we systematically evaluate our

approach on the challenging KITTI street scene dataset. The

experiments show that the model’s ability to utilize image

evidence at the level of individual parts improves monocu-
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Fig. 1: Top: Coarse 3D object bounding boxes derived from

2D bounding box detections (not shown). Bottom: our fine-

grained 3D shape model fits improve 3D localization (see

bird’s eye views).

lar 3D pose estimation w.r.t. both location and (continuous)

viewpoint.

1 Introduction

The last ten years have witnessed great progress in auto-

matic visual recognition and image understanding, driven

by advances in local appearance descriptors, the adoption of

discriminative classifiers, and more efficient techniques for

probabilistic inference. In several different application do-

mains we now have semantic vision sub-systems that work

on real-world images. Such powerful tools have sparked a

renewed interest in the grand challenge of visual 3D scene

understanding. Meanwhile, individual object detection per-

formance has reached a plateau after a decade of steady
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gains (Everingham et al. 2010), further emphasizing the need

for contextual reasoning.

A number of geometrically rather coarse scene-level rea-

soning systems have been proposed over the past few years

(Hoiem et al. 2008; Wang et al. 2010; Hedau et al. 2010;

Gupta et al. 2010; Silberman et al. 2012), which apart from

adding more holistic scene understanding also improve ob-

ject recognition. The addition of context and the step to rea-

soning in 3D (albeit coarsely) makes it possible for different

vision sub-systems to interact and improve each other’s es-

timates, such that the sum is greater than the parts.

Very recently, researchers have started to go one step fur-

ther and increase the level-of-detail of such integrated mod-

els, in order to make better use of the image evidence. Such

models learn not only 2D object appearance but also detailed

3D shape (Xiang and Savarese 2012; Hejrati and Ramanan

2012; Zia et al. 2013). The added detail in the represen-

tation, typically in the form of wireframe meshes learned

from 3D CAD models, makes it possible to also reason at

higher resolution: beyond measuring image evidence at the

level of individual vertices/parts one can also handle rela-

tions between parts, e.g. shape deformation and part-level

occlusion (Zia et al. 2013). Initial results are encouraging.

It appears that the more detailed scene interpretation can be

obtained at a minimal penalty in terms of robustness (detec-

tion rate), so that researchers are beginning to employ richer

object models to different scene understanding tasks (Choi

et al. 2013; Del Pero et al. 2013; Zhao and Zhu 2013; Xiang

and Savarese 2013; Zia et al. 2014).

Here we describe one such novel system for scene un-

derstanding based on monocular images. Our focus lies on

exploring the potential of jointly reasoning about multiple

objects in a common 3D frame, and the benefits of part-

level occlusion estimates afforded by the detailed represen-

tation. We have shown in previous work (Zia et al. 2013)

how a detailed 3D object model enables a richer pseudo-3D

(x, y, scale) interpretation of simple scenes dominated by

a single, unoccluded object—including fine-grained catego-

rization, model-based segmentation, and monocular recon-

struction of a ground plane. Here, we lift that system to true

3D, i.e. CAD models are scaled to their true dimensions in

world units and placed in a common, metric 3D coordinate

frame. This allows one to reason about geometric constraints

between multiple objects as well as mutual occlusions, at the

level of individual wireframe vertices.

Contributions. We make the following contributions.

First, we propose a viewpoint-invariant method for 3D

reconstruction (shape and pose estimation) of severely oc-

cluded objects in single-view images. To obtain a complete

framework for detection and reconstruction, the novel method

is bootstrapped with a variant of the poselets framework

(Bourdev and Malik 2009) adapted to the needs of our 3D

object model.

Second, we reconstruct scenes consisting of multiple such

objects, each with their individual shape and pose, in a single

inference framework, including geometric constraints be-

tween them in the form of a common ground plane. Notably,

reconstructing the fine detail of each object also improves

the 3D pose estimates (location as well as viewpoint) for

entire objects over a 3D bounding box baseline (Fig. 1).

Third, we leverage the rich detail of the 3D representa-

tion for occlusion reasoning at the individual vertex level,

combining (deterministic) occlusion by other detected ob-

jects with a (probabilistic) generative model of further, un-

known occluders. Again, integrated scene understanding yields

improved 3D localization compared to independently esti-

mating occlusions for each individual object.

And fourth, we present a systematic experimental study

on the challenging KITTI street scene dataset (Geiger et al.

2012). While our fine-grained 3D scene representation can

not yet compete with technically mature 2D bounding box

detectors in terms of recall, it offers superior 3D pose esti-

mation, correctly localizing > 43% of the detected cars up

to 1 m and > 55% up to 1.5 m, even when they are heavily

occluded.

Parts of this work appear in two preliminary conference

papers (Zia et al. 2013, 2014). The present paper describes

our approach in more detail, extends the experimental anal-

ysis, and describes the two contributions (extension of the

basic model to occlusions, respectively scene constraints) in

a unified manner.

The remainder of this paper is structured as follows. Sec.

2 reviews related work. Sec. 3 introduces our 3D geometric

object class model, extended in Sec. 4 to entire scenes. Sec.

5 gives experimental results, and Sec. 6 concludes the paper.

2 Related Work

Detailed 3D object representations. Since the early days

of computer vision research, detailed and complex models

of object geometry were developed to solve object recogni-

tion in general settings, taking into account viewpoint, oc-

clusion, and intra-class variation. Notable examples include

the works of Kanade (1980) and Malik (1987), who lift line

drawings of 3D objects by classifying the lines and their

intersections to common occurring configurations; and the

classic works of Brooks (1981) and Pentland (1986), who

represent complex objects by combinations of atomic shapes,

generalized cones and super-quadrics. Matching CAD-like

models to image edges also made it possible to address par-

tially occluded objects (Lowe 1987) and intra-class variation

(Sullivan et al. 1995).

Unfortunately, such systems could not robustly handle

real world imagery, and largely failed outside controlled lab

environments. In the decade that followed researchers moved
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to simpler models, sacrificing geometric fidelity to robustify

the matching of the models to image evidence—eventually

reaching a point where the best-performing image under-

standing methods were on one hand bag-of-features models

without any geometric layout, and on the other hand object

templates without any flexibility (largely thanks to advances

in local region descriptors and statistical learning).

However, over the past years researchers have gradu-

ally started to re-introduce more and more geometric struc-

ture in object class models and improve their performance

(e.g. Leibe et al. 2006; Felzenszwalb et al. 2010). At present

we witness a trend to take the idea even further and re-

vive highly detailed deformable wireframe models (Zia et al.

2009; Li et al. 2011; Zia et al. 2013; Xiang and Savarese

2012; Hejrati and Ramanan 2012). In this line of work, ob-

ject class models are learnt from either 3D CAD data (Zia

et al. 2009, 2013) or images (Li et al. 2011). Alternatively,

objects are represented as collections of planar segments

(also learnt from CAD models, Xiang and Savarese 2012)

and lifted to 3D with non-rigid structure-from-motion. In

this paper, we will demonstrate that such fine-grained mod-

elling also better supports scene-level reasoning.

Occlusion modeling. While several authors have investi-

gated the problem of occlusion in recent years, little work

on occlusions exists for detailed part-based 3D models, no-

table exceptions being (Li et al. 2011; Hejrati and Ramanan

2012).

Most efforts concentrate on 2D bounding box detectors

in the spirit of HOG (Dalal and Triggs 2005). Fransens et al.

(2006) model occlusions with a binary visibility map over

a fixed object window and infer the map with expectation-

maximization. In a similar fashion, sub-blocks that make

up the window descriptor are sometimes classified into oc-

cluded and non-occluded ones (Wang et al. 2009; Gao et al.

2011; Kwak et al. 2011). Vedaldi and Zisserman (2009) use

a structured output model to explicitly account for trunca-

tion at image borders and predict a truncation mask at both

training and test time. If available, motion (Enzweiler et al.

2010) and/or depth (Meger et al. 2011) can serve as addi-

tional cues to determine occlusion, since discontinuities in

the depth and motion fields are more reliable indicators of

occlusion boundaries than texture edges.

Even though quite some effort has gone into occlusion

invariance for global object templates, it is not surprising

that part-based models have been found to be better suited

for the task. In fact even fixed windows are typically divided

into regular grid cells that one could regard as “parts” (Wang

et al. 2009; Gao et al. 2011; Kwak et al. 2011). More flexi-

ble models include dedicated DPMs for commonly occuring

object-object occlusion cases (Tang et al. 2012) and variants

of the extended DPM formulation (Girshick et al. 2011), in

which an occluder is inferred from the absence of part ev-

idence. Another strategy is to learn a very large number of

partial configurations (“poselets”) through clustering (Bour-

dev and Malik 2009), which will naturally also include fre-

quent occlusion patterns. The most obvious manner to han-

dle occlusion in a proper part-based model is to explicitly

estimate the oclusion states of the individual parts, either via

RANSAC-style sampling to find unoccluded ones (Li et al.

2011), or via local mixtures (Hejrati and Ramanan 2012).

Here we also store a binary occlusion flag per part, but ex-

plicitly enumerate allowable occlusion patterns and restrict

the inference to that set.

Qualitative scene representations. Beyond detailed geomet-

ric models of individual objects, early computer vision re-

search also attempted to model entire scenes in 3D with con-

siderable detail. In fact the first PhD thesis in computer vi-

sion (Roberts 1963) modeled scenes comprising of polyhe-

dral objects, considering self-occlusions as well as combin-

ing multiple simple shapes to obtain complex objects. Koller

et al. (1993) used simplified 3D models of multiple vehi-

cles to track them in road scenes, whereas Haag and Nagel

(1999) included scene elements such as trees and buildings,

in the form of polyhedral models, to estimate their shadows

falling on the road, as well as vehicle motion and illumina-

tion.

Recent work has revisited these ideas at the level of plane-

and box-type models. E.g., Wang et al. (2010) estimate the

geometric layout of walls in an indoor setting, segmenting

out the clutter. Similarly, Hedau et al. (2010) estimate the

layout of a room and reason about the locations of the bed

as a box in the room. For indoor settings it has even been

attempted to recover physical support relations, based on

RGB-D data (Silberman et al. 2012). For fairly generic out-

door scenes, physical support, volumetric constraints and

occlusions have been included, too, still using boxes as ob-

ject models (Gupta et al. 2010). Also for outdoor images,

Liu et al. (2014) partition single views into a set of oriented

surfaces, driven by grammar rules for neighboring segments.

It has also been observed that object detections carry infor-

mation about 3D surface orientations, such that they can be

jointly estimated even from a single image (Hoiem et al.

2008). Moreover, recent work suggests that object detec-

tion can be improved if one includes the density of common

poses between neighboring object instances (Oramas et al.

2013).

All the works indicate that even coarse 3D reasoning al-

lows one to better guess the (pseudo-)3D layout of a scene,

while at the same time improving 2D recognition. Together

with the above-mentioned strength of fine-grained shape mod-

els when it comes to occlusion and viewpoint, this is in our

view a compelling reason to add 3D contextual constraints

also to those fine-grained models.

Quantitative scene representations. A different type of meth-

ods also includes scene-level reasoning, but is tailored to

specific applications and is more quantitative in nature. Most
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works in this direction target autonomous navigation, hence

precise localization of reachable spaces and obstacles is im-

portant. Recent works for the autonomous driving scenario

include: (Ess et al. 2009), in which multi-pedestrian tracking

is done in 3D based on stereo video, and (Geiger et al. 2011;

Wojek et al. 2013), both aiming for advanced scene under-

standing including multi-class object detection, 3D interac-

tion modeling, as well as semantic labeling of the image

content, from monocular input. Viewpoint estimates from

semantic recognition can also be combined with interest point

detection to improve camera pose and scene geometry even

across wide baselines (Bao and Savarese 2011).

For indoor settings, a few recent papers also employ de-

tailed object representations to support scene understanding

(Del Pero et al. 2013), try to exploit frequently co-occurring

object poses (Choi et al. 2013), and even supplement geom-

etry and appearance constraints with affordances to better

infer scene layout (Zhao and Zhu 2013).

3 3D Object Model

We commence by introducing the fine-grained 3D object

model that lies at the core of our approach. Its extension

to entire multi-object scenes will be discussed in Sec. 4. By

modeling an object class at the fine level of detail of indi-

vidual wireframe vertices the object model provides the ba-

sis for reasoning about object extent and occlusion relations

with high fidelity. To that end, we lift the pseudo-3D ob-

ject model that we developed in Zia et al. (2013) to metric

3D space, and combine it with the explicit representation of

likely occlusion patterns from Zia et al. (2013). Our object

representation then comprises a model of global object ge-

ometry (Sec. 3.1), local part appearance (Sec. 3.2), and an

explicit representation of occlusion patterns (Sec. 3.3). Ad-

ditionally, the object representation also includes a grouping

of local parts into semi-local part configurations (Sec. 3.4),

which will be used to initialize the model during inference

(Sec. 4.3). We depict the 3D object representation in Fig. 2.

3.1 Global Object Geometry

We represent an object class as a deformable 3D wireframe,

as in the classical “active shape model” formulation (Cootes

et al. 1995). The vertices of the wireframe are defined manu-

ally, and wireframe exemplars are collected by annotating a

set of 3D CAD models (i.e., selecting corresponding vertices

from their triangle meshes). Principal Component Analysis

(PCA) is applied to obtain the mean configuration of ver-

tices in 3D as well as the principal modes of their relative

displacement. The final geometric object model then con-

sists of the mean wireframe µ plus the m principal com-

ponent directions pj and corresponding standard deviations

Random Forest 

3D Object Geometry 

 Annotated 3D CAD Models  

... 

 
Apply PCA 

 
Render 

Part Appearance 

Fig. 2: 3D Object Model.

σj , where 1 ≤ j ≤ m. Any 3D wireframe X can thus be rep-

resented, up to some residual ǫ, as a linear combination of

r principal components with geometry parameters s, where

sk is the weight of the kth principal component:

X(s) = µ+

r
∑

k=1

skσkpk + ǫ (1)

Unlike the earlier Zia et al. (2013), the 3D CAD models

are scaled according to their real world metric dimensions.
1The resulting metric PCA model hence encodes physically

meaningful scale information in world units, that allow one

to assign absolute 3D positions to object hypotheses (given

known camera intrinsics).

3.2 Local Part Appearance

We establish the connection between the 3D geometric ob-

ject model (Sec. 3.1) and an image by means of a set of

parts, one for each wireframe vertex. For each part, a multi-

view appearance model is learned, by generating from train-

ing patches with non-photorealistic rendering of 3D CAD

models from a large number of different viewpoints (Stark

et al. 2010), and training a sliding-window detector on these

patches.

Specifically, we encode patches around the projected lo-

cations of the annotated parts (≈ 10% in size of the full ob-

ject width) as dense shape context features (Belongie et al.

2000). We learn a multi-class Random Forest classifier where

each class represents the multi-view appearance of a partic-

ular part. We also dedicate a class trained on background

patches, combining random real image patches with ren-

dered non-part patches to avoid classifier bias. Using syn-

thetic renderings for training allows us to densely sample the

1 While in the earlier work they were scaled to the same size, so as

to keep the deformations from the mean shape small.
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relevant portion of the viewing sphere with minimal annota-

tion effort (one time labeling of part locations on 3D CAD

models, i.e. no added effort in creating the shape model).

3.3 Explicit Occluder Representation

The 3D wireframe model allows one to represent partial oc-

clusion at the level of individual parts: each part has an as-

sociated binary variable that stores whether the part is vis-

ible or occluded. Note that, in theory, this results in a ex-

ponential number of possible combinations of occluded and

unoccluded parts, hindering efficient inference over occlu-

sion states. We therefore take advantage of the fact that par-

tial occlusion is not entirely random, but tends to follow re-

occurring patterns that render certain joint occlusion states

of multiple parts more likely than others (Pepik et al. 2013):

the joint occlusion state depends on the shape of the occlud-

ing physical object(s).

Here we approximate the shapes of (hypothetical) oc-

cluders as a finite set of occlusion masks, following (Kwak

et al. 2011; Zia et al. 2013). This set of masks constitutes

a (hard) non-parameteric prior over possible occlusion pat-

terns. The set is denoted by {ai}, and for convenience we

denote the empty mask which leaves the object fully visi-

ble by a0. We sample the set of occlusion masks regularly

from a generative model, by sliding multiple boxes across

the mask in small spatial increments (the parameters of those

boxes are determined empirically). Figure 3(b) shows a few

out of the total 288 masks in our set, with the blue region

representing the occluded portion of the object (car). The

collection is able to capture different modes of occlusion,

for example truncation by the image border (Fig. 8(d), first

row), occlusion in the middle by a post or tree (Fig. 8(d),

2nd row), or occlusion of only the lower parts from one side

(Fig. 8(d), third row).

Note that the occlusion mask representation is indepen-

dent of the cause of occlusion, and allows to uniformly treat

occlusions that arise from (i) self occlusion (a part is oc-

cluded by a wireframe face of the same object), (ii) occlu-

sion by another object that is part of the same scene hypothe-

sis (a part is occluded by a wireframe face of another object),

(iii) occlusion by an unknown source (a part is occluded by

an object that is not part of the same scene hypothesis, or

image evidence is missing).

3.4 Semi-Local Part Configurations

In the context of people detection and pose estimation, it

has been realized that individual body parts are hard to ac-

curately localize, because they are small and often not dis-

criminative enough in isolation (Bourdev and Malik 2009).

Instead, it has proved beneficial to train detectors that span

(a) (b)

Fig. 3: (a) Individual training examples for a few part

configurations (top row shows labeled part locations), (b)

example occlusion masks.

multiple parts appearing in certain poses (termed “poselets”),

seen from a certain viewpoint, and selecting the ones that ex-

hibit high discriminative power against background on a val-

idation set (alternately, the scheme of Maji and Malik (2009)

could also be used). In line with these findings, we introduce

the notion of part configurations, i.e. semi-local arrange-

ments of a number of parts, seen from a specific viewpoint,

that are adjacent (in terms of wireframe topology). Some ex-

amples are depicted in Fig. 3(a)). These configurations pro-

vide more reliable evidence for each of the constituent parts

than individual detectors. We use detectors for different con-

figurations to find primising 2D bounding boxes and view-

point estimates, as initializations for fitting the fine-grained

3D object models.

Specifically, we list all the possible configurations of 3-

4 adjacent visible parts that are not smaller than ≈ 20%

of the full object (for the eight coarse viewpoints). Some

configurations cover the full car, whereas others only span

a part of it (down to ≈ 20% of the full object). However

we found the detection performance to be rather consistent

even if other heuristics were used for part configuration gen-

eration. We then train a bank of single component DPM de-

tectors, one for each configuration, in order to ensure high

recall and a large number of object hypotheses to choose

from. At test time, activations of these detectors are merged

together through agglomerative clustering to form full ob-

ject hypothesis, in the spirit of the poselet framework (Bour-

dev and Malik 2009). For training, we utilize a set of images

labeled at the level of individual parts, and with viewpoint

labels from a small discrete set (in our experiments 8 equally

spaced viewpoints). All the objects in these images are fully
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Fig. 4: 3D Scene Model.

visible. Thus, we can store the relative scale and bounding

box center offsets, w.r.t. the full object bounding box, for

the part-configuration examples. When detecting potentially

occluded objects in a test image, the activations of all con-

figuration detectors predict a full object bounding box and a

(discrete) pose.

Next we recursively merge nearby (in x, y, scale) acti-

vations that have the same viewpoint. Merging is accom-

plished by averaging the predicted full object bounding box

corners, and assigning it the highest of the detection scores.

After this agglomerative clustering has terminated all clus-

ters above a fixed detection score are picked as legitimate

objects. Thus we obtain full object bounding box predic-

tions (even for partially visible objects), along with an ap-

proximate viewpoint.

4 3D Scene Model

We proceed by extending the single object model of Sec. 3

to entire scenes, where we can jointly reason about multi-

ple objects and their geometric relations, placing them on a

common ground plane and taking into account mutual oc-

clusions. As we will show in the experiments (Sec. 5), this

joint modeling can lead to significant improvements in terms

of 3D object localization and pose estimation compared to

separately modeling individual objects. It is enabled by a

joint scene hypothesis space (Sec. 4.1), governed by a proba-

bilistic formulation that scores hypotheses according to their

likelihood (Sec. 4.2), and an efficient approximate inference

procedure for finding plausible scenes (Sec. 4.3). The scene

model is schematically depicted in Fig. 4.

4.1 Hypothesis Space

Our 3D scene model comprises a common ground plane and

a set of 3D deformable wireframes with corresponding oc-

clusion masks (Sec. 3). Note that this hypothesis space is

more expressive than the 2.5 D representations used by pre-

vious work (Ess et al. 2009; Meger et al. 2011; Wojek et al.

2013), as it allows reasoning about locations, shapes, and in-

teractions of objects, at the level of individual 3D wireframe

vertices and faces.

Common ground plane. In the full system, we constrain all

the object instances to lie on a common ground plane, as of-

ten done for street scenes. This assumption usually holds

and drastically reduces the search space for possible ob-

ject locations (2 degrees of freedom for translation and 1
for rotation, instead of 3 + 3). Moreover, the consensus for

a common ground plane stabilizes 3D object localization.

We parametrize the ground plane with the pitch and roll an-

gles relative to the camera frame, θgp = (θpitch, θroll). The

height qy of the camera above ground is assumed known and

fixed.

Object instances. Each object in the scene is an instance of

the 3D wireframe model described in Sec. 3.1. An individ-

ual instance hβ = (q, s, a) comprises 2D translation and az-

imuth q = (qx, qz, qaz) relative to the ground plane, shape

parameters s, and an occlusion mask a.

Explicit occlusion model. As detailed in Sec. 3.3, we rep-

resent occlusions on an object instance by selecting an oc-

cluder mask out of a pre-defined set {ai}, which in turn

determines the binary occlusion state of all parts. That is,

the occlusion state of part j is given by an indicator func-

tion oj(θgp, qaz, s, a), with θgp the ground plane parame-

ters, qaz the object azimuth, s the object shape, and a the

occlusion mask. Since all object hypotheses reside in the

same 3D coordinate system, mutual occlusions can be de-

rived deterministically from their depth ordering (Fig. 4):

we cast rays from the camera center to each wireframe ver-

tex of all other objects, and record intersections with faces of

any other object as an appropriate occlusion mask. Accord-

ingly, we write Γ
(

{h1,h2, . . . ,hn}\hβ ,hβ ,θgp
)

, i.e. the

operator Γ returns the index of the occlusion mask for hβ as

a function of the other objects in a given scene estimate.

4.2 Probabilistic Formulation

All evidence in our model comes from object part detection,

and the prior for allowable occlusions is given by per-object

occlusion masks and relative object positions (Sec. 4.1).

Object likelihood. The likelihood of an object being present

at a particular location in the scene is measured by responses

of a bank of (viewpoint-independent) sliding-window part

detectors (Sec. 3.2), evaluated at projected image coordi-

nates of the corresponding 3D wireframe vertices.2 The like-

lihood L(hβ ,θgp) for an object hβ standing on the ground

2 In practice this amounts to a look-up in the precomputed response

maps.
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plane θgp is the sum over the responses of all visible parts,

with a constant likelihood for occluded parts (m is the total

number of parts, a0 is the ’full visibility’ occluder mask):

L(hβ ,θgp)=max
ς

[

∑m

j=1

(

Lv + Lo
)

∑m

j=1
oj(θgp, qaz, s, a0)

]

. (2)

The denominator normalizes for the varying number of self-

occluded parts at different viewpoints. Lv is the evidence

(pseudo log-likelihood) Sj(ς,xj) for part j if it is visible,

found by looking up the detection score at image location xj
and scale ς , normalized with the background score Sb(ς,xj)

as in (Villamizar et al. 2011). Lo assigns a fixed likelihood

c, estimated by cross-validation on a held-out dataset:

Lv = oj(θgp, qaz, s, a) log
Sj(ς,xj)

Sb(ς,xj)
, (3)

Lo =
(

oj(θgp, qaz, s, a0)− oj(θgp, qaz, s, a)
)

c . (4)

Scene-level likelihood. To score an entire scene we combine

object hypotheses and ground plane into a scene hypothe-

sis ψ = {qy,θgp,h
1, ...,hn}. The likelihood of a complete

scene is then the sum over all object likelihoods, such that

the objective for scene interpretation becomes:

ψ̂ = argmaxψ

[

n
∑

β=1

L(hβ ,θgp)

]

. (5)

Note, the domain Dom
(

L
(

hβ ,θgp)
)

must be limited such

that the occluder mask aβ of an object hypothesis hβ is de-

pendent on relative poses of all the objects in the scene: an

object hypothesis hβ can only be assigned occlusion masks

ai which respect object-object occlusions—i.e. at least all

the vertices covered by Γ
(

{h1,h2, . . . ,hn}\hβ ,hβ ,θgp)
)

must be covered, even if a different mask would give a higher

objective value. Also note that the ground plane in our cur-

rent implementation is a hard constraint—objects off the

ground are impossible in our parameterization (except for

experiments in which we “turn off” the ground plane for

comparison).

4.3 Inference

The objective function in Eqn. 5 is high-dimensional, highly

non-convex, and not smooth (due to the binary occlusion

states). Note that deterministic occlusion reasoning poten-

tially introduces dependencies between all pairs of objects,

and the common ground plane effectively ties all other vari-

ables to the ground plane parameters θgp. In order to still do

approximate inference and reach strong local maxima of the

likelihood function, we have designed an inference scheme

that proceeds in stages, lifting an initial 2D guess (Initializa-

tion) about object locations to a coarse 3D model (Coarse

3D Geometry), and refining that coarse model into a final

collection of consistent 3D shapes (Final scene-level infer-

ence, Occlusion Reasoning).

Initialization. We initialize the inference from coarse 2D

bounding box pre-detections and corresponding discrete view-

point estimates (Sec. 3.4), keeping all pre-detections above

a confidence threshold. Note that this implicitly determines

the maximum number of objects that will be considered in

the scene hypothesis under consideration.

Coarse 3D geometry. Since we reason in a fixed, camera-

centered 3D coordinate frame, the initial detections can be

directly lifted to 3D space, by casting rays through 2D bound-

ing box centers and instantiating objects on these rays, such

that their reprojections are consistent with the 2D boxes and

discrete viewpoint estimates, and reside on a common ground

plane. In order to avoid discretization artifacts, we then re-

fine the lifted object boxes by imputing the mean object

shape and performing a grid search over ground plane pa-

rameters and object translation and rotation (azimuth). In

this step, rather than commiting to a single scene-level hy-

pothesis, we retain many candidate hypotheses (scene par-

ticles) that are consistent with the 2D bounding boxes and

viewpoints of the pre-detections within some tolerance.

Occlusion reasoning. We combine two different methods to

select an appropriate occlusion mask for a given object, (i)

deterministic occlusion reasoning, and (ii) occlusion reason-

ing based on (the absence of) part evidence.

(i) Since by construction we recover the 3D locations

and shapes of multiple objects in a common frame, we can

calculate whether a certain object instance is occluded by

any other modeled object instance in our scene. This is cal-

culated efficiently by casting rays to all (not self-occluded)

vertices of the object instance, and checking if a ray inter-

sects any other object in its path before reaching the vertex.

This deterministically tells us which parts of the object in-

stance are occluded by another modeled object in the scene,

allowing us to choose an occluder mask that best represents

the occlusion (overlaps the occluded parts). To select the

best mask we search through the entire set of occluders to

maximize the number of parts with the correct occlusion la-

bel, with greater weight on the occluded parts (in the exper-

iments, twice as much as for visible parts).

(ii) For parts not under deterministic occlusion, we look

for missing image evidence (low part detection scores for

multiple adjacent parts), guided by the set of occluder masks.

Specifically, for a particular wireframe hypothesis, we search

through the set of occluder masks to maximize the summed

part detection scores (obtained from the Random Forest clas-

sifier, Sec. 3.2), replacing the scores for parts behind the oc-

cluder by a constant (low) score c. Especially in this step,

leveraging local context in the form of occlusion masks sta-

bilizes individual part-level occlusion estimates, which by

themselves are rather unreliable because of the noisy evi-

dence.
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Given: Scene particle ψ
′

: initial objects hβ = (qβ , sβ , aβ),
β = 1 . . . n; fixed θgp; aβ = a0 (all objects fully visible)

for fixed number of iterations do

1. for β = 1 . . . n do

draw samples {qβ
j , s

β
j }

j=1..m from a Gaussian

N (qβ , sβ ;Σβ) centered at current values;

update hβ = argmaxj L
(

hβ(qβ
j , s

β
j , a

β), θgp

)

end

2. for β = 1 . . . n do
update occlusion mask (exhaustive search)

aβ = argmaxj L
(

hβ(qβ , sβ , aj), θgp

)

end

3. Recompute sampling variance Σβ of

Gaussians (Leordeanu and Hebert 2008)
end

Algorithm 1: Inference run for each scene particle.

Final scene-level inference. Finally, we search a good lo-

cal optimum of the scene objective function (Eqn. 5) using

an iterative stochastic optimization scheme shown in Al-

gorithm 1. Each particle is iteratively refined in two steps:

first, the shape and viewpoint parameters of all objects are

updated. Then, object occlusions are recomputed and oc-

clusions by unmodeled objects are updated, by exhaustive

search over the set of possible masks.

The update of the continuous shape and viewpoint fol-

lows the smoothing-based optimization of Leordeanu and

Hebert (2008). In a nutshell, new values for the shape and

viewpoint parameters are found by testing many random

perturbations around the current values. The trick is that

the random perturbations follow a normal distribution that

is adapted in a data-driven fashion: in regions where the ob-

jective function is unspecific and wiggly the variance is in-

creased to suppress weak local minima; near distinct peaks

the variance is reduced to home in on the nearby stronger

optimum. For details we refer to the original publication.

For each scene particle the two update steps – shape and

viewpoint sampling for all cars with fixed occlusion masks,

and exhaustive occlusion update for fixed shapes and view-

points – are iterated, and the particle with the highest ob-

jective value ψ forms our MAP estimate. As the space of

ground planes is already well-covered by the set of multi-

ple scene particles (in our experiments 250), we keep the

ground plane parameters of each particle constant. This sta-

bilizes the optimization. Moreover, we limit ourselves to a

fixed number of objects from the pre-detection stage. The

scheme could be extended to allow adding and deleting ob-

ject hypotheses, by normalizing the scene-level likelihood

with the number of object instances under consideration.

5 Experiments

In this section, we extensively analyze the performance of

our fine-grained 3D scene model, focusing on its ability to

derive 3D estimates from a single input image (with known

camera intrinsics). To that end, we evaluate object localiza-

tion in 3D metric space (Sec. 5.4.1) as well as 3D pose esti-

mation (Sec. 5.4.2) on the challenging KITTI dataset (Geiger

et al. 2012) of street scenes. In addition, we analyze the per-

formance of our model w.r.t. part-level occlusion prediction

and part localization in the 2D image plane (Sec. 5.5). In

all experiments, we compare the performance of our full

model with stripped-down variants as well as appropriate

baselines, to highlight the contributions of different system

components to overall performance.

5.1 Dataset

In order to evaluate our approach for 3D layout estimation

from a single view, we require a dataset with 3D annotations.

We thus turn to the KITTI 3D object detection and orienta-

tion estimation benchmark dataset (Geiger et al. 2012) as a

testbed for our approach, since it provides challenging im-

ages of realistic street scenes with varying levels of occlu-

sion and clutter, but nevertheless controlled enough condi-

tions for thorough evaluations. It consists of around 7, 500

training and 7, 500 test images of street scenes captured from

a moving vehicle and comes with labeled 2D and 3D object

bounding boxes and viewpoints (generated with the help of

a laser scanner).

Test set. Since annotations are only made publicly available

on the training set of KITTI, we utilize a portion of this train-

ing set for our evaluation. We choose only images with mul-

tiple cars that are large enough to identify parts, and man-

ually annotate all cars in this subset with 2D part locations

and part-level occlusion labels. Specifically, we pick every

5th image from the training set with at least two cars with

height greater than 75 pixels. This gives us 260 test images

with 982 cars in total, of which 672 are partially occluded,

and 476 are severely occluded. Our selection shall ensure

that while being biased towards more complex scenes, we

still sample a representative portion of the dataset.

Training set. We use two different kinds of data for train-

ing our model, (i) synthetic data in the form of rendered

CAD models, and (ii) real-world training data. (i) We uti-

lize 38 commercially available 3D CAD models of cars for

learning the object wireframe model as well as for learning

viewpoint-invariant part appearances, (c.f. Zia et al. 2013).

Specifically, we render the 3D CAD models from 72 differ-

ent azimuth angles (5◦ steps) and 2 elevation angles (7.5◦

and 15◦ above the ground), densely covering the relevant

part of the viewing sphere, using the non-photorealistic style

of Stark et al. (2010). Rendered part patches serve as posi-

tive part examples, randomly sampled image patches as well

as non-part samples from the renderings serve as negative

background examples to train the multi-class Random For-

est classifier. The classifier distinguishes 37 classes (36 parts
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and 1 background class), using 30 trees with a maximum

depth of 13. The total number of training patches is 162, 000,

split into 92, 000 part and 70, 000 background patches. (ii)

We train 118 part configuration detectors (single component

DPMs) labeled with discrete viewpoint, 2D part locations

and part-level occlusion labels on a set of 1, 000 car im-

ages downloaded from the internet and 150 images from the

KITTI dataset (none of which are part of the test set). In or-

der to model the occlusions, we semi-automatically define a

set of 288 occluder masks, the same as in Zia et al. (2013).

5.2 Object Pre-Detection

As a sanity check, we first verify that our 2D pre-detection

(Sec. 3.4) matches the state-of-the-art. To that end we eval-

uate a standard 2D bounding box detection task according

to the PASCAL VOC criterion (> 50% intersection-over-

union between predicted and ground truth bounding boxes).

As normally done we restrict the evaluation to objects of a

certain minimum size and visibility. Specifically, we only

consider cars > 50 pixels in height which are at least 20%
visible. The minimum size is slightly stricter than the 40

pixels that Geiger et al. (2012) use for the dataset (since

we need to ensure enough support for the part detectors),

whereas the occlusion threshold is much more lenient than

their 80% (since we are specifically interested in occluded

objects).

Results. We compare our bank of single component DPM

detectors to the original deformable part model (Felzenszwalb

et al. 2010), both trained on the same training set (Sec. 5.1).

Precision-recall curves are shown in Fig. 6. We observe that

our detector bank (green curve, 57.8% AP) in fact performs

slightly better than the original DPM (red curve, 57.3% AP).

In addition, it delivers coarse viewpoint estimates and rough

part locations that we can leverage for initializing our scene-

level inference (Sec. 4.3). The pre-detection takes about 2

minutes per test image on a single core (evaluation of 118

single component DPMs and clustering of their votes).

5.3 Model Variants and Baselines

We compare the performance of our full system with a num-

ber of stripped down variants in order to quantify the benefit

that we get from each individual component. We consider

the following variants:

(i) FG: the basic version of our fine-grained 3D object

model, without ground plane, searched occluder or deter-

ministic occlusion reasoning; this amounts to independent

modeling of the objects in a common, metric 3D scene co-

ordinate system. (ii) FG+SO: same as (i) but with searched

occluder to represent occlusions caused by unmodeled scene

elements. (iii) FG+DO: same as (i) but with deterministic

full dataset occ >0 parts occ >3 parts

<1m <1.5m <1m <1.5m <1m <1.5m

Fig. 5 plot (a) (b) (c) (d)

(i) FG 23% 35% 22% 31% 23% 32%

(ii) FG+SO 26% 37% 23% 33% 27% 36%

(iii) FG+DO 25% 37% 26% 35% 27% 38%

(iv) FG+GP 40% 53% 40% 52% 38% 49%

(v) FG+GP+DO+SO 44% 56% 44% 55% 43% 60%

(vi) Zia et al. (2013) — — — — — —

(vii) COARSE 21% 37% 21% 40% 20% 42%

(viii) COARSE+GP 35% 54% 28% 48% 27% 47%

Table 1: 3D localization accuracy: percentage of cars cor-

rectly localized within 1 and 1.5 meters of ground truth.

occlusion reasoning between multiple objects. (iv) FG+GP:

same as (i), but with common ground plane. (v) FG+GP+-

DO+SO: same as (i), but with all three components, common

ground plane, searched occluder, and deterministic occlu-

sion turned on. (vi) the earlier pseudo-3D shape model (Zia

et al. 2013), with probabilistic occlusion reasoning; this uses

essentially the same object model as (ii), but learns it from

examples scaled to the same size rather than the true size,

and fits the model in 2D (x, y, scale)-space rather explicitly

recovering a 3D scene interpretation.

We also compare our representation to two different base-

lines, (vii) COARSE: a scene model consisting of 3D bound-

ing boxes rather than detailed cars, corresponding to the

coarse 3D geometry stage of our pipeline (Sec. 4.3); and

(viii) COARSE+GP: like (vii) but with a common ground

plane for the bounding boxes. Specifically, during the coarse

grid search we choose the 3D bounding box hypothesis whose

2D projection is closest to the corresponding pre-detection

2D bounding box.

5.4 3D Evaluation

Having verified that our pre-detection stage is competitive

and provides reasonable object candidates in the image plane,

we now move on to the more challenging task of estimat-

ing the 3D location and pose of objects from monocular im-

ages (with known camera intrinsics). As we will show, the

fine-grained representation leads to significant performance

improvements over a standard baseline that considers only

3D bounding boxes, on both tasks. Our current unoptimized

implementation takes around 5 minutes to evaluate the lo-

cal part detectors in a sliding-window fashion at multiple

scales over the whole image, and further 20 minutes per test

image for the inference, on a single core. This is similar to

recent deformable face model fitting work, e.g. Schönborn

et al. (2013). However, both the sliding-window part de-

tector and the sample-based inference naturally lend them-

selves to massive parallization. In fact the part detector only
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(a) (b)

(c) (d)

Fig. 5: 3D localization accuracy: percentage of cars cor-

rectly localized within 1 (a,c) and 1.5 (b,d) meters of ground

truth, on all (a,b) and occluded (c,d) cars.

needs to be evaluated within the pre-detection bounding boxes,

which we do not exploit at present. Moreover, we set the

number of iterations conservatively, in most cases the results

already converge far earlier.

5.4.1 3D Object Localization

Protocol. We measure 3D localization performance by the

fraction of detected object centroids that are correctly local-

ized up to deviations of 1, and 1.5 meters. These thresholds

may seem rather strict for the viewing geometry of KITTI,

but in our view larger tolerances make little sense for cars

with dimensions ≈ 4.0× 1.6 meters.

In line with existing studies on pose estimation, we base

the analysis on true positive (TP) initializations that meet

the PASCAL VOC criterion for 2D bounding box overlap

and whose coarse viewpoint estimates lie within 45◦ of the

ground truth, thus excluding failures of pre-detection. We

perform the analysis for three settings (Tab. 1): (i) over our

full testset (517 of 982 TPs); (ii) only over those cars that

are partially occluded, i.e. 1 or more of the parts that are

not self-occluded by the object are not visible (234 of 672

TPs); and (iii) only those cars that are severely occluded,

i.e. 4 or more parts are not visible (113 of 476 TPs). Fig. 5

visualizes selected columns of Tab. 1 as bar plots to facilitate

the comparison.

Results. In Tab. 1 and Fig 5, we first observe that our full sys-

tem (FG+GP+DO+SO, dotted dark red) is the top performer

for all three occlusion settings and both localization error

thresholds, localizing objects with 1m accuracy in 43−44%

of the cases and with 1.5m accuracy in 55–60% of the cases.

Fig. 8 visualizes some examples of our full system FG+-

GP+DO+SO vs. the stronger baseline COARSE+GP.

Second, the basic fine-grained model FG (orange) out-

performs COARSE (light blue) by 1–3 percent points (pp)

corresponding to a relative improvement of 4–13% at 1m

accuracy. The gains increase by a large margin when adding

a ground plane: FG+GP (dark red) outperforms COARSE+-

GP (dark blue) by 5–12 pp (13–43%) at 1m accuracy. In

other words, cars are not 3D boxes. Modeling their detailed

shape and pose yields better scene descriptions, with and

without ground plane constraint. The results at 1.5m are less

clear-cut. It appears that from badly localized initializations

just inside the 1.5m radius, the final inference sometimes

drifts into incorrect local minima outside of 1.5m.

Third, modeling fine-grained occlusions either indepen-

dently (FG+SO, dotted orange) or deterministically across

multiple objects (FG+DO, dotted red) brings marked im-

provements on top of FG alone. At 1m they outperform FG

by 1–4 pp (2–15%) and by 2–4 pp (7–19%), respectively. We

get similar improvements at 1.5m, with FG+SO and FG+-

DO outperforming FG by 2–4 pp (4–14%), and 2–6 pp (4–

19%) respectively. Not surprisingly, the performance boost

is greater for the occluded cases, and both occlusion reason-

ing approaches are in fact beneficial for 3D reasoning. Fig. 9

visualizes some results with and without occlusion reason-

ing.

And last, adding the ground plane always boosts the per-

formance for both the FG and COARSE models, strongly

supporting the case for joint 3D scene reasoning: at 1m

accuracy the gains are 15–18 pp (65–81%) for FG+GP vs.

FG, and 7–14 pp (30–67%) for COARSE+GP vs. COARSE.

Similarly, at 1.5m accuracy we get 17–21 pp (51–68%) for

FG+GP vs. FG, and 5–17 pp (10–47%) for COARSE+GP vs.

COARSE. for qualitative results see Fig. 10.

We obtain even richer 3D “reconstructions” by replacing

wireframes with nearest neighbors from the database of 3D

CAD models (Fig. 11), accurately recognizing hatchbacks

(a, e, f, i, j, l, u), sedans (b, o) and station wagons (d, p, v,

w, x), as well as approximating the van (c, no example in

database) by a station wagon. Specifically, we represent the

estimated wireframe as well as the annotated 3D CAD ex-

emplars as vectors of corresponding 3D part locations, and

find the nearest CAD exemplar in terms of Euclidean dis-

tance, which is then visualized. Earlier, the same method

was used to perform fine-grained object categorization (Zia

et al. 2013).
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full dataset occ >0 parts occ >3 parts

<5◦ <10◦ 3D err 2D err <5◦ <10◦ 3D err 2D err <5◦ <10◦ 3D err 2D err

(i) FG 44% 69% 5◦ 4◦ 41% 65% 6◦ 4◦ 35% 58% 7◦ 5◦

(ii) FG+SO 42% 66% 6◦ 4◦ 39% 62% 6◦ 4◦ 33% 53% 8◦ 5◦

(iii) FG+DO 45% 68% 5◦ 4◦ 44% 66% 6◦ 4◦ 36% 56% 7◦ 4◦

(iv) FG+GP 41% 63% 6◦ 4◦ 40% 62% 6◦ 4◦ 36% 52% 8◦ 5◦

(v) FG+GP+DO+SO 44% 65% 6◦ 4◦ 47% 65% 5◦ 3◦ 44% 55% 8◦ 4◦

(vi) Zia et al. (2013) - - - 6◦ - - - 6◦ - - - 6◦

(vii) COARSE 16% 38% 13◦ 9◦ 20% 41% 13◦ 6◦ 21% 40% 14◦ 9◦

(viii) COARSE+GP 25% 51% 10◦ 6◦ 27% 51% 10◦ 5◦ 23% 40% 14◦ 7◦

Table 2: 3D viewpoint estimation accuracy (percentage of objects with less than 5◦ and 10◦ error) and median angular

estimation errors (3D and 2D)

5.4.2 Viewpoint Estimation

Fig. 6: Object pre-detection performance.

Beyond 3D location, 3D scene interpretation also re-

quires the viewpoint of every object, or equivalently its ori-

entation in metric 3D space. Many object classes are elon-

gated, thus their orientation is valuable at different levels,

ranging from low-level tasks such as detecting occlusions

and collisions to high-level ones like enforcing long-range

regularities (e.g. cars parked at the roadside are usually par-

allel).

Protocol. We can evaluate object orientation (azimuth) in

2D image space as well as in 3D scene space. 2D viewpoint

is the apparent azimuth of the object as seen in the image.

The actual azimuth relative to a fixed scene direction (called

3D viewpoint), is calculated from the 2D viewpoint estimate

and an estimate of 3D object location. We measure view-

point estimation accuracy in two ways: as the percentage of

detected objects for which the 3D angular error is below 5◦

or 10◦, and as the median angular error between estimated

and ground truth azimuth angle over detected objects, both

in 3D and 2D.

Results. Table 2 shows the quantitative results, again com-

paring our full model and the different variants introduced

in Sec. 5.3, and distinguishing between the full dataset and

two subsets with different degrees of occlusion. In Fig. 7 we

plot the percentage of cars whose poses are estimated cor-

rectly up to different error thresholds, using the same color

coding as Fig. 5.

(a) (b)

Fig. 7: Percentage of cars with VP estimation error within

x◦.

First, we observe that the full system FG+GP+DO+SO

(dotted dark red) outperforms the best coarse model COARSE+-

GP (dark blue) by significant margins of 19–21 pp and 14–

15 pp at 5◦ and 10◦ errors respectively, improving the me-

dian angular error by 4◦–6◦.

Second, all FG models (shades of orange and red) de-

liver quite reliable viewpoint estimates with smaller differ-

ences in performance (≤ 6 pp, or 1◦ median error) for 10◦

error, outperforming their respective COARSE counterparts

(shades of blue) by significant margins. Observe the clear

grouping of curves in Fig. 7. However, for the high accu-

racy regime (≤ 5◦ error), the full system FG+GP+DO+SO

(dotted dark red) delivers the best performance for both oc-

cluded subsets, beating the next best combination FG+DO

(dotted red) by 3 pp and 8 pp, respectively.

Third, the ground plane helps considerably for the COARSE

models (shades of blue), improving by 9 pp for ≤5◦ error,

and 13 pp for ≤10◦ over the full data set. Understandably,

that gain gradually dissolves with increasing occlusion.

And fourth, we observe that in terms of median 2D view-

point estimation error, our full system FG+GP+DO+SO out-

performs the pseudo-3D model of (Zia et al. 2013) by 2◦–3◦,

highlighting the benefit of reasoning in true metric 3D space.
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full dataset occ >0 parts occ >3 parts

occl. #cars occl. #cars occl. #cars

pred. >70% pred. >70% pred. >70%

acc. parts acc. parts acc. parts

(i) FG 82% 69% 70% 68% 57% 43%

(ii) FG+SO 87% 66% 80% 63% 77% 35%

(iii) FG+DO 84% 70% 72% 67% 62% 47%

(iv) FG+GP 82% 68% 68% 67% 57% 46%

(v) FG+GP+DO+SO 88% 71% 82% 67% 79% 44%

(vi) Zia et al. (2013) 87% 64% 84% 61% 84% 32%

(vii) COARSE — — — — — —

(viii) COARSE+GP — — — — — —

Table 3: 2D accuracy. Part-level occlusion prediction accu-

racy and percentage of cars which have >70% parts accu-

rately localized.

5.5 2D Evaluation

While the objective of this work is to enable accurate local-

ization and pose estimation in 3D (Sec. 5.4), we also present

an analysis of 2D performance (part localization and occlu-

sion prediction in the image plane), to put the work into con-

text. Unfortunately, a robust measure to quantify how well

the wireframe model fits the image data requires accurate

ground truth 2D locations of even the occluded parts, which

are not available. A measure used previously in Zia et al.

(2013) is 2D part localization accuracy only evaluated for

the visible parts, but we now find it to be biased, because

evaluating the model for just the visible parts leads to high

accuracies on that measure, even if the overall fit is grossly

incorrect. We thus introduce a more robust measure below.

Protocol. We follow the evaluation protocol commonly ap-

plied for human body pose estimation and evaluate the num-

ber of correctly localized parts, using a relative threshold ad-

justed to the size of the reprojected car (20 pixels for a car

of size 500 × 170 pixels, i.e. ≈ 4% of the total length (c.f.

Zia et al. 2013)). We use this threshold to determine the per-

centage of detected cars for which 70% or more of all (not

self-occluded) parts are localized correctly, evaluated only

on cars for which at least 70% of the (not self-occluded)

parts are visible according to ground truth. We find this mea-

sure to be more robust, since it favours sensible fits of the

overall wireframe.

Further, we calculate the percentage of (not self-occluded)

parts for which the correct occlusion label is estimated. For

the model variants which do not use the occluder represen-

tation (FG and FG+GP), all candidate parts are predicted as

visible.

Results. Tab. 3 shows the results for both 2D part localiza-

tion and part-level occlusion estimation. We observe that

our full system FG+GP+DO+SO is the highest performing

variant over the full data set (88% part-level occlusion pre-

diction accuracy and 71% cars with correct part localiza-

tion). For the occluded subsets, the full system performs best

among all FG models on occlusion prediction, whereas the

results for part localization are less conclusive. An interest-

ing observation is that methods that use 3D context (FG+-

GP+DO+SO, FG+GP, FG+DO) consistently beat (FG+SO),

i.e. inferring occlusion is more brittle from (missing) image

evidence alone than when supported by 3D scene reasoning.

Comparing the pseudo-3D baseline (Zia et al. 2013) and

its proper metric 3D counterpart FG+SO, we observe that,

indeed, metric 3D improves part localization by 2–3 pp (de-

spite inferior part-level occlusion prediction). In fact, all FG

variants outperform Zia et al. (2013) in part localization by

significant margins, notably FG+GP+DO+SO (6–12 pp).

On average, we note that there is only a weak (although

still positive) correlation between 2D part localization ac-

curacy and 3D localization performance (Sec. 5.4). In other

words, whenever possible 3D reasoning should be evaluated

in 3D space, rather than in the 2D projection.3

6 Conclusion

We have approached the 3D scene understanding problem

from the perspective of detailed deformable shape and oc-

clusion modeling, jointly fitting the shapes of multiple ob-

jects linked by a common scene geometry (ground plane).

Our results suggest that detailed representations of object

shape are beneficial for 3D scene reasoning, and fit well

with scene-level constraints between objects. By itself, fit-

ting a detailed, deformable 3D model of cars and reason-

ing about occlusions resulted in improvements of 16–26%

in object localization accuracy (number of cars localized to

within 1m in 3D), over a baseline which just lifts objects’

bounding boxes into the 3D scene. Enforcing a common

ground plane for all 3D bounding boxes improved localiza-

tion by 30–67%. When both aspects are combined into a

joint model over multiple cars on a common ground plane,

each with its own detailed 3D shape and pose, we get a strik-

ing 104–113% improvement in 3D localization compared to

just lifting 2D detections, as well as a reduction of the me-

dian orientation error from 13◦ to 5◦. We also find that the

increased accuracy in 3D scene coordinates is not reflected

in improved 2D localization of the shape model’s parts, sup-

porting our claim that 3D scene understanding should be

carried out (and evaluated) in an explicit 3D representation.

An obvious limitation of the present system, to be ad-

dressed in future work, is that it only includes a single object

category, and applies to the simple (albeit important) case of

scenes with a dominant ground plane. In terms of technical

approach it woud be desirable to develop a better and more

efficient inference algorithm for the joint scene model. Fi-

nally, the bottleneck where most of the recall is lost is the

3 Note, there is no 3D counterpart to this part-level evaluation, since

we see no way to obtain sufficiently accurate 3D part annotations.
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(a) (b) (c) (d) (e)

Fig. 8: COARSE+GP (a-c) vs FG+GP+DO+SO (d,e). (a) 2D bounding box detections, (b) COARSE+GP based on (a), (c)

bird’s eye view of (b), (d) FG+GP+DO+SO shape model fits (blue: estimated occlusion masks), (e) bird’s eye view of (d).

Estimates in red, ground truth in green.

(a) (b) (c) (d) (e)

Fig. 9: FG+GP (a-c) vs FG+GP+DO+SO (d,e). (a) 2D bounding box detections, (b) FG+GP based on (a), (c) bird’s eye view

of (b), (d) FG+GP+DO+SO shape model fits (blue: estimated occlusion masks), (e) bird’s eye view of (d). Estimates in red,

ground truth in green.

2D pre-detection stage. Hence, either better 2D object de-

tectors are needed, or 3D scene estimation must be extended

to run directly on entire images without initialization, which

will require greatly increased robustness and efficiency.
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