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Abstract

Multi-object tracking (MOT) becomes more challenging
when objects of interest have similar appearances. In that
case, the motion cues are particularly useful for discrim-
inating multiple objects. However, for online 2D MOT in
scenes acquired from moving cameras, observable motion
cues are complicated by global camera movements and thus
not always smooth or predictable. To deal with such un-
expected camera motion for online 2D MOT, a structural
motion constraint between objects has been utilized thanks
to its robustness to camera motion. In this paper, we pro-
pose a new data association method that effectively exploits
structural motion constraints in the presence of large cam-
era motion. In addition, to further improve the robustness of
data association against mis-detections and false positives,
a novel event aggregation approach is developed to inte-
grate structural constraints in assignment costs for online
MOT. Experimental results on a large number of datasets
demonstrate the effectiveness of the proposed algorithm for
online 2D MOT.

1. Introduction
Multi-object tracking (MOT) aims to estimate object tra-

jectories according to the identities in image sequences. Re-
cently, thanks to the advances of object detectors [6, 24],
numerous tracking-by-detection approaches have been de-
veloped for MOT. In this type of approaches, target ob-
jects are detected first and tracking algorithms estimate their
trajectories using detection results. Tracking-by-detection
methods can be broadly categorized into online and of-
fline (batch or semi-batch) tracking methods. Offline MOT
methods generally utilize detection results from past and fu-
ture frames. Tracklets are first generated by linking individ-
ual detections in a number of frames, and then iteratively
associated to construct long trajectories of objects in the en-
tire sequence, or in a time-sliding window with a temporal
delay (e.g., [22, 27]). On the other hand, online MOT al-
gorithms estimate object trajectories using only detections
from the current as well as past frames (e.g. [4]), and online

MOT algorithms are more applicable to real-time applica-
tions such as advanced driving assistant systems and robot
navigation.

In MOT, object appearances are used as important cues
for data association which solves the assignment prob-
lems of detections-to-detections, detections-to-tracklets,
and tracklets-to-tracklets. However, appearance cues alone
are not sufficient to discriminate multiple objects, especially
for tracking similar objects (e.g., pedestrians, faces, and
vehicles). Tracking-by-detection methods typically exploit
motion as well as appearance cues, and use certain (e.g.,
linear or turn) models to describe the object movements.
However, for online 2D MOT in scenes acquired from mov-
ing cameras, observable motion cues are complicated by
global camera movements and not always smooth or pre-
dictable. In other words, even when the individual object
motion model is updated with consecutive detections, it is
not reliable enough to predict the next location of an object
when the camera moves severely. The situation becomes
worse when objects are not correctly detected since, with-
out correct detections, object motion models cannot be up-
dated to take camera motion into account. While significant
advances on batch (or semi-online) trackers have been made
(e.g., [5, 14, 20, 28]), online MOT using motion constraints
from detection results has not yet been much explored.

In this paper, we propose a new data association method
for effectively exploiting the structural motion constraints
between objects for online 2D MOT, which considers cam-
era motion as well as ambiguities caused by the frequent
mis-detections. The structural constraints are represented
by the location and velocity differences between objects.
Using these constraints, we introduce a new cost function
which takes global camera motion into account to associate
multiple objects. In addition, to reduce the assignment am-
biguities caused by mis-detections as shown in Figure 1, we
propose the event aggregation approach which considers the
structural constraints and assignment events.

We incorporate the proposed data association and the
structural constraints into a two-step online 2D MOT frame-
work, which consists of two data association steps. In the
first step, by using the proposed structural constraint event
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Figure 1. An example of structural constraint ambiguity: The
tracked objects and their correct detections are represented by the
red box and the yellow box, respectively. The overlap ratio costs of
the ground truth assignment and the incorrect assignment are sim-
ilar due to mis-detections and multiple false positive detections.

aggregation, even under large camera motion or fluctua-
tions, we can robustly estimate continuously tracked objects
where structural constraints are sufficiently reliable due to
consecutive updates at each frame. In the second step, we
infer and recover the missing objects between frames to al-
leviate the problems of mis-detection from detectors. Using
the structural constraints of objects between frames, we can
re-track the missing ones from the tracked objects from the
first step. We demonstrate the merits of the proposed algo-
rithm for online MOT using a large number of challenging
datasets.

2. Related Work
We review related MOT methods that utilize the struc-

tural motion constraints. Numerous MOT methods directly
utilize the first or the second order motion models to locate
objects [1, 4, 15]. However, those 2D independent motion
models do not work properly under unpredictable camera
motion, especially when tracking methods do not exploit
the visual information from future frames.

Pellegrini et al. [21] and Leal-Taixé et al. [18] use so-
cial force models which consider pairwise motion (such as
attraction and repulsion) and visual odometry to obtain 3D
motion information for tracking multiple objects. Different
from the proposed online 2D MOT algorithm, this method
requires 3D information to project objects and detections on
the top-view plane for association. In addition, this method
does not consider scenes with large camera motion.

Grabner et al. [13] propose to exploit the relative dis-
tance between feature points for single object tracking
and reduce tracking drifts caused by drastic appearance
changes. In [7], a mutual relation model is proposed to
reduce tracking errors when target objects undergo appear-
ance changes. To reduce ambiguities caused by similar ap-

pearances in MOT, motion constraints between objects are
used along with object appearance models using the struc-
tured support vector machines [30]. Unlike the aforemen-
tioned methods [7, 13, 30], our method exploits structural
constraints to solve the online 2D MOT problem with the
frame-by-frame data association that assigns objects to cor-
rect detections.

Yang and Nevatia [28] use conditional random field for
MOT in which the unary and binary terms are based on lin-
ear and smooth motion to associate past and future track-
lets in sliding windows. Recently, Yoon et al. [29] exploit
structural spatial information in terms of relative motion to
handle camera motion. This method basically assumes that
the camera motion is small and smooth to guarantee that at
least a few objects are well predicted and tracked by linear
motion models. Different from the aforementioned meth-
ods, the proposed method aggregates structural constraints
along with assignment events taking abrupt camera motion
and ambiguities caused by mis-detections into account for
online MOT.

3. Structural Constraint Event Aggregation

The trajectory of an object is represented by a sequence
of states denoting the position, velocity, and size of an ob-
ject in the image plane with time. We denote the state of an
object i at frame t as sit = [xit, y

i
t, ẋ

i
t, ẏ

i
t, w

i
t, h

i
t]
> and the

set of the states at frame t as St (sit ∈ St) with its index set
i ∈ Nt. Each structural motion constraint is described by
the location and velocity difference between two objects as

ei,jt = [χi,jt , υ
i,j
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t ]>
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j
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(1)

Here, (χ̇i,jt , υ̇
i,j
t ) denotes the velocity difference to consider

objects moving with different tendency. The set of struc-
tural constraints for the object i is represented by E it =
{ei,jt |∀j ∈ Nt}, and the set of all structural constraints at
frame t is denoted by Et = {E it |∀i ∈ Nt}.

3.1. Structural constraint cost function

The MOT task can be considered as a data association
problem, which finds the correct assignment event between
objects and detections. In this paper, the assignment event
ai,k ∈ A describes the state of assignments between objects
and detections. If the detection k is assigned to the object
i, the assignment is denoted by {ai,k = 1}. Otherwise, it
is denoted by {ai,k = 0}. For data association, the dis-
similarity cost between objects and detections is computed
based on the cost function. The best assignment event is
then estimated by minimizing total assignment costs. In this
section, we introduce a new cost function that considers the
structural motion constraints between objects.



Figure 2. Structural constraint event aggregation (Algorithm 1). The tracked objects and their detections are represented by red boxes and
yellow boxes, respectively, and the green lines connecting objects denote structural constraints. Black boxes represent assignments. d0

stands for the case of mis-detections. As shown in this figure, in the anchor assignment a2,2 of the object 2 and the detection 2, we move
the object 2 to align the center location of the object 2 with that of the detection 2. Then, in the structural constraint cost, we compute the
assignment costs of other objects and detections based on their structural constraints. From the different anchor assignments, the structural
constraint costs for the same assignment event are computed. For instance, the costs of the assignment event (a1,0 = a2,2 = a3,3 = 1) are
obtained from the anchor assignments a2,2 = 1 and a3,3 = 1, respectively. The event aggregation fuses these structural constraint costs
having the same assignment event but the different anchor assignment. Σ represents the summation of the structural constraint costs.

We denote a detection k resulting from detectors at frame
t as dkt = [xkd,t, y

k
d,t, w

k
d,t, h

k
d,t]
> and the set of the detec-

tions at frame t used for MOT as Dt (dkt ∈ Dt) with its
index set as k ∈Mt. Without loss of generality, we remove
the time index t for simplicity in the following sections.
Since each object is assigned with at most one detection,
the structural constraint cost function with the assignment
event A is described by

Â = arg min
A

C(S, E ,D),

s.t.
∑
i∈N
k 6=0

ai,k ≤ 1 ∧
∑

k∈M∪{0}

ai,k = 1 ∧
∑
i∈N

ai,0 ≤ |N |,

(2)
where each assignment is a binary value ai,k = {0, 1},
ai,k ∈ A, k ∈M ∪{0}, and ai,0 stands for the case of mis-
detected objects. Hence, the sum of ai,0 along i is equal to
the number of objects |N |when all objects are mis-detected.

To deal with large camera motion, we first set an anchor
assignment by associating the object i and the detection k
as shown in Figure 2. Anchor assignment ai,k makes the
center location of the object i coincide with that of the de-
tection k. Based on the anchor assignment and the structural
constraint E i, we conduct all possible assignment events be-
tween the remaining objects and detections. By doing this,
the structural constraint cost evades the error caused by the
global camera motion. Based on this concept, the proposed

structural constraint cost function is formulated by

C(S, E ,D)

=
∑
i∈N

∑
k∈M

(
ai,k Ωi,k +

∑
j∈N
j 6=i

∑
q∈M∪{0}
q 6=k

aj,q Θj,q
i,k

)
,

(3)
where the subscripts i, k denote the index for costs com-
puted based on the anchor assignment ai,k = 1, and the
cost of the anchor assignment is represented by

Ωi,k = Fs(s
i,dk) + Fa(si,dk). (4)

Here, we compute the size and appearance costs as

Fs(s,d) = − ln

(
1− |h− hd|

2(h+ hd)
− |w − wd|

2(w + wd)

)
,

Fa(s,d) = − ln

B∑
b=1

√
pb(s)pb(d), (5)

where (w, h) and (wd, hd) denote width and height of an
object and a detection, respectively. In addition, pn(s) and
pn(d) denote the histogram of an object and a detection, re-
spectively. b is the bin index and B is the number of bins.
From the anchor position, we calculate the cost of the struc-
tural constraint which is described by

Θj,q
i,k =

 Fs(s
j ,dq) + Fa(sj ,dq)

+Fc(s
j , ej,i,dk,dq)

if q 6= 0

τ if q = 0
, (6)



where we empirically set the cost τ to some non-negative
value (e.g., 4 in this work) for the case of mis-detected ob-
jects, d0. The constraint cost is formulated by

Fc(s
j , ej,i,dk,dq) = − ln

(
area(B(sj,k)∩B(dq))
area(B(sj,k)∪B(dq))

)
,

sj,k = [xkd, y
k
d , 0, 0]> + [χj,i, υj,i, wj , hj ]>.

(7)

Here, we determine the position of the object j by the posi-
tion of the detection k and the structural constraint ej,i. The
constraint cost is measured by using the overlap ratio [9] of
the object bounding box and the detection bounding box to
compute a normalized cost since it automatically compen-
sates bias errors caused by the size of objects.

3.2. Event aggregation

Based on the different anchor assignments, we obtain
different costs due to the different sizes of detections and
detection noises even if the assignment eventA is the same.
Hence, we aggregate all the costs that have the same as-
signment event but with the different anchor assignments.
Compared to conventional one-to-one matching process for
the data association as shown in Figure 1, this process sig-
nificantly reduces ambiguity caused by false positives near
objects, mis-detections, and constraint errors since we can
measure the cost of each assignment event several times ac-
cording to the number of corresponding anchor assignments
as described in Figure 2. This aggregation process is de-
scribed by

C(A) =
∑

i∈N,k∈M
ai,k=1

(
ai,kΩi,k +

∑
j∈N
j 6=i

∑
q∈M∪{0}
q 6=k

aj,qΘj,q
i,k

)
,

(8)
where A ⊂ Aall and Aall denotes all possible assignment
events. Finally, we select the best assignment event having
the minimum aggregated cost as

Â = arg min
A

(
C(A)

∆

)
,∆ =

∑
i∈N,k∈M

ai,k, (9)

where ∆ denotes the normalization term that is equal to the
number of the anchor assignments from the same assign-
ment event A.

3.3. Assignment event initialization and reduction

Since considering all of assignment events is not com-
putationally efficient, we propose a simple but effective re-
duction approach. First, we adopt the simple gating tech-
nique [2] before conducting the structural constraint event
aggregation. This approach is widely used in the MOT liter-
ature. We roughly remove the negligible assignments based
on two conditions as(

‖pi − pkd‖ <
√

(wi)2 + (hi)2
)

∧
(
exp

(
−Fs(si,dk)

)
> τs

)
,

(10)

Figure 3. Assignment event reduction concept: The gating and the
partitioning reduces the number of assignment events. Gray cir-
cles represents the assignment region reduced by the gating. The
objects are grouped based on the K-means center.

where pi and pkd represent the position of the object i and
the detection k, respectively, and (wi, hi) denotes the size
of the object i. We empirically set τs = 0.7. If the above
conditions are satisfied, ai,k = 1. Otherwise, the assign-
ment is set to ai,k = 0, and this assignment is not consid-
ered for tracking at the current frame. Second, we propose
a partitioning approach that splits the structural constraints
to handle a large number of objects and detections as shown
in Figure 3. The assignments of objects and detections in
different paritions are set to ai,k = 0. For the partition
p, we generate all possible assignment events Ap ⊂ Apall
based on the condition in (2). The structural constraint
event aggregation is carried out for each partition. The fi-
nal assignment event is then obtained by merging the as-
signment event results from each partition. In this work,
we empirically set the maximum number of objects in each
partition to 5. The number of partitions is determined by
P = dthe number of objects/5e, and we then splits the partition
possibly to have the same number of objects. Here, we use
the center location as a partitioning condition. As shown in
Figure 3, P K-means centers are obtained, and the objects
located close to each K-means center are then gathered in
the same partition. Another reduction approach [23] can
be alternatively modified and applied to our structural con-
straint event aggregation. The main steps of the proposed
structural constraint event aggregation (SCEA) method is
summarized in Algorithm 1.

4. Two-Step Online MOT via SCEA
We adopt a two-step approach for effectively exploit-

ing the structural constraints between objects for online 2D
MOT. Since the structural constraints of objects tracked in
the previous frame have been also updated with their corre-
sponding detections, their constraints are more robust than
mis-detected objects. This allows us to more robustly and
accurately assign detections to tracked objects. The overall
process of the proposed online MOT via SCEA is described
in Algorithm 2.



Data: objects S, detections D, structural constraints E
Result: assignment eventA
begin

Step 1: Initializing possible assignment events (Section 3.3)
· Remove negligible assignments by using the gating ((10)).
· Divide objects, structural constrains, and detections into the
subset Sp ⊂ S, Ep ⊂ E , Dp ⊂ D by the partitioning (Fig. 3).
· Generate all possible assignment events of each partitionAp

all
from the Sp and Dp based on the condition in (2).
Step 2: Aggregating assignment event costs ((8) and (9))
A = φ;
for p = 1 : P do

C(Ap) =∑
i∈Np,k∈Mp

ai,k=1

(
ai,kΩi,k +

∑
j∈Np

j 6=i

∑
q∈Mp∪{0}

q 6=k

aj,qΘj,q
i,k

)
,

Âp = arg min
Ap

(C(Ap)/∆) ,Ap ⊂ Ap
all;

A := A ∪ Âp;
end

end

Algorithm 1: Structural Constraint Event Aggregation.

We denote the set of tracked objects in the previous
frame by Sw, and their structural information is represented
by Ew. Using Sw, Ew, and the current detections D, we
conduct the first data association via the SCEA introduced
in Section 3. Then, we obtain the new assignment event Âw
from which we store the position of associated detections
for the object i as si1 = [xkd, y

k
d ]>, si1 ∈ Sw1 if ai,k = 1, and

the set of associated object index is represented by i ∈ Nw.
In the second step, similar to [13, 29], we recover missing
objects, which are not associated with any detections in the
previous frame but re-detected in the current frame. The re-
covery process is conducted by using the tracked objects in
the first step and their structural constraint information as
described in Figure 4. The mis-detected objects are denoted
by Sm, and the structural constraints between mis-detected
objects and tracked objects are represented by Em. Using
Sm, Em, and Sw1 , we recover the re-detected objects as

Âm = arg min
A

C(Sm, Em,Sw1 , D̃),

s.t.
∑
i∈Nm

ai,q = 1 ∧
∑
q∈M̃

ai,q = 1, (11)

where Nm denotes the set of the mis-detected object index,
and M̃ represents the index set of the detections D̃. Here,
detections D̃ contains the not-assigned detections in the first
step and dummy detections d0 for the case of missing ob-
jects. The structural constraint cost function for missing
objects is defined as

C(Sm, Em,Sw1 , D̃) =
∑
i∈Nm

∑
q∈M̃

ai,q Φi,q

Φi,q =

 Fs(s
i,dq) + Fa(si,dq)

+Fr(s
i, Em,Sw1 ,dq)

if q 6= 0

τ if q = 0
,

(12)

Data: tracked objects Sw , structural constraints of tracked objects
Ew , mis-detected objects Sm, structural constraints between
tracked objects and mis-detected objects Em, detections D

Result: Trajectories of the targets
for video frame f do

Step 1: Data association via SCEA
· Âw = SCEA(Sw, Ew,D); (Section 3 and Algorithm 1)
· Sw1 = {si1 = [xkd , y

k
d ]>|ai,k = 1,∀i ∈ Nw, ∀k ∈M};

Step 2: Recovery of mis-detected objects
· Âm = Recovery(Sm, Em,Sw1 , D̃); ((11) and (12))
· Â = Âw ∪ Âm;
Step 3: Update
· Current tracking result:
Sw = {si := KF (si,dk)|ai,k = 1,∀i ∈ Nw ∪Nm,∀k ∈
M} with Kalman filter KF ().
· Object management (Section 4)
· Structural constraint update (Section 4)

end

Algorithm 2: Two-Step Online MOT via SCEA

Figure 4. Recovery of missing objects. From the tracked objects
(s1 and s2) and the structural constraints (the green lines), we re-
cover missing objects when they are re-detected (detection d1 and
d2). By doing this, we can continuously keep the identity of the
missing objects under camera motion and occlusions.

where τ = 4 in this work. We recover the missing object
i from the set of tracked objects using their structural con-
straint. The constraint cost is therefore formulated as

Fr(s
i, Em,Sw1 ,dq) = − ln

(
area(B(si,γ)∩B(dq))
area(B(si,γ)∪B(dq))

)
,

si,γ = [(sγ1)>, 0, 0]> + [χi,γ , υi,γ , wi, hi]>

γ = arg max
j∈Nw

1

‖[χ̇i,j , υ̇i,j ]‖
.

(13)
Here, Nw denotes the index of tracked objects at the first

step, and the reliability of structural constraints between
tracked objects and missing objects can be different accord-
ing to the past motion coherence. To consider this constraint
reliability, we select the object moving in the most similar
direction and velocity by taking into account the motion co-
herence between objects, ‖[χ̇i,j , υ̇i,j ]‖. To solve (11), we
reformulate (11) in a matrix form as

C =
[

Φdet|Nm|×|M̃ | Φ0
|Nm|×|Nm|

]
,

where the matrices are obtained by Φdet = [Φi,q],∀i ∈
Nm,∀q ∈ M̃ and Φ0 = diag[Φi,0],∀i ∈ Nm. The off-
diagonal etries of Φ0 are set to∞. We then apply the Hun-
garian algorithm [16] to get the assignment event having the
minimum cost.



Figure 5. Data association performance according to different levels of camera motion fluctuation and detection missing rates. MOTA =
1 − false negative+false positive+mis-match

ground truth . The numbers ([0, 0],[-7, 7],[-15, 15]) represent the range of the different levels of camera motion
fluctuation noise in terms of pixel. The missing rate of the detections is set to 0%, 10%, 20%, and 30%. The proposed SCEA shows the
best overall performance. We analyze the performance of each method in detail in Section. 5.1.

From Âw and Âm, we update the final tracking result as
Sw = {si = KF (si,dk)|ai,k = 1,∀i ∈ Nw ∪ Nm,∀k ∈
M} with the Kalman filter KF (·) [25] for smoothing, and
the index set is represented by Nw. After the update, other
not-assigned objects are collected again in the set Sm, and
their index set is denoted by Nm.

Structural constraint update: After tracking, we update
the structural constraints between objects with their corre-
sponding detections based on the same approach proposed
in [29], using zi,jt = [xid,t, y

i
d,t]
>− [xjd,t, y

j
d,t]
> as an obser-

vation, where [xid,t, y
i
d,t]
> represents the location of a detec-

tion assigned to the object i. We assume that the structural
constraint change follows piece-wise linear motion model.
With the observation zi,jt , we indirectly update the struc-
tural constraint variations by using the standard Kalman fil-
ter [25]. The structural constrains of missing objects are
simply based on the linear motion model.

Object management: For any MOT method, an object ini-
tialization and termination steps are typically required to
manage targets according to their statuses. In this work,
objects are initialized in a way similar to [4]. Here, we use
the distance and the appearance between two detections as
an initialization cue. If the distances between a detection in
the current frame and unassociated detections in the past a
few (e.g., 4) frames are smaller than a certain threshold, we
then initialize this detection as a new object. The structural
constraint between the new object and all other objects are
then generated by (1), where their initial variation is set to
χ̇i,jt = υ̇i,jt = 0. On the other hand, we simply delete or ter-
minate objects if they are not associated with any detections
for two frames.

5. Experiments
In this section, we present the experimental evaluation

of the proposed online MOT algorithm and comparison
against the state-of-the-art methods especially for the scenes
acquired from moving cameras. For reproducibility, we will
open source codes of the structural constraint cost aggrega-
tion at cvl.gist.ac.kr/project/scea.html.

5.1. Performance validation

To show the effectiveness of each component of the pro-
posed method, we utilize the synthetic datasets which are
generated based on the ground truth of the ETH sequences
(Bahnhof, Sunnyday, and Jelmoli sequences) [8]. We ap-
ply the different levels of motion fluctuation noises and de-
tection missing rate as shown in Figure 5. The low level
fluctuation represents the original camera motion in the
ETH sequences where the camera moves smoothly. The
medium level fluctuation and the high level fluctuation rep-
resent fluctuation noises synthetically generated by the uni-
form distribution within [−7, 7] and [−15, 15] pixels, re-
spectively. In addition, for all scenarios, we include at most
10 false detections per each frame. To measure the accu-
racy of the data association, the number of true positives,
false positives, false negative, and mis-matches are counted
per each frame.

Data association evaluation: The performance of four dif-
ferent data association approaches is shown in Figure 5.
The relative motion network (RMN) approach [29] per-
forms well under the low level fluctuation as this assumes
accurate linear prediction of the well-tracked objects under
smooth camera motion. The linear motion (LM) method is
a baseline method where the data association is carried out
without the structural constraints or event aggregation. It is
similar to the joint probabilistic data association (JPDA) in
that both methods consider the assignment events. A fast
and efficient version of JPDA has been recently proposed
and applied to the vision-based MOT in [23]. As the fluc-
tuation increases, the performance of the LM method is de-
graded due to large camera motion where the linear motion
model dose not work well. The structural constraint near-
est neighbor (SCNN) is a data association method with the
structural constraint cost function but without event aggre-
gation. Due to the structural constraint cost function, the
SCNN can deal with the large camera motion. However,
since the structural constraint costs are obtained by the lo-
cal nearest neighbors, the performance of the SCNN shows
limited performance caused by the ambiguities as discussed

cvl.gist.ac.kr/project/scea.html


Figure 6. Comparison of the SCEA (with the partitioning) and the
SCEA without the partitioning (the SCEA-w/o-P).

in Section 1 and shown in Figure 1. Figure 5 demonstrates
that the SCEA performs better than other approaches since
it robustly deals with large fluctuations based on the struc-
tural constraint cost function, and it can efficiently reduce
ambiguities by aggregating costs of the same events com-
puted based on the different anchor assignment.

Efficiency of the event reduction: In the experiments, the
same event reduction techniques described in Section 3.3
are applied to the LM, SCNN, and SCEA methods for com-
putational efficiency. Here, the gating technique has long
been applied to MOT, and without this, the data associ-
ation is computationally intractable when considering all
possible assignment events as pointed out in [2]. For that
reason, we only evaluate the efficiency of the partitioning
technique using the SCEA method with and without parti-
tioning (SCEA-w/o-P). Even with the gating technique, the
SCEA-w/o-P method becomes computationally intractable
when more than a certain number of objects or detections
are given as shown in Figure 6. For this reason, the Sunny-
day sequence, the Jelmoli sequence, and the roughly half of
the Bahnhof sequence (i.e., frame #0-#450) are used for the
evaluation. Figure 6 shows that the SCEA method is more
applicable to online MOT thanks to the low computational
complexity with similar performance to the SCEA-w/o-P.

5.2. Comparisons with State-of-the-Art Methods

We name the proposed algorithm as SCEA (Online MOT
via Structural Constraint Event Aggregation) and evaluate
it on a large number of benchmark datasets: 29 sequences
from the KITTI dataset [12] and 22 sequences from the
MOT Challenge dataset [17]. The datasets contain test se-
quences from a static camera as well as a dynamic camera.
The detections of the KITTI dataset1 and the MOT Chal-
lenge dataset2 are also provided. Note that, since this work
focuses on 2D MOT with a single camera, we do not use any
other information from stereo images, camera calibration,
depth maps, or visual odometry. In addition, we utilize the
same detections used for other methods in all experiments
for fair comparison.

1cvlibs.net/datasets/kitti/eval_tracking.php
2motchallenge.net/data/2D_MOT_2015/

Table 1. Comparison to the online trackers on the KITTI dataset.
(a) Car (based on the DPM detections)

MOTA MOTP Rec Prec MT ML ID FG sec(core) AR
NOMT-HM 60.2 78.7 63.8 96.9 27.0 30.3 28 250 0.09(16) 1.89
RMOT 51.5 75.2 57.2 92.9 15.2 33.5 51 382 0.01(1) 3.33
ODAMOT 58.8 75.5 65.5 94.6 16.8 18.9 403 1298 1(1) 2.78
SCEA 56.3 78.8 58.1 98.9 20.0 29.3 17 468 0.05(1) 2.00

(b) Car (based on the regionlet detections)

MOTA MOTP Rec Prec MT ML ID FG sec(core) AR
NOMT-HM 74.8 80.0 80.6 96.3 38.7 15.2 109 371 0.09(16) 1.78
RMOT 65.3 75.4 80.2 87.7 26.8 11.4 215 742 0.02(1) 2.56
SCEA 75.2 79.4 81.4 95.9 38.7 12.7 106 466 0.06(1) 1.56

(c) Pedestrian (based on the DPM detections)

MOTA MOTP Rec Prec MT ML ID FG sec(core) AR
NOMT-HM 27.5 68.0 37.1 80.1 11.3 51.6 73 743 0.09(16) 2.67
RMOT 34.5 68.1 43.7 83.2 10.0 47.4 81 692 0.01(1) 1.56
SCEA 33.1 68.5 40.1 85.3 8.6 47.4 16 724 0.05(1) 1.67

(d) Pedestrian (based on the regionlet detections)

MOTA MOTP Rec Prec MT ML ID FG sec(core) AR
NOMT-HM 39.3 71.1 50.4 83.3 17.2 42.3 186 870 0.09(16) 2.44
RMOT 43.7 71.0 53.5 85.8 16.8 41.2 156 760 0.02(1) 1.78
SCEA 43.9 71.9 49.3 90.7 14.1 43.3 56 649 0.06(1) 1.78

We compare the SCEA with the state-of-the-art online
MOT methods including MDP [26], TC ODAL [1], RMOT
[29], NOMT-HM [5], and ODAMOT [11]. Here, online
methods produce the solution instantly at each frame by a
causal approach.

Evaluation metrics: We adopt the widely used evaluation
metrics, Multiple Object Tracking Accuracy (MOTA) and
Multiple Object Tracking Precision (MOTP) from [3]. In
addition, we also consider the number of mostly tracked
(MT), the number of mostly lost (ML), the fragment (FG),
the identity switch (ID), the Recall (Rec), and the Precision
(Prec) from [19]. The runtime is also considered as a metric
in terms of Hz or sec. Motivated by the MOT Challenge
evaluation, we also use the average ranking (AR) computed
by averaging all metric rankings. Although the AR does
not reflect the MOT performance directly, it can be used as
a reference to compare overall MOT performance

Benchmark dataset: The KITTI dataset provides two sets
of detections, one from the DPM [10] and the other from the
regionlet [24]. The regionlet detector generates more accu-
rate detections than the DPM as illustrated on the KITTI
website. As shown in Table 1, the AR indicates that the
SCEA method performs fairly well compared to other state-
of-the-art online trackers. The OMDAMOT method utilizes
the additional local detector to deal with missing objects
caused by partial occlusions, and the NOMT-HM addition-
ally utilizes the optical flow information to reduce ambi-
guities caused by similar appearance of objects. Although
our method utilizes the information only from detections

cvlibs.net/datasets/kitti/eval_tracking.php
motchallenge.net/data/2D_MOT_2015/


Table 2. Comparison to the online trackers on the MOT Challenge dataset (pedestrian sequences). FAF: the average number of false alarms
per frame. FP: the number of false positives. FN: the number of false negatives. (The results of the NOMT-HM are from the original
paper [5].)

MOTA MOTP FAF MT ML FP FN ID FG Hz(core) AR
TC ODAL 15.1 70.5 2.2 3.2 55.8 12,970 38,538 637 1,716 1.7 (1) 4.30
RMOT 18.6 69.6 2.2 5.3 53.3 12,473 36,835 684 1,282 7.9 (1) 3.70
NOMT-HM 26.7 71.5 2.0 11.2 47.9 11,162 33,187 637 1,716 11.5 (16) 2.50
MDP 30.3 71.3 1.7 13.0 38.4 9,717 32,422 680 1,500 1.1 (8) 2.30
SCEA 29.1 71.1 1.1 8.9 47.3 6,060 36,912 604 1,182 6.8 (1) 2.10

Table 3. Comparison to the MDP on the KITTI training dataset.
(a) Car (except for the training sequences)

MOTA MOTP Rec Prec MT ML ID FG
MDP-KITTI 55.0 75.1 60.8 92.3 10.7 40.9 19 118
SCEA 58.8 78.6 61.3 96.5 11.6 32.9 6 100

(b) Pedestrian (except for the training sequences)

MOTA MOTP Rec Prec MT ML ID FG
MDP-KITTI 23.8 71.2 49.1 66.4 3.5 36.0 8 204
MDP-MOTC 25.1 71.2 47.8 68.6 3.5 34.9 32 209
SCEA 35.4 73.2 51.5 76.3 7.0 32.6 3 154

and does not exploit those additional local detector or opti-
cal flow information, it shows comparable or better perfor-
mance compared to the OMDAMOT and the NOMT-HM.
The RMOT also uses the structural motion cues between
objects to track missing objects robustly. However, the
RMOT method does not perform well in the car sequences
where large camera panning motion frequently occurs as
explained in Section 5.1. Compared to the RMOT, the pro-
posed SCEA algorithm shows much better performance in
terms of MOTA, Prec, IDS, and Frag, which indicate the
proposed data association method is more accurate than the
RMN data association used in the RMOT.

For KITTI pedestrian sequences, the SCEA algorithm
achieves better performance in MOTA and in Prec com-
pared to the NOMT-HM, and it also shows better perfor-
mance in IDS. This is because the optical flow informa-
tion from pedestrians is less reliable compared to that in
the car sequences due to the small size and non-rigid ap-
pearance of a pedestrian. In addition, the motion cue (the
optical flow) becomes less discriminative when motion of
objects is small. In the KITTI dataset, the motion of pedes-
trians is much smaller than that of cars. Since the SCEA
method extracts structural motion information only from
detections, its performance is less affected by the object
size, appearance, and small motion. As shown in the results
on the MOT Challenge dataset (pedestrian sequences, Ta-
ble 2), the SCEA method performs well compared to other
online methods overall. The TC ODAL utilizes the linear
motion model to link the tracklets based on the Hungarian
algorithm. For this reason, it shows limited performance
under camera motion. The MDP shows better performance
in MOTA, MT, ML, and FN compared to the SCEA. This
is because the MDP learns the target state (Active, Tracked,

Lost and Inactive) from a training dataset and its ground
truth in an online manner. Therefore, it can initialize and
terminate the objects more robustly than other methods. In
addition, due to the use of the optical flow for local template
tracking, it generates longer trajectories compared to other
online methods. However, the SCEA algorithm has advan-
tages over the MDP method in that it does not require any
training datasets and it runs faster because it does not con-
duct template tracking based on dense optical flow. To show
the performance dependency on the training dataset, we
compare the SCEA with the MDP on the KITTI dataset. For
pedestrian sequences, we run the MDP with original trained
model provided with the original source code by the authors
(MDP-MOTC). In addition, we also train the MDP with the
KITTI training dataset for car sequences (MDP-KITTI). As
shown in Table 3, the performance of the MDP depends on
the training dataset. Note that the performance of the MDP
can be improved further if more training datasets are used.

6. Conclusion
In online 2D MOT with moving cameras, observable

motion cues are complicated by global camera movements
and thus not always smooth or predictable. In this paper, we
propose a new data association method that effectively ex-
ploits structural motion constraints in the presence of large
camera motion. In addition, to alleviate data association
ambiguities caused by mis-detections and multiple detec-
tions, a novel event aggregation approach is developed to
integrate structural constraints in assignment event costs
for online MOT. Finally, the proposed data association and
structural constraints are incorporated into the two-step on-
line 2D MOT algorithm which simultaneously tracks ob-
jects and recovers missing objects. Experimental results on
a large number of datasets demonstrate the effectiveness of
the proposed algorithm for online 2D MOT.
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