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Abstract Building upon recent developments in optical flow and stereo matching estima-
tion, we propose a variational framework for the estimation of stereoscopic scene flow, i.e.,
the motion of points in the three-dimensional world from stereo image sequences. The pro-
posed algorithm takes into account image pairs from two consecutive times and computes
both depth and a 3D motion vector associated with each point in the image. In contrast
to previous works, we partially decouple the depth estimation from the motion estimation,
which has many practical advantages. The variational formulation is quite flexible and can
handle both sparse or dense disparity maps. The proposed method is very efficient; with the
depth map being computed on an FPGA, and the scene flow computed on the GPU, the pro-
posed algorithm runs at frame rates of 15 frames per second on QVGA images (320×240
pixels). Furthermore, we present solutions to two important problems in scene flow estima-
tion: violations of intensity consistency between input images, and the uncertainty measures
for the scene flow result.

1 Introduction

One of the most important features to extract in image sequences from a dynamic environ-
ment is the motion of points within the scene. Humans perform this using a process called
visual kinesthesia, which encompasses both the perception of movement of objects in the
scene and the observer’s own movement. Perceiving this using computer vision based meth-
ods proves to be difficult. Images from a single camera are not well constrained. Only the
perceived two-dimensional motion can be estimated from sequential images, commonly re-
ferred to as optical flow. Up to estimation errors and some well-known ambiguities (aperture
problem), the optical flow corresponds to the three-dimensional scene motion projected to
the image plane. The motion in depth is lost by the projection.

There are ways to recover the depth information from calibrated monocular video in a
static scene with a moving observer up to a similarity transform. However, this requires a
translating motion of the observer. The process becomes even more complex when there
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3D scene flow

left image at time t

left image at time t +1

Fig. 1 The scene flow motion field depicted on the right is computed from two stereo input image pairs. On
the left, the images from the left camera are shown for the two time instances. The colour encodes speed from
stationary (green) to rapidly moving (red) after camera ego-motion compensation. Note the accurate motion
estimation of the leg and the arm of the running person.

are independently moving objects in the scene. The estimation of the motion then has to be
combined with a separation of independent motions - a chicken-and-egg problem which is
susceptible to noise and/or local optima [9,20,28,44].

Once a stereo camera system is available, the task becomes better constrained and feasi-
ble in practice. The distance estimate from the triangulation of stereo correspondences pro-
vides vital additional information to reconstruct the three-dimensional scene motion. Then,
ambiguities only arise

1. if the camera motion is not known, in particular the camera is not stationary. In this case,
only the motion relative to the camera can be estimated.

2. when points are occluded
3. around areas with missing structure in a local neighbourhood

The first two ambiguities are quite natural and affect also human perception. For in-
stance, human perception cannot distinguish whether the earth is rotating or the stars circu-
late around us1. The third ambiguity is well-known in both disparity estimation and optical
flow estimation. A common way to deal with the missing structure and to achieve dense es-
timates is the use of variational approaches that incorporate a smoothness prior that resolves
the ambiguity. In this sense, when we speak of dense estimates we mean that for each 3D
point that is seen in both cameras, we have an estimate of its motion. Figure 1 is an example,
where the movement of a running person becomes visible in the 3D scene flow.

Related Work

2D motion vectors are usually obtained by optical flow estimation techniques. Sparse tech-
niques, such as KLT tracking [34], perform some kind of feature tracking and are preferred
in time-critical applications. Dense optical flow is mostly provided by variational models
based on the method of Horn and Schunck [16]. Local variational optimisation is used to
minimise an energy functional that assumes constant pixel intensities and a smooth flow
field. The basic framework of Horn and Schunck has been improved over time to cope with

1 a fact that has nurtured many religious discussions
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Algorithm # cameras Dense approach Close / far Running
(yes/no) time

“Joint motion . . . ” [25] 2 Yes Close ?
“Decouple: image segmentation . . . ” [47] 2 Yes Close ?
Three-dimensional scene flow [38] 17 Yes Close ?
6D Vision [27] 2 No Both 40 ms
“Dense motion . . . ” [19] 2 Yes Very close 5 s
“Multi view reconstruction . . . ” [26] 30 Yes Close 10 min
Huguet-Devernay [18] 2 Yes Both 5 hours
“Disparity flow . . . ” [11] 3 Yes Close 80 ms
Decoupled (this paper) 2 Yes Both 70 ms

Table 1 Scene flow algorithms with their running times, density, and range tested.

discontinuities in the flow field, and to obtain robust solutions with the presence of outliers
in image intensities [3,23]. Furthermore, larger displacements can be estimated thanks to
image warping and non-linearised model equations [23,6]. Currently, variational techniques
yield the most accurate optical flow in the literature [39,43,48]. For the current state-of-
the-art we refer to the Middlebury benchmark on optical flow [30]. Real-time methods have
been proposed in [8,46].

Scene flow computation involves an additional disparity estimation problem, as well as
the task of estimating the change of disparity over time. The work in [25] introduced scene
flow as a joint motion and disparity estimation method. The succeeding works in [18,24,47]
presented energy minimisation frameworks including regularisation constraints to provide
dense scene flow. Other dense scene flow algorithms have been presented in multiple camera
set-ups [26,38]. However, these only allow for non-consistent flow fields in single image
pairs.

None of the above approaches run in real-time (see Table 1), giving best performances
in the scale of minutes. The work in [19] presents a probabilistic scene flow algorithm with
computation times in the range of seconds, but yielding only discrete integer pixel-accurate
(not sub-pixel) results. [12] presented a discrete disparity flow (i.e., scene flow) algorithm
that ran in the range of 1-2 seconds on QVGA (320×240 pixel) images. Real-time sub-pixel
accurate scene flow algorithms, such as the one presented in [27], provide only sparse results
both for the disparity and the displacement estimates.

The only real-time scene flow algorithm presented in the literature so far is the disparity
flow algorithm in [11], which is an extension of [12]. This method is a discrete, combinato-
rial method and requires, a-priori, the allowed range (and discretisation) of values. It runs
on QVGA images at 12 Hz using a local stereo method and at 5 Hz for the dynamic pro-
gramming method (running on a GPU). Note that this is for a range of 40 discrete values (the
author chose the range ±5 for the optical flow component and ±1 for the disparity flow),
which is rather limited in its application. This method uses a decoupled approach for solving
the disparity and the scene flow separately, but provides a loose coupling by predicting the
disparity map using the scene flow with an error validation step.

In contrast, the method we present here provides sub-pixel accurate scene flow, due
to the variational nature of the implementation, for any sized flow vector (handles both
large and small vectors easily), and close to real-time (5 Hz on a CPU, 15 Hz on a GPU)
for QVGA images. Parts of this work have been presented in three preliminary conference
papers [40–42].
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Contributions

Combining disparity estimation and motion estimation into one framework has been the
common approach for scene flow computation (e.g., [18,25,47]). In this paper, scene flow
is presented as an alternative to the work from [18], which is based on [6]. The main contri-
bution is that we propose decoupling of the motion estimation from the disparity estimation
while maintaining the stereo constraints. In addition to the decoupling, we elaborate on the
intensity consistency assumption (or Lambertian reflectance assumption) that is part of opti-
cal flow and most scene flow algorithms. It is known to cause errors when real-world lighting
conditions have variable effects on the different input images. In scene flow computation,
where we match four images, the effects are even greater than in optical flow estimation. We
present a solution based on residual images [36]. Finally, we provide uncertainty measures
for every pixel, and present their use for object segmentation.

Why decoupling is advantageous

The decoupling of depth (disparity) and motion (optical flow and disparity change) estima-
tion might look unfavorable at a first glance, but it has two important advantages. Firstly, the
challenges in motion estimation and disparity estimation are quite different. With disparity
estimation, thanks to the epipolar constraint, only an ordered scalar field needs to be esti-
mated. This enables the use of optimization methods that guarantee global optima, such as
dynamic programming or graph-cuts, to establish point correspondences. Optical flow esti-
mation, on the other hand, requires the estimation of a vector field without ordered labels.
In this setting, global optimization in polynomial time is not available. Another important
difference is that motion vectors tend to be smaller in magnitude than disparities. This is
valid for most applications and can be assured for all applications by minimizing the time
delay in between the images) . Thus sub-pixel accuracy as provided by variational meth-
ods is more important for motion estimation, whereas occlusion handling is more critical in
disparity estimation.

Splitting scene flow computation into the estimation sub-problems, disparity and
optical flow with disparity change, allows one to choose the optimal technique for
each task.

It is worth noting that, although we separate the disparity estimation problem from the mo-
tion estimation, the proposed method still involves a coupling of these two tasks in the final
scene flow computation, as the optical flow is enforced to be consistent with the computed
disparities.

Secondly, the two sub-problems can be solved more efficiently than the joint problem.
We find that the decoupling strategy allows for real-time computation of high-quality scene
flow on the GPU with a frame rate of 20 Hz on QVGA images assuming the disparity map
is provided (or implemented in hardware). On the CPU, we achieve 5 Hz.

The splitting approach to scene flow is about 500 times faster compared to recent
techniques for joint scene flow computation. 2

How does the decoupling affect the quality of the results? In the decoupling strategy
we propose, the motion field estimation takes into account the estimated disparities, but

2 The exception is [11], which is a loosely coupled approach.
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Fig. 2 Outline of our scene flow algorithm, showing the required data and information flow. The information
needed to compute scene flow at frame t are the stereo pairs at t and t +1, along with the disparity map at t.

the disparity computation does not benefit from the computed motion fields. In coupled
approaches like [18], all variables are optimized at the same time. However, variational op-
timization is a local approach, which is likely to run into local minima, especially when there
are many coupled variables. Even though a coupled energy is an advantageous formulation
of the problem, it is impossible to globally optimize this energy. In contrast, our disparity
estimates are based on a global optimization technique. Although the disparities are not re-
fined later in the variational approach anymore, they are more likely to be correct than in
a coupled variational setting. This explains why the estimation accuracy of our decoupled
approach actually turns out to compare favourably to that of joint estimation methods.

Paper organization

Section 2 first formulates the scene flow assumptions and energy equations, and then dis-
cusses implementation strategies, along with pseudo-code. In Section 3, we provide a way
of estimating the pixel-wise uncertainty of our calculated results. This aims to be used for
follow-on processes, such as filtering and segmentation. Section 4 takes the image based
scene flow and formulates the transformation to real-world coordinates. Furthermore, this
section provides metrics and likelihoods for understanding motion and speed. We present
experimental results in Section 5 and conclude the paper in the final section.

2 Formulation of Scene Flow

Figure 2 shows the outline of the approach. As seen from this figure, disparity estimation
is decoupled from the variational scene flow computation in order to allow for the use of
efficient and optimal stereo algorithms. Given the disparity at t, we compute the optical flow
and change in disparity from the two stereo pairs at time t and t + 1. The disparity, optical
flow and disparity change together determine scene flow.
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2.1 Disparity Estimation

A disparity d := d(x,y, t) is calculated for every pixel position [x,y]> at every time frame t.
Here, the pixel position is found in the image domain Ω . Current state-of-the-art algorithms
(e.g., see Middlebury [30]) require normal stereo epipolar geometry, such that pixel row y
for the left and right images coincide. This is achieved by a so-called rectification process
given the fundamental matrix of the stereo camera [13].

A world point [X ,Y,Z]> (lateral, vertical and depth resp.) is projected into the cameras
images, yielding [x,y]> in the left image and [x+d,y]> in the right image, according to: x

y
d

=
1
Z

 X fx
−Y fy
b fx

+

 x0
y0
0

 (1)

with the focal lengths fx and fy (in pixels) for the x and y direction, [x0,y0]> is the principal
point of the stereo camera system, and b is the baseline distance between the two camera
projection centres (in metres). The disparity value d therefore encodes the difference in the
x-coordinate of an image correspondence between the left and right image. With known
intrinsic camera parameters (from calibration), the position of a world point [X ,Y,Z]> can
be recovered from an [x,y,d]> measurement using Eq. 1.

The goal of the stereo correspondence algorithm is to estimate the disparity d, for every
non-occluded pixel in the left image. This is accomplished by local methods, which use a
small matching window from the left to the right image, or global methods, which incor-
porate some global regularity constraints. The scene flow algorithm that we present later
has the flexibility to use any disparity map as input. Dense or sparse algorithms are handled
effectively due to the variational nature of the approach. In Section 5 we show scene flow re-
sults for different disparity estimation algorithms. One is a hierarchical correlation algorithm
yielding sparse sub-pixel accurate disparity maps, which runs at about 100 Hz [10]. The
other produces a sparse, pixel-discrete disparity map using Census based hash tables [32].
It is massively parallel and available in hardware (FPGA - field programmable gate array)
without extra computational cost. Finally, we consider semi-global matching (SGM) with
mutual information [15], a globally consistent energy minimisation technique that provides
a disparity estimate for every non-occluded pixel. This algorithm is implemented on dedi-
cated hardware (FPGA) and runs at 30 Hz on images with a resolution of 640×480 pixels.
SGM is used as our main stereo algorithm.

2.2 Stereo Motion Constraints

The data dependencies exploited in the scene flow algorithm are shown in Figure 3. We use
two consecutive pairs of stereo images at time t and t + 1. The scene flow field [u,v, p]>

is an extension of the optical flow field [u(x,y, t),v(x,y, t)]> (flow in the x and y direction
respectively) by an additional component p(x,y, t) that constitutes the disparity change.

Three-dimensional scene flow can be reconstructed for points, where both the image
positions described by [x,y,d]> and their temporal change described by [u,v, p]> are known.
d is estimated using an arbitrary stereo algorithm, see Section 2.1. The disparity change and
the two-dimensional optical flow field have to be estimated from the stereo image pairs.

For all the equations derived for scene flow, we employ the normal optical flow intensity
consistency assumption, i.e., the intensity should be the same in both images for the same
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world point in the scene. We expand this to couple the four images involved with the scene
flow calculation.

The first equation that we derive is from the left half of Figure 3. Let L(x,y, t) be the in-
tensity value of the left image, at pixel position [x,y]> and time t. This leads to the following
constraint, which we call the left flow constraint:

L(x,y, t) = L(x+u(x,y, t),y+ v(x,y, t), t +1) (2)

The flow in the right hand image can also be derived using the same principle. Let
R(x,y, t) be the intensity of the right image, at pixel position [x,y]> and time t. Due to
rectification, we know that flow in the left image and right image will have the same y
component, this means that the difference is only in the x component of the equation. This
leads to the right flow constraint:

R(x+d(x,y, t),y, t) = R(x+u(x,y, t)+d(x,y, t)+ p(x,y, t),y+ v(x,y, t), t +1) (3)

highlighting that the position in the x component is offset by the disparity d and the flow is
only different by the disparity change p.

Calculating optical flow in the left and right image separately, we could directly derive
the disparity change p = uR−uL, where uR and uL denote the estimated flow fields in the left
and right image, respectively. However, to estimate the disparity change more accurately,
consistency of the left and right image at time t + 1 is enforced. More precisely, the gray
values of corresponding pixels in the stereo image pair at time t + 1 should be equal, as
illustrated in the bottom halve of the diagram in Figure 3. This yields the third constraint,
the disparity flow constraint:

L(x+u(x,y, t),y+ v(x,y, t), t +1) =
R(x+u(x,y, t)+d(x,y, t)+ p(x,y, t),y+ v(x,y, t), t +1) (4)

Left image          L (x , y) Right image       R (x , y)

Time (t)

Time (t + 1)

Stereo d Right flow

(x , y) (x + d, y)

(x + u, y + v) (x + u + d + p, y + v)

(x + d, y)

Left flow

Fig. 3 Motion and disparity constraints employed in our scene flow algorithm. Intensity consistency of cor-
responding points in the left and right stereo image and in successive frames is assumed. This assumption is
relaxed later in Section 2.5.
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If we rearrange the above equations, it results in:

ELF := L(x+u,y+ v, t +1) − L(x,y, t) = 0
ERF := R(x+d + p+u,y+ v, t +1) − R(x+d,y, t) = 0
EDF := R(x+d + p+u,y+ v, t +1) − L(x+u,y+ v, t +1) = 0

(5)

where the implicit dependency on (x,y, t) for u,v, p and d has been omitted. Figure 4 shows
an illustration of the above equations in two real-world stereo pairs.

2.3 Energy Equations for Scene Flow

Scene flow estimates according to the constraints formulated in Section 2 are computed
in a variational framework by minimising an energy functional consisting of a data term
derived from the constraints and a smoothness term that enforces smoothness in the flow
field; allowing for dense estimates in the image domain Ω despite sparse constraints:

E(u,v, p) =
∫

Ω

(
ED(u,v, p)+ES(u,v, p)

)
dxdy (6)

By using the constraints from (5) we obtain the following data term:

ED = Ψ
(
E2

LF
)
+ c(x,y, t) Ψ

(
E2

RF
)
+ c(x,y, t) Ψ

(
E2

DF
)

(7)

where Ψ
(
s2
)

=
√

s2 + ε2 denotes the L2 approximation for total variation L1 that compen-
sates for outliers [6] (with ε = 0.01 for numerical stability), and the function c(x,y, t) returns
0 if there is no disparity given at [x,y]>, and 1 otherwise. This function deals with disparity
maps, where data is missing, either due to a sparse stereo method or due to occlusion. When-
ever c(x,y, t) = 0 the smoothness term defines the estimate at [x,y, t]> taking into account the
estimates of spatially neighbouring points. Due to this fill-in effect, the formulation provides
dense image flow estimates [u,v, p]>, even if the disparity d is not dense.

The smoothness term penalises local deviations in the scene flow components and em-
ploys the same robust function as the data term in order to deal with discontinuities in the
scene flow field:

ES = λ Ψ
(
|∇u|2 + |∇v|2

)
+ γΨ

(
|∇p|2

)
where ∇ :=

(
∂

∂x
,

∂

∂y

)>
(8)

and the parameters λ and γ regulate the importance of the smoothness constraint, with dif-
ferent weights assigned to the optical flow and the disparity change, respectively.

stereo
(given)

ELF ERF

EDF

Fig. 4 The scene flow constraints (Eq. 5) are illustrated for two sequential stereo image pairs.
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2.4 Minimisation of the Energy

For minimising the energy in the previous section we compute its Euler-Lagrange equations:

Ψ
′ (E2

LF
)

ELF Lx + cΨ
′ (E2

RF
)

ERF Rx + cΨ
′ (E2

DF
)

EDF (Rx−Lx)−λ div
(
∇u E ′S

)
= 0 (9)

Ψ
′ (E2

LF
)

ELF Ly + cΨ
′ (E2

RF
)

ERF Ry + cΨ
′ (E2

DF
)

EDF (Ry−Ly)−λ div
(
∇v E ′S

)
= 0

(10)

cΨ
′ (E2

RF
)

ERF Rx + cΨ
′ (E2

DF
)

EDF Rx− γ div
(
∇p E ′S

)
= 0

(11)

with

E ′S := Ψ
′ (

λ |∇u|2 +λ |∇v|2 + γ|∇p|2
)

Ψ
′ (s2)=

1√
s2 + ε2

(12)

where Ψ ′
(
s2
)

is the derivative of Ψ
(
s2
)

with respect to s2. Partial derivatives of R and L
are denoted by subscripts (see Algorithm 2 for details of calculation of R∗ and L∗). Also the
implicit dependency on (x,y, t) has been omitted from c(x,y, t).

These equations are non-linear in the unknowns [u,v, p]>. We stick to the strategy of two
nested fixed point iteration loops as suggested in [6]. The outer fixed point loop performs a
linearisation of ELF , ERF , and EDF . Starting with [u0,v0, p0]> = [0,0,0]>, in each iteration
k an increment [δuk,δvk,δ pk]> of the unknowns is estimated and the second image is then
warped according to the new estimate [uk+1,vk+1, pk+1]> = [uk +δuk,vk +δvk, pk +δ pk]>.
The linearisation reads:

L(x+uk+1,y+ vk+1, t)≈ L(x+uk,y+ vk, t)+δukLx +δvkLy (13)

R(x+d + pk+1 +uk+1,y+ vk+1, t)

≈ R(x+d + pk +uk,y+ vk, t)+δukRx +δ pkRx +δvkRy
(14)

From these expressions we can derive linearised versions of ELF , ERF , and EDF . The
warping is combined with a pyramid (coarse-to-fine) strategy, i.e., iterations start with down-
sampled versions of the image and the resolution is successively refined.

The remaining non-linearity in the Euler-Lagrange equations is due to the robust func-
tion. In the inner fixed point iteration loop the Ψ ′ expressions are kept constant and are
recomputed after each iteration l. The resulting Euler-Lagrange equations together with im-
plementation details on the implementation can be found in the Appendix, see Section 7.

2.5 Dealing with Intensity Consistency Assumption Violations

When dealing with synthetic scenes, the intensity consistency assumption (ICA) holds true.
However, in “real-world” images, the ICA is usually not satisfied [37]. There have been sev-
eral methods proposed to deal with this issue. [6] proposed using the intensity gradients in
the data terms of the energy equations. Intensity gradients were shown to be approximately
invariant to the most common intensity changes.

Alternative invariant features can be derived from a structure-texture image decompo-
sition as introduced in [1]. The basic idea is to consider the residual image, which is the
difference between the original image and a smoothed version of itself, thus removing low
frequency illumination artifacts. The fact that this method works reasonably well for both
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Fig. 5 An example of the residual images used as input to the scene flow algorithm in this paper. The original
is on the left, with the residual processed image on the right.

stereo and optical flow [36] makes it the perfect synergy for scene flow. Any reasonable
residual image can be used as shown in [36]. We use the TV-L2 residual images for all real-
world images (for synthetic data we use the original images as the ICA holds true), which
are normalized to the range L,R ∈ [−1,1]. This is a computationally expensive smooth-
ing filter, but provides the most consistent results. Full details of the TV-L2 residual image
implementation is found in [29]. An example of a residual processed image is shown in
Figure 5.

Comparing the residual image approach to adding gradient constancy constraints as
in [6], residual images are favourable with regard to computational speed. They induce a
smaller number of constraint equations in the energy and thus shorter Euler-Lagrange equa-
tions.

3 Uncertainty of Scene Flow

Understanding the uncertainty of an estimate is important for follow on processes, such as
filtering and Markov-random field type segmentation. The uncertainty can be represented by
variances. In the following subsections, we derive the uncertainty for the disparity and scene
flow estimates for every pixel, by using the corresponding underlying energy functional.

3.1 Disparity Uncertainty

The scene flow algorithm presented above (primarily) uses the semi-global matching algo-
rithm [14] for the disparity estimation and a variational framework for the scene flow es-
timates. The core semi-global matching algorithm produces discrete pixel-accurate results,
with a sub-pixel interpolation performed afterward.

Let i be the disparity estimate of the core SGM (or any pixel discrete algorithm using
energy minimization) method for a certain pixel in the left image. The SGM method in
[14] is formulated as an energy minimization problem. Hence, changing the disparity by
±1 yields an increase in costs (yielding an increased energy). The minimum, however, may
be located in between pixels, motivating a subsequent sub-pixel estimation step. Sub-pixel
accuracy is achieved by a subsequent fit of a symmetric equiangular function (see [31]) in the
cost volume. Note, that this is different to standard linear interpolation of the disparity values
as the fit is done in the cost volume and is aimed at finding the minimum of a symmetric
L1 cost function approximating the costs for the three disparity assumptions i-1, i, and i+1.
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The basic idea of this step is illustrated in Figure 6 for an example of a typical d estimate.
This fit is unique and yields a specific sub-pixel minimum, located at the minimum of the
function. Note that this might not be the exact minimum of the underlying energy but is
a close approximation, evaluating the energy only at pixel position and assuming that the
underlying energy function is smooth.

The slope of this fitting function (the larger of the two relative cost differences be-
tween the current estimate and neighbouring costs, ∆ j) serves as a quality measure for
the goodness-of-fit. If the slope is low, the disparity estimate is not accurate in the sense
that other disparity values could also be valid. If on the other hand the slope is large,

Fig. 6 Quality measure for the disparity estimate.
The slope of the disparity cost function serves as a
quality measure for the disparity estimate.

the sub-pixel position of the disparity is
expected to be quite accurate as devia-
tion from this position increases the energy.
Hence, the larger the slope, the better is the
expected quality of the disparity estimate.

Based on this observation an uncer-
tainty measure is derived for the expected
variance of the disparity estimate:

UD(x,y,d) =
1

∆ j
(15)

The disparity uncertainty could be cal-
culated using the underlying energy equations, as is done for the scene flow below. However,
the method using the slope of the interpolated function (presented above) has been shown to
provide better results than when using the energy cost (outlined below). Other stereo uncer-
tainty measures can be used, such as those presented in [17], and may provide better results
with additional computational cost.

3.2 Scene Flow Uncertainty

For variational optical flow methods the idea of using the incline of the cost function or
energy function as uncertainty measure becomes more complex than in the disparity setting.
This is due to the higher dimensionality of the input and solution space. An alternative,
energy-based confidence measure was proposed in [7]. The novel idea is that the uncertainty
is proportional to the local energy contribution in the energy functional, used to compute the
optical flow. A large contribution to the total energy implies high uncertainty (thus low
accuracy), while uncertainty is expected low if the energy contribution is small. The authors
show that this energy-based measure yields a better approximation of the optimal confidence
for optical flow estimates than an image-gradient-based measure.

The same idea is now applied to the scene flow case. The three data terms in the energy
functional are the left, right, and disparity flow constraints. Additionally, the smoothness
of the scene flow variables u, v, and p also contribute to the energy functional, thus the
uncertainty. This yields an expected uncertainty of the scene flow estimate:

USF(x,y,d,u,v, p) = ELF +ERF +EDF +ES (16)

The main advantage of this uncertainty measure is that it is provided with out any addi-
tional computation. The cost (including both the intensity data and smoothness term) at each
pixel is used in the algorithm, and the final value is used as the final uncertainty measure.
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Fig. 7 Plots of the proposed uncertainty measures and corresponding variances for the disparity. The left
column shows the density of actual error (using ground truth) vs. the uncertainty measure. The distribution
at each uncertainty level is normalised to 1. The right column shows the true variance vs. the uncertainty
measure (basically a summary of the density graph). VAR(d) vs. UD, is shown at the top. The scene flow
u-component VAR(u) vs. USF is shown at the bottom.

3.3 Comparing Variances and Uncertainty Measures

To evaluate the uncertainty measures for the disparity and scene flow estimates, we plot the
derived uncertainty measures against the observed error in Figure 7 (for the disparity d and
the u-component of the optical flow). To generate the plots we used a 400 frame evaluation
sequence (sequence 2 from set 2 on [35]), which is outlined in Section 5.3.

The plots illustrate that the proposed uncertainty measures are correlated to the true
variance of the errors. Furthermore, the variance σα for a scene flow component (where α ∈
{d,u,v, p}) can be approximated by a linear function of the uncertainty measure, denoted
by Uα , with fixed parameters gα and hα : σ2

α(x,y, t) = gα +hαUα(x,y, t).

4 From Image Scene Flow to 3D Scene Flow (World Flow)

This section proposes methods for evaluating our scene flow algorithm. This involves first
taking our scene flow (image coordinates) estimate, then estimating three-dimensional scene
flow / world flow (real-world coordinates). We also propose two metrics for estimating con-
fidence of moving points within the scene.

We have now derived the image scene flow as a combined estimation of optical flow and
disparity change. Using this information, we can compute two world points that define the
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start and end point of the 3D scene flow. These equations are derived from the inverse of
Eq. 1 ( fx, fy, and b are defined there as well).

Xt = (x− x0)
b
d

, Yt =−(y− y0)
fy

fx

b
d

, Zt =
fxb
d

(17)

and

Xt+1 = (x+u− x0)
b

d + p
, Yt+1 =−(y+ v− y0)

fy

fx

b
d + p

, Zt+1 =
fxb

d + p
(18)

Obviously, the 3D scene flow [Ẋ ,Ẏ , Ż]> is the difference between these two world points.
For simplicity we will assume that fy = fx. This yields:Ẋ

Ẏ
Ż

=

Xt+1−Xt
Yt+1−Yt
Zt+1−Zt

= b


x+u−x0

d+p −
x−x0

d
y−y0

d −
y+v−y0

d+p
fx

d+p −
fx
d

 (19)

For follow-on calculations (e.g., speed, detection of moving objects, segmentation of
objects, integration, etc.) we need the accuracy of the scene flow vector. In the following
subsections, we will define two metrics that estimate the likelihood that a pixel is moving,
i.e., not stationary. The metrics provided in this section are ideas for follow-on evaluations,
such as segmentation and filtering. An example of segmentation is shown in Section 5.5.

4.1 Residual Motion Likelihood

First, we define the uncertainty of our measurements. These can be represented by standard
deviations as σd , σu, σv, and σp (subscript denoting variable of standard deviation). Discus-
sion and results of what values to use for σα (where α ∈ {d,u,v, p}) are found in Section
5.5. One would assume that σu = σv ∝ σp and the disparity estimate to be less accurate than
the flow. We do not explicitly assume this and derive the covariance matrix ΣSF for the 3D
scene flow using error propagation:

ΣSF = J diag(σ2
d ,σ2

u ,σ2
v ,σ2

p) J> (20)

where

J =


∂ Ẋ
∂d

∂ Ẋ
∂u

∂ Ẋ
∂v

∂ Ẋ
∂ p

∂Ẏ
∂d

∂Ẏ
∂u

∂Ẏ
∂v

∂Ẏ
∂ p

∂ Ż
∂d

∂ Ż
∂u

∂ Ż
∂v

∂ Ż
∂ p

= b


(

(x+u−x0)
(d+p)2 −

(x−x0)
d2

)
−1

d+p 0 (x+u−x0)
(d+p)2(

(y+v−y0)
(d+p)2 −

(y−y0)
d2

)
0 −1

d+p
(y+v−y0)
(d+p)2(

fx
(d+p)2 − fx

d2

)
0 0 fx

(d+p)2

 (21)

This error propagation holds true, as long as the distribution is zero-mean and scales by
the standard deviation (e.g., Gaussian and Laplacian). We have also assumed that the co-
variances are negligible, although the problem of scene flow estimation is highly coupled.
However, estimating covariances is not trivial and in our eyes even impossible. We agree
that errors in the flow x-component tends to impose errors on the y-component and dispar-
ity change but we do not know of a way to determine whether this correlation is positive
or negative. From this model, one can see that the disparity measurement has the highest
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influence on the covariance (as it is either by itself or quadratically weighted in the equa-
tions). Furthermore, the larger the disparity, the more precise the measurement; as d → ∞

all σα → 0.
The derivation above only holds true for stationary cameras. Assume the motion of

the camera (in our case a vehicle) is given from either inertial sensors or an ego-motion
estimation method (e.g., [2]). This motion is composed of a rotation R (matrix composed
by the combination of rotations about the X , Y and Z axis) about the origin of the camera
coordinate system and a translation T = [TX ,TY ,TZ ]>. The total residual motion vector M is
calculated as:

M =

MX
MY
MZ

=

Xt+1
Yt+1
Zt+1

−R

Xt
Yt
Zt

+T (22)

Again the motion is known with a certain accuracy. For simplicity we assume the rota-
tional parts to be small, which holds true for most vehicle applications. This approximates
the rotation matrix by a unary matrix for the error propagation calculation. We denote the
standard deviations of the translations as a three-dimensional covariance matrix ΣT . The
total translation vector vector M now has the covariance matrix ΣM = ΣSF +ΣT .

Now one can compute the likelihood of a flow vector to be moving, hence belonging to a
moving object. Assuming a stationary world and a Gaussian error propagation, one expects
a standard normal distribution with mean 0 and covariance matrix ΣM . Deviations from this
assumption are found by testing this null hypothesis or the goodness of fit. This can be done
by evaluating the Mahalanobis distance [22], giving us the residual motion likelihood:

ξM(x,y) =
√

M>Σ
−1
M M (23)

The squared Mahalanobis distance ξM is χ2 distributed and outliers are found by thresh-
olding, using the assumed quantiles of the χ2 distribution. For example, the 95% quantile of
a distribution with three degrees of freedom is 7.81, the 99% quantile lies at 11.34. Hence a
point is moving with a probability of 99% if the Mahalanobis distance is above 11.34. This
again holds only if the measurement variances are correct. Figure 8 demonstrates results
using this metric. In both images, it is easy to identify what parts of the scene are static, and
which parts are moving. The movement metric ξM only identifies the probability of a point
being stationary, it does not provide any speed estimates. Note that this metric computes a
value at every scene point. Another two examples of results obtained using this metric can
be seen in Figure 9.

4.2 Speed Metrics

The residual motion likelihood metric ξM omitted any information about speed. To estimate
the speed S the L2-norm (length) of the displacement vector is calculated.

S = ‖M‖ (24)

The problem is that points at large distances are always estimated as moving. This is
because a small disparity change yields large displacements in 3D (see Equation 19). If in-
accuracies are used in the residual motion computation one can still not derive speed infor-
mation. One way around the problem is to give a lenient variance of the speed measurement
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σ2
S . An approach to estimate this variance is to calculate the spectral norm of the covari-

ance matrix. This involves computing the eigenvalues of the squared matrix, then taking the
square root of the maximum eigenvalue.

σ
2
S = ‖ΣM‖=

√
λmax

(
Σ>MΣM

)
(25)

Using this we now have a likely speed S and associated variance σ2
S . Using these metrics

leads to the examples in Figure 10. In this figure, it is easy to identify the speed of moving
targets, and also how confident we are of the speed measurement. The pedestrian in Figure
10(a) had a displacement of 15 cm with a frame rate of 25 Hz, i.e., 3.75 m/s. The vehicle
in 10(b) had a displacement of 50cm, i.e., 12.5 m/s. In both examples only the information
with high confidence is taken into account, so moving objects are easily identified.

From the metrics provided in this section, we now have a likelihood that the object is
moving ξM , likely speed of the object S and the uncertainty of the speed σ2

S .

(a) Moving Pedestrian (b) Lead Vehicle
Fig. 8 Results using the Manhalobis distance likelihood ξM . (a) shows a pedestrian running from behind a
vehicle. (b) shows a lead vehicle driving forward. Colour encoding is ξM , i.e., the hypothesis that the point is
moving, green↔ red ≡ low↔ high.

Fig. 9 Two examples, from a single sequence, of the residual motion likelihood defined in Section 4.1. Left
to right: original image, optical flow result, the residual motion metric results (green↔ red represents low↔
high likelihood that point is moving).
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(a) Moving Pedestrian (b) Lead Vehicle

Fig. 10 Results using speed S and its standard deviation σS. (a) shows the pedestrian running with a speed of
3.75 m/s. (b) shows a lead vehicle driving forward with a speed of 12.5 m/s. Colour encoding is S, green↔
red≡ stationary↔moving. σS is encoded using saturation, points in the distance are therefore grey or black.

5 Evaluation and Experimental Results

The evaluation metrics used in this section are defined as follows. First we define error
metrics at each time frame. The absolute angular error (AAE) as used in [18]:

AAEu,v =
1
|Ω |∑

Ω

arctan
(

uṽ− ũv
uũ+ vṽ

)
(26)

where an accent α̃ denotes the ground truth solution of α (where α ∈ {d,u,v, p}) and |Ω | is
the cardinality (number of pixels) in Ω .

The root mean square (RMS) error:

RMSu,v,d,p =

√
1
|Ω | ∑

(x,y)∈Ω

‖[u,v,d, p]>− [ũ, ṽ, d̃, p̃]>‖2 (27)

If there is no disparity measure d (either by sparse algorithm or occlusion) then the estimated
value is set to 0 (therefore still contributing to error). In our notation for RMS, if a subscript
is omitted, then both the respective ground truth and estimated value are set to zero.

The 3D angular error:

AAE3D =
1
|Ω |∑

Ω

arccos

(
uũ+ vṽ+ pp̃+1√

(u2 + v2 + p2 +1)(ũ2 + ṽ2 + p̃2 +1)

)
(28)

When evaluating errors over a time period, we use the following mean and variance of
the error:

µ(α) =
1
|Ω |∑

Ω

|α− α̃| (29)

σ
2(α) =

1
|Ω |

(
∑
Ω

(α− α̃)2

)
− (µ(α))2 (30)
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Fig. 11 Ground truth test: rotating sphere. Quantitative results are shown in Table 2. Top: The left image
shows the movement of the sphere. Optical flow and disparity change are computed on the basis of SGM
stereo [15]. Colour encodes the direction of the optical flow (key in bottom right), intensity its magnitude.
Disparity change is encoded from black (increasing) to white (decreasing). Bright parts of the RMS figure
indicate high RMSu,v,p error values of the computed scene flow. Bottom: disparity images are colour encoded
green to orange (low to high). Black areas indicate missing disparity estimates or occluded areas.

Note, the implicit dependence on (x,y, t) for all α ∈ {d,u,v, p} is omitted from the above
equations.

The first two subsections here present a summary of synthetic data testing, parts of these
results have been published in [41]. The third subsection presents an evaluation approach
for long stereo sequences, along with some sample results. Real-world results of the al-
gorithm are provided in the fourth subsection. Finally, segmentation using residual motion
likelihoods from Section 4.1 is presented.

All input images are 12-bit per pixel except the rotating sphere sequence. The finer
quantization helps increasing the sub-pixel accuracy of the approach.

5.1 Rotating Sphere

To assess the quality of our scene flow algorithm, it was tested on synthetic sequences,
where the ground truth is known. The first ground truth experiment is on the rotating sphere
sequence from [18] depicted in Figure 11. In this sequence the spotty sphere rotates around
its y-axis to the left, while the two hemispheres of the sphere rotate in opposing vertical
directions3. The resolution is 512×512 pixels.

We tested the scene flow method together with four different stereo algorithms: semi-
global matching (SGM [15]), SGM with hole filling (favours smaller disparities), correlation
pyramid stereo [10], and an integer accurate census-based stereo algorithm [32]. The ground
truth disparity was also used for comparison, i.e., using the ground truth as the input disparity
for our algorithm.

The errors were calculated in two different ways: firstly, calculating statistics over all
non-occluded areas, and secondly calculating over the whole sphere. As in [18], pixels from
the background were not included in the statistics.

3 The authors thank Huguet and Devernay for providing their sphere scene.
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Stereo RMSd Without occluded areas With occluded areas
algorithm (density) RMSu,v RMSu,v,p AAEu,v RMSu,v RMSu,v,p AAEu,v

Ground truth 0 (100%) 0.31 0.56 0.91 0.65 2.40 1.40

SGM [15] 2.9 (87%) 0.34 0.63 1.04 0.66 2.45 1.50
Correlation [10] 2.6 (43%) 0.33 0.73 1.02 0.65 2.50 1.52

Census based [32] 7.8 (16%) 0.32 1.14 1.01 0.65 2.68 1.43

Hug.-Dev. [18] 3.8 (100%) 0.37 0.83 1.24 0.69 2.51 1.75
Fill-SGM 10.9 (100%) 0.45 0.76 1.99 0.77 2.55 2.76

Table 2 Root mean square (pixels) and average angular error (degrees) for scene flow of the rotating sphere
sequence. Various stereo algorithms are used as input for our scene flow estimation, generating varying re-
sults.

The resulting summary can be seen in Table 2. We achieve lower errors than the Huguet
and Devernay method, even when using sparse correlation stereo. The lower error is even
more due to the sparseness of the disparity since problematic regions such as occlusions are
not included in the computation and can therefore not corrupt the estimates. Thanks to the
variational formulation of the scene flow, more reliable information is filled in where the
data terms are disables and a dense scene flow is obtained. Particularly, the RMS error of the
scene flow is much smaller and we are still considerably faster (see Table 1). In this sense
SGM seems to do a good job at avoiding occluded regions.

The joint approach in [18] is bound to the variational setting, which usually does not
perform well for disparity estimation. Moreover the table shows that SGM with hole filling
yields inferior results to the other stereo methods. This is due to false disparity measurements
in the occluded area. It is better to feed the sparse measurements of SGM to the variational
framework, which yields dense estimates as well, but with higher accuracy.

SGM was chosen as the best method and is used in the remainder of the results section;
it is available on dedicated hardware without any extra computational cost.

5.2 Povray Traffic Scene 1

In a second ground truth example we use a Povray-rendered traffic scene [37], which is
publicly available online for comparison [35]. The scene layout is shown in Figure 12. We
calculated the RMSu,v,p error and the 3D angular error defined in Equation 28.

Results are shown in Figures 12 and 13. They compare favourably to the results obtained
when running the code from [18]. The average RMSu,v,p error for the whole sequence (subre-
gion as in Figure 12) was 0.64 pixels and the 3D angular error was 3.0◦. The area of interest
Ω is x ∈ [50,590] and y ∈ [50,400] with {x,y} ∈ N (images are x× y = 640×480px).

5.3 Evaluation Approach using Stereo Synthetic Data

In this subsection the Povray Traffic Scene 2 is used to analyse the output from our scene
flow approach. It is a more complex driving scene, involving hills, trees, and realistic physics;
it consists of 400 sequential stereo image pairs. An example picture is shown in Figure 14.
This scene is publicly available with ground truth disparity, optical flow, disparity change,
and ego-motion [35].



19

Fig. 12 Povray-rendered traffic scene (Frame 11). Top: Colour encodes direction (border = direction key) and
intensity the magnitude of the optical flow vectors. Brighter areas in the error images denote larger errors. For
comparison, running the code from [18] generates an RMS error of 0.91px and AAE of 6.83◦. Bottom right:
3D views of the scene flow vectors. Colour encodes their direction and brightness their magnitude (black =
stationary). The results from the scene are clipped at a distance of 100m. Accurate results are obtained even
at greater distances.

Fig. 13 More frames from the traffic scene in Figure 12. The top row highlights the problems such as trans-
parency of the windshield, reflectance, and moving shadows. The bottom row demonstrates that we still
maintain accuracy at distances of 50 m.

An evaluation approach has been devised to handle such a large dataset. For each image
pair at time t, the following quantities are computed:

– RMSu,v,p from the subsection above.
– Error at each pixel, i.e., difference between estimate and ground truth.
– Absolute mean error for u,v,p, and d.
– Variance of the error for u,v,p, and d.

We have provided an example using our scene flow algorithm in Figure 14. From this
figure it can be seen that the major errors are on object boundaries, and the errors in p are
the lowest in magnitude.

The quantitative results for the entire image sequence are shown in the graphs of Fig-
ures 15 and 16. Comparing the errors of all four scene flow components in Figure 15, it can
be seen that the errors for u and v are consistently about the same error as for d, except for
a few frames (60, 210, 360, and 380) where their error is dramatically higher. The errors
around frame 60, 360, and 380 all relate to the same issue; when previously occluded ar-
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(a) Left Image (b) RMS

(c) Ground Truth Flow (u,v) (d) Estimated Flow (u,v)

(e) Error in u flow (f) Error in v flow

(g) Error in disparity d (h) Error in p flow

Fig. 14 Povray-rendered traffic scene 2 (Frame 215). RMS encoded low to high as light to dark brightness.
Flow colour encoded as in Figure 11. Error images encoded with brightness, negative = dark, positive = light,
zero = mid-grey value (e.g., infinite background). Points at infinity and occlusions in RMS and error images
are shown as a zero value in each colour scale.
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Fig. 15 RMS error and mean error evaluation over entire sequence.

(a) µ(d) and µ(d)+σ(d) (b) µ(u) and µ(u)+σ(u)

(c) µ(v) and µ(v)+σ(v) (d) µ(p) and µ(p)+σ(p)

Fig. 16 Graphs using the mean error and variance from Section 5.3. The graphs shows the results for disparity
d and the flow estimates u,v, and p. The mean error (e.g., µ(d)) is the dark coloured line. The light line is 1
standard deviation from the mean (e.g., µ(d)+σ(d)).
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Fig. 17 This figure shows the scene flow results when on a stationary platform. From left to right: optical
flow (top) and original image (bottom), scene flow 3D vectors, zoomed in 3D flow vectors, zoomed in 3D
flow vectors when viewed from above. 3D vectors are coloured green↔ red as stationary↔ moving

Fig. 18 This figure shows the scene flow results when following another vehicle. Top row: shows an original
image with the colour encoded scene flow. The bottom row shows different virtual viewing points on the
same 3D scene. Left to right: panning to left with a tilt to the right, panning down to be in line with the road
surface, panning up and titling down to be about 45◦ off horizontal, looking straight down from above the
vehicle (birds-eye view).

eas become visible (e.g., the vehicle disappears off the image when it is very close to the
camera). This issue is one that is difficult to avoid without flow occlusion detection, which
is difficult to estimate by itself. The second problem that is common is seen at frame 210;
the car turns left and has a lot of reflections on the windscreen. The vision algorithm detects
the flow to the left (as the reflection goes this direction) but the true motion is to the right.
Again, this is a common issue with optical flow and difficult to avoid.

The errors and standard deviation for the flow components u,v, p (Figure 16) are of
similar shape, yet different magnitude. This is as expected, since they are solved using the
same variational energy minimisation framework. The sequences are provided for public use
and will allow comparisons of scene flow algorithms in future works.

5.4 Real-World Scenes

Real-world scenes are generally more complex to handle than synthetically generated im-
ages due to noise and artifacts that are not included in the model. We demonstrate the ability
of the approach to deal with real-world scenes on images from a driver assistance system.

Figure 17 shows an example of the simplest case, where the camera is stationary. The
scene flow reconstruction is very good with almost no outliers.

Figures 1, 18, 19, and 20 show scene flow results with a moving camera platform. Ego-
motion of the camera is known from ego-motion estimation [2], using inertial sensors for
the initial guess, and compensated in the depicted results.



23

Fig. 19 Dense scene flow in a traffic scene.The colour in the scene flow image shows vector lengths after
ego-motion compensation (green to red = 0 to 0.4m/s). Only the cyclist is moving. The original image is in
the upper right corner.

Fig. 20 A real-world example of our scene flow. The left image shows the original, the two other images
show the scene flow reconstruction when viewed from the front and side. Colour encoding is green↔ red is
stationary↔ moving.

Figure 1 shows results from a scene where a person runs from behind a parked vehicle.
The ego-vehicle is driving forward at 30 km/h and turning to the left. The measurements on
the ground plane and in the background are not shown to focus visual attention on the person.
The results show that points on the parked vehicle are estimated as stationary, whereas points
on the person are registered as moving. The accurate motion results can be well observed
for the person’s legs, where the different velocities of each leg are well estimated.

Figure 18 shows multiple virtual views of a vehicle that is followed by the ego-vehicle.
This is to highlight that the vectors are clustered together and that the scene flow vectors are
consistent.

Figure 19 shows an image from a sequence where the ego-vehicle is driving past a bi-
cyclist. The depicted scene flow shows that most parts of the scene, including the vehicle
stopping at the traffic lights, are correctly estimated as stationary. Only the bicyclist is mov-
ing and its motion is accurately estimated. Compared to Figure 17 there are more outliers
in these results. This highlights that the ego-motion accuracy is vital when dealing with a
moving platform, and slight errors are very noticeable in the results.

Figure 20 shows a van driving past the car. This figure demonstrates that the scene flow
generates clustered vectors, all pointing to the same right direction with similar magnitude
even when viewing from different angles.
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Fig. 21 From left to right: input image, difference image between two consecutive frames, residual motion
likelihood, and segmentation result. With the residual motion likelihood derived from the scene flow, the
segmentation of the moving object becomes possible although the camera itself is moving.

5.5 Segmentation using Uncertainties

Figure 21 shows an example of how the motion likelihood from Section 4.1 can be used as
input to separate stationary from moving points in a segmentation task.

The segmentation is performed employing the graph cut segmentation algorithm from
[4]. We consider individual uncertainty measures for the flow vectors and the disparities at
each image pixel.

The segmentation algorithm requires to set up the graph G (n,ns,nt ,e), consisting of
nodes n(x,y) for every pixel (x,y) in the reference image and two distinct nodes: the source
node ns and the target (sink) node nt [21]. The edges e in this graph connect each node with
the source, target, and its N4 neighbours (upper, lower, left, right). The individual edge costs
are defined as follows:

edge e edge cost

source link: ns→ n(x,y) −ξmotion(x,y)

target link: n(x,y)→ nt −ξstatic(x,y)

neighbourhood: n(x̂, ŷ)↔ n(x,y) n(x̂, ŷ) ∈N4 β
1

|L(x,y)−L(x̂,ŷ)|+α

where ξstatic is a fixed value (globally equal likelihood of a point to be static), α is a small
value to prevent numerical instability, β is a neighbourhood weighting function, and ξmotion
is a motion likelihood. For these results, ξmotion = ξM from Equation 23. For a more detailed
explanation of the algorithm we refer to [40].

When using ξM for motion likelihood there are three possible ways that we can estimate
the uncertainty. Using Equation 20:

1. Assume that there is no error, i.e., ΣSF = I (identity matrix).
2. Assume a spatially equal variance, i.e., σα = a, where a is a constant.
3. Assume a pixel-wise local variance using uncertainty measures, i.e.,

σd = UD (from Equation 15)
σu = σv = σp = USF (from Equation 16)

Figure 22 shows the difference in energy and segmentation when using the formulations
above. The top image clearly shows that the approach using no error propagation fails. Using
spatially fixed variances gives slightly better results (middle image). The best results are
obtained with pixel-wise local variances estimated using a reasonable uncertainty model.
This clearly shows that pixel-wise uncertainty estimation is very important. The outcome
can probably be improved further by elaborating on the way to estimate the uncertainty. The
rest of the results in this section are using the uncertainty measures in Equations 15 and 16
(assumption 3 above).

In a monocular setting, motion which is aligned with the epipolar lines cannot be de-
tected without prior knowledge about the scene. Amongst other motion patterns, this in-
cludes objects moving parallel to the camera motion. For a camera moving in depth this
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Assumption: no error

Assumption: spatially equal variances

Assumption: pixel-wise local variances from uncertainty measures

Fig. 22 Results for different error propagation methods. The left images show the residual motion likelihoods
and the right images the segmentation results.

PreceedingCar scene

HillSide scene

Fig. 23 The figure shows segmentation of independently moving objects moving parallel to the camera move-
ment. This movement cannot be detected monocularly without additional constraints, such as a planar ground
assumption. Using our motion likelihood generates good segmentation results. Left to right: original image
with segmentation results (pink), the optical flow image, and the energy image (green = low, red = high).
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Bushes scene

Running scene

Fig. 24 The figure shows the energy images and the segmentation results for objects that do not move parallel
to the camera motion. Note, that the also non-rigid independently moving objects are segmented. Colour
coding as in Figure 23.

includes all (directly) preceding objects and (directly) approaching objects. Our scene flow
motion likelihood provides good segmentation results, as seen in the PreceedingCar and
HillSide sequences in Figure 23.

An example of non-rigid motion segmentation is shown in the Running sequence in
Figure 24). This is to highlight the versatility of the scene flow motion likelihood.

6 Conclusions and Outlook

We have presented an efficient methodology to exploit information from both motion and
stereo. We showed that decoupling the disparity estimation from the remainder of the es-
timation process is advantageous as it allows for selecting the most suitable methods for
both tasks. This way, we were able to achieve higher accuracies at a lower computational
cost. Furthermore, we presented a process for removing illumination differences between
images, thus holding the intensity consistency assumption true. Finally, we proposed some
uncertainty measures that worked well with movement segmentation.

Motion and disparity information are currently only rarely exploited for solving com-
puter vision tasks. Research usually focuses on either motion or stereo, and in most cases
neither motion or stereo is used. We believe that motion and stereo provide vital low-level
information that must be taken into account to build reliable vision systems. In particular
in the context of unsupervised techniques, depth and motion boundaries are key to separate
and learn the appearance of independent objects. In this paper we showed some promising
results on the segmentation of independent objects directly from scene flow. There is still
much potential to exploit this information further.
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Resolution Pixels Factor (px) Time [ms] Factor (Time)

320×240 76,800 1.0 48.2428 1.0
640×480 307,200 4.0 150.373 3.12
1280×960 1,228,800 16.0 572.911 11.88

1920×1440 2,764,800 36.0 1304.69 27.04

Left Camera Image Right Camera Image Disparity Image

Fig. 25 The table indicades the real-time applicability of our algorithm if implemented on a modern GPU.
The input images used (on different resolution scales) are shown below the table.

7 Appendix

7.1 Detailed Euler-Lagrange equations

The detailed Euler-Lagrange euqations derived in Section 2.4 result in the following linear
equations:
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− λ div
(

Ψ
′k,l

S ·∇
(
vk +δvk,l+1

))
= 0

(32)

cΨ
′k,l

RF ·
(
Ek

RF +Rk
x
(
δuk,l+1 +δ pk,l+1

)
+Rk

y δvk,l+1
)

Rk
x

+ cΨ
′k,l

DF ·
(
Ek

DF +Rk
x δ pk,l+1

)
Rk

x

− γ div
(

Ψ
′k,l

S ·∇
(

pk +δ pk,l+1
))

= 0
(33)

with

Ψ
′k,l
∗ := Ψ

′
(

E∗
(

uk +δuk,l ,vk +δvk,l , pk +δ pk,l
))

(34)

Some terms from the original Euler-Lagrange equations have vanished due to the use of
R(x +d,y, t) = L(x,y, t) from the linearised disparity flow constraint (Eq. 4). After discreti-
sation, the corresponding linear system is solved via successive over-relaxation (SOR) [45].
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Fig. 26 Break down of computational time for our algorithm (3.0GHz Intel R©CoreTM2 and
NVidia R©GeForce GTX 480) on 640×480 px images.

7.2 Implementation of Scene Flow

The scene flow algorithm was implemented in C++, obtaining a speed of 5 Hz on a 3.0GHz
Intel R©CoreTM2 CPU for QVGA images of 320×240 pixels. The implementation in CUDA
for the GPU (NVidia R©GeForce GTX 480) allows for a frame rate of 20 Hz as indicated in
Figure 25. The settings for the computational times were 2 outer iterations (warps), 15 inner
iterations, and 3 SOR iterations at each pyramid level. The parameters used are λ = 0.06,
γ = 0.6, and ω = 1.99 for the over-relaxation. Since we are interested in real-time estimates,
we use only 4 levels in the pyramid, with a down-sampling rate of 0.5, i.e., each image
is half the dimensions in both the x and y directions so |Ω | is cut down by 75% at each
level. Although the energy on a smaller pyramid level is not exactly the same, it is a close
approximation of the energy on the higher resolved images.

Figure 26 shows the break down of the computational time for our scene flow algorithm.
Note, that the CPU processing includes memory management and the computation of the
image pyramids, which offers some potential for optimization. The overview in pseudo-code
for implementing the scene flow algorithm is shown in Algorithm 1. It calls subroutines
described in Algorithms 2 to 5.

1: for all levels do
2: for all outer iterations do
3: Compute Structure (Algorithm 2)
4: Compute Diffusivity (Algorithm 3)
5: utmp = u
6: vtmp = v
7: ptmp = p
8: for all inner iterations do
9: Build Equation System (Algorithm 4)

10: for all SOR iterations do
11: SOR Step (Algorithm 5)
12: end for
13: end for
14: Warp L(x,y, t) and R(x+d,y, t) using u,v and p.
15: end for
16: Warp u,v and p to upper level (double size and interpolate).
17: end for

Algorithm 1: Scene Flow Pseudo-Code
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Algorithm 2 computes the spatial and temporal derivatives of the warped input images
for the energy equations. The spatial derivatives are the average of the two contributing
images. ∇ is computed using central differences and any reference outside Ω is clamped to
the boundary (reflecting boundary conditions for the central difference operator).

The second algorithm within the outer loops, Algorithm 3, computes the diffusivities of
the three-dimensional scene flow field. It consists of a combination of forward differences
and central differences as proposed by Brox in [5]. All values outside Ω are clamped to the
boundary (reflecting boundary conditions for the central difference operator).

Note, that this is computed once per warp before the current scene flow variables (u,v, p)
are copied into temporal variables (utmp,vtmp, ptmp) to solve for the updates (δu,δv,δ p).

1: for all pixels do
2:

[
Lx Ly

]> = 1
2 (∇L(x+u,y+ v, t +1)+∇L(x,y, t))

3: Lt = L(x+u,y+ v, t +1)−L(x,y, t)
4: if Disparity d known then
5:

[
Rx Ry

]> = 1
2 (∇R(x+u+d + p,y+ v, t +1)+∇R(x+d,y, t))

6: Rt = R(x+u+d + p,y+ v, t +1)−R(x+d,y, t)

7: Dx = 1
2

(
∂

∂x R(x+u+d + p,y+ v, t +1)+ ∂

∂x L(x+u,y+ v, t +1)
)

8: Dt = R(x+u+d + p,y+ v, t +1)−L(x+u,y+ v, t +1)
9: else

10:
[

Rx Ry
]> = 0

11: Dx = 0
12: end if
13: end for

Algorithm 2: Compute Structure

1: for all pixels do
2: for all α ∈ {u,v, p} do
3: Rα,north = (α(x,y)−α(x,y-1))2 + 1

16 (α(x+1,y)−α(x-1,y)+α(x+1,y-1)−α(x-1,y-1))2

4: Rα,east = (α(x,y)−α(x-1,y))2 + 1
16 (α(x,y+1)−α(x,y-1)+α(x-1,y+1)−α(x-1,y-1))2

5: Rα,south = (α(x,y+1)−α(x,y))2 + 1
16 (α(x+1,y+1)−α(x-1,y+1)+α(x+1,y)−α(x-1,y))2

6: Rα,west = (α(x+1,y)−α(x,y))2 + 1
16 (α(x+1,y+1)−α(x+1,y-1)+α(x,y+1)−α(x,y-1))2

7: end for
8: for all dir ∈ {north,east,south,west} do
9: Rdir = λ√

Ru,dir+Rv,dir+
λ2
γ2 Rp,dir

10: end for
11: end for

Algorithm 3: Compute Diffusivity

However, instead of solving for the update and updating the original flow variables, the
temporary variables are used inside Algorithm 4 to directly solve for the resulting flow field.
Note instances of utmp−u, where the delta-updates are actually needed. We found that this
trick speeds up the implementation of the flow field considerably.

Last, Algorithm 5 executes the inner iterations of the successive over-relaxation. On the
GPU, this is implemented using the over-relaxed red-black Gauss-Seidel approach; see [33].
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1: for all pixels do
2: ELF = Lt +(utmp−u)Lx +(vtmp− v)Ly

3: Ψ ′LF = 1√
E2

LF +ε2

4: ERF = Rt +(utmp + ptmp−u− p)Rx +(vtmp− v)Ry

5: Ψ ′RF = 1√
E2

RF +ε2

6: EDF = Dt +(ptmp− p)Dx

7: Ψ ′DF = 1√
E2

DF +ε2

8: Auu = Ψ ′LF LxLx +Ψ ′RF RxRx
9: Auv = Ψ ′LF LxLy +Ψ ′RF RxRy

10: Avv = Ψ ′LF LyLy +Ψ ′RF RyRy
11: Aup = Ψ ′RF RxRx
12: Avp = Ψ ′RF RxRy
13: App = Ψ ′RF RxRx +Ψ ′DF DxDx
14: bu = Ψ ′LF Lx

(
Lt +utmpLx + vtmpLy

)
+Ψ ′RF Rx

(
Rt +(utmp + ptmp)Rx + vtmpRy

)
15: bv = Ψ ′LF Ly

(
Lt +utmpLx + vtmpLy

)
+Ψ ′RF Ry

(
Rt +(utmp + ptmp)Rx + vtmpRy

)
16: bp = Ψ ′RF Rx

(
Rt +(utmp + ptmp)Rx + vtmpRy

)
+Ψ ′DF Dx

(
Dt + ptmpDx

)
17: end for

Algorithm 4: Build Equation System

1: for all pixels do
2: Rsum = Rnorth +Rsouth +Rwest +Reast + ε2

3: uR = Rnorthu(x,y-1)+Rsouthu(x,y+1)+Rwestu(x-1,y)+Reastu(x+1,y)
4: u(x,y) = (1−ω)u(x,y)+ ω

Auu+Rsum
(uR−bu−Auvv(x,y)−Aup p(x,y))

5: vR = Rnorthv(x,y-1)+Rsouthv(x,y+1)+Rwestv(x-1,y)+Reastv(x+1,y)
6: v(x,y) = (1−ω)v(x,y)+ ω

Avv+Rsum
(uR−bu−Auvu(x,y)−Avp p(x,y))

7: pR = Rnorth p(x,y-1)+Rsouth p(x,y+1)+Rwest p(x-1,y)+Reast p(x+1,y)
8: p(x,y) = (1−ω)p(x,y)+ ω

App+Rsum
(uR−bu−Aupu(x,y)−Avpv(x,y))

9: end for
Algorithm 5: SOR Step
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