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B-Spline Modeling of Road Surfaces with an
Application to Free Space Estimation

Andreas Wedel, Hernán Badino, Clemens Rabe, Heidi Loose, Uwe Franke, and Daniel Cremers

Abstract—We propose a general technique to model the visible
road surface in front of a vehicle. The common assumption of
a planar road surface is often violated in reality. A workaround
proposed in literature is the use of a piecewise linear or quadratic
function to approximate the road surface. Our approach is based
on representing the road surface as a general parametric B-spline
curve. The surface parameters are tracked over time using a
Kalman filter.

The surface parameters are estimated from stereo measure-
ments in the free space. To this end, we adopt a lately pro-
posed road-obstacle segmentation algorithm to include disparity
measurements and the B-spline road surface representation.
Experimental results in planar and undulating terrain verify the
increase in free space availability and accuracy using a flexible
B-spline for road surface modeling.

Index Terms—Road surface, v-disparity, B-spline, free space.

I. INTRODUCTION

MODELING a vehicle’s environment is challenging but
absolutely essential to maneuver autonomous vehicles.

It includes the localization of moving objects as well as the
modeling of the stationary infrastructure. In an ideal world,
all the necessary information is available on demand from
an omniscient oracle. In reality, only a small portion of the
information is available on demand by making use of a
database. This may include the location of traffic signs, the
information about road curvature, or even a three dimensional
model of the complete infrastructure.

In most environments with other traffic participants, such
information has to be generated online using environment per-
ception techniques. The ideal environment perception sensor
generates a three dimensional model of the vehicle environ-
ment. In this paper we use rectified stereo camera images and
focus on modeling the free space in front of the vehicle. The
free space is the available space to maneuver a road vehicle
so as to avoid collision with any object. It is described by the
ground surface and is limited by other obstacles.

But what defines an obstacle? In general, obstacle refers to
something that stands in the way. In vehicle environments it
refers to a structure that blocks the path by sticking out of the
ground surface. Common obstacle detection algorithms detect
obstacles by evaluating the height above ground, where the
ground is modeled as a planar surface. In situations such as
shown in Fig. 1, the assumption of a planar ground surface is
violated and such procedure fails.
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Fig. 1. The images illustrate the contributions in this paper. An example
of a scene with undulating terrain in a city environment is shown. The road
course ahead is planar in the vehicle vicinity; then it drops down before it
starts rising. Color encodes the relative height of obstacles for the free space
and the distance for the disparities. A planar ground assumption (top image)
is invalid in the depicted scene and yields errors in the free space estimation.
The better vertical road approximation using the flexible spline representation
and the correct free space estimation is demonstrated in the lower images.

A robust free space estimation approach requires to model
the road surface in order to distinguish between obstacles and
a free driving corridor. Assuming a planar road surface, slope
changes in the road course ahead due to approaching a hill or
a dip are not modeled and can not be used to restrict the free
space. In this paper we develop an algorithm to model non-
planar road surfaces, which we represent as B-splines. The
approximation via B-spline techniques, widely used in surface
modeling, yields accurate results for the vertical road profile
even in large distances up to 100 m. Section II introduces
B-splines and describes the estimation of the spline parameters
from stereo disparity measurements. We describe how to track
the spline parameters over time using a Kalman filter to
improve accuracy and gain robustness in Section III.
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In Section IV, we adopt a lately published free space
approach to use the obtained B-spline representation of the
road surface. The original algorithm uses image edges to
calculate a boundary between road and obstacle. In this paper,
we extend this algorithm to use the disparity values of a stereo
method as a second driving force for free space estimation.
We fuse both approaches, edge directions and disparities, into
a single framework for free space estimation, yielding better
results in the novel combined approach. An evaluation section
proving accurate free space estimation in situations where the
planar ground estimation fails, demonstrates the practicability
of ground surface modeling via B-splines.

II. ROAD SURFACE MODELING WITH B-SPLINES

In this section we acquire the modeling of the road surface
on the basis of B-splines. We first replicate the common
v-disparity approach for modelling planar road surfaces and
give an overview of existing approaches to extend this ap-
proach towards modelling non-planar surfaces. We will then
discuss, how a subset of these approaches can be modeled
using B-splines, which are more general. The embedding into
a Kalman filter framework is discussed in Section III.

A. Review of the v-disparity approach
The v-disparity approach was first introduced as Helmholtz

shear in [1], [2]. Under the assumption of a planar road
without bank angle, the key idea is to fit a plane through
3D measurements obtained by triangulating corresponding
image points in the left and right camera images. An image
point (u, v) in the left image corresponds to an image point
(u− d, v) in the right image. The disparity offset d is zero at
the horizon and increases linearly in v yielding d(v) = a·v+b.
v is the image row and a, b are parameters which depend
on camera height and tilt angle. A linear fit is computed
in the image space using the Hough transform on a row-
disparity image, commonly known as v-disparity space (see
Fig. 2). Labayrade et. al were the first to introduce the name
v-disparity approach and proposed a real-time accumulation
strategy in [3].

We will review the idea of this robust v-disparity ap-
proach (from [3]) in the simple case of fixed camera
height h. Each point on the ground plane is then described
by Y (Z) = tanα · Z − h with the camera tilt angle α, and
the height Y and distance Z of world points, in the world
coordinate system. Using the projection formulas for the
pinhole camera and solving for the tilt angle α, we get

tanα =
h

cbfx
· d+

1
fy

(cy − v) (1)

for each v-disparity point (v, d). Here fx, fy are the focal
lengths in pixel, cb is the base line of the stereo camera system
and cy is the y-coordinate of the principal point in the image.

For a robust estimate of the tilt angle from a set of
v-disparity points, the histogram of the tanα values calculated
by Equation (1) is analyzed and the tilt angle is found as the
maximum in the histogram. In addition, the variance and the
number of v-disparity points supporting the found tilt angle is
used as a quality measure.

Fig. 2. v-disparity space of measurements on the road course ahead. The
linear dependency between disparity and image row for the planar part of the
road is visible. The plot also shows that the resolution of the v-disparity space
(both v and d resolution) decreases with increasing distance.

B. Extending the v-disparity approach

In the literature on intelligent vehicles, some approaches
have been proposed to yield an approximation of non-planar
road surfaces. We will describe the basic ideas of these
approaches and point out their differences exemplary using
an artificial ramp in the road course ahead (shown in gray).
The camera is assumed on the left and measurements to be
noise-free. The hatched regions show the approximation error
for the different methods. As the focus is set on vertical road
modeling, approaches which model the lateral surface change
(such as [4], [5]) are excluded from this review.

The Helmholtz shear approach as described in [2] approx-
imates the ground as a planar surface. It uses the Hough
transform to fit a planar surface (green) in the disparity space
yielding accurate approximation if the planar vehicle vicinity
but failing if the surface is rising or falling:

The envelope of surfaces approach described in [3] com-
putes the k main v-disparity surfaces in the region, where k has
to be chosen (3 in the example, shown in red). The resulting
surface (green) is represented as inner or outer envelope
(depending on the slope direction of the road). Surfaces are
modeled as piecewise planar; hence slope changes are abrupt
and not continuous. The approach incorporates the robust
Hough transform techniques for the main surfaces but allows
only for slope changes in one direction:

A quadratic approximation of the ground surface is pro-
posed in [6]. It allows only slope changes in one direction and
is not as stable in the vehicle vicinity as a Hough transform
based approach. Using a B-spline of order two with one
segment would yield the same result:
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In [7] the authors propose a clothoid approximation of the
ground surface. A clothoid is a higher order polynomial of
degree three (cubic) widely used for lane recognition in the
computer vision community. In their implementation however,
the cubic parametrization is not evaluated. The authors use
a Hough transform for the vehicle vicinity and a quadratic
fit in large distances, yielding a better approximation than a
quadratic fit in total:

Using a B-spline of order two with two segments, where the
first segment is constrained by camera height and pitch would
yield similar results.

Due to it’s restricted parametrization all above mentioned
techniques can only model slope changes into one direction;
hence these approaches may fail to approximate the road
surface if the road is undulating. The last example shows
a surface approximation using a B-spline curve with three
segments. Note the piecewise definition of the spline, shown
in light and dark color and the good approximation of the
surface ramp:

An example of undulating terrain in a real sequence with
a B-spline surface reconstruction can be seen in Fig. 15. As
we are interested in modeling the road course ahead (in large
distances), fitting the approximated ground surface into the
disparities, as done in the original a v-disparity approach,
is not necessarily the best solution. If the modeling is done
in image space, resolution decreases with increasing distance
(illustrated in Fig. 2). To overcome this effect, we propose to
fit measurements in world coordinates instead of image space
to get a well defined depth resolution. The drawback of such
an approach is that one has to account for the non-linear error
propagation of the (noisy) disparity measurements.

In the next subsection we will review B-splines as a function
vector space which embeds all polynomials, amongst them the
piecewise linear and clothoid functions. Hence, our approach is
a generalization of known surface approximations in literature
and bridges the gap between these different approaches.

C. B-splines
B-splines are a basis for the vector space of piecewise

polynomials of degree γ [8]. A B-spline curve B(Z) of degree
γ is defined by a n+ 1 dimensional coefficient vector c:

B(Z) =
n∑
i=0

ciNi,d(Z) = Nγ(Z)>c (2)

with Nγ(Z) =
[
N0,γ(Z) . . . Nn,γ(Z)

]>
.

and c =
[
c0 . . . cn

]>
.

Fig. 3. Basis functions for an equidistant node vector. The linear basis
functions are plotted in green, quadratic basis functions in blue.

Fig. 4. The figure shows a surface fit through measurements with additive
Gaussian noise (red) using piecewise linear splines (green) and piecewise
quadratic splines (blue).

The polynomial basis functions Nγ(Z) = {Ni,γ(Z)}i with
local support are described by

Ni,j(Z) =
Z − Ti
Ti+j − Ti

Ni,j−1(Z)+
Ti+j+1 − Z
Ti+j+1 − Ti+1

Ni+1,j−1(Z)

with Ni,0(Z) =

{
1 Ti ≤ Z < Ti+1

0 otherwise .

The number of nodes n defines the number of piecewise
intervals where 1 ≤ γ ≤ n. We use a node vector

T = {T0, . . . , Tn+d+1},

where the Ti denote distances in world coordinates and are in
ascending order. Note that the following conditions have to be
fulfilled:

T0 = T1 = · · · = Tγ , Tγ < Tγ+1 < · · · < Tn ,

and Tn = Tn+1 = · · · = Tn+γ+1 .

Fig. 3 shows the basis functions N1(Z) for piecewise linear
splines and N2(Z) for piecewise quadratic splines.

To get the same parametrization as in the original v-disparity
approach, d and n must both be set to 1. Note that only
the parametrization is equivalent; the estimation technique via
Hough transform is different to the least square approach we
describe in the following. The quadratic and cubic ground
surface approximation techniques are represented by setting
γ = 2, 3 respectively.

In our implementation, we use equidistant nodes within the
observed distance interval and cubic splines. Further details
on B-spline construction and evaluation can be found in [8].

Fig. 4 shows a surface fit with linear and quadratic splines
using the same node vector. Note the better approximation
with quadratic splines.
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If a fixed node vector is used, the basis functions remain
constant and the spline function is altered only by the coeffi-
cient vector c. This yields the common name control vector
for the vector of spline coefficients. Due to the fact that the
basis functions for the B-spline fit do not change, they can be
calculated in a precomputing step yielding real time efficiency
for the surface approximation via B-splines.

For the road course ahead, the B-spline B(Z) encodes the
relative height of the ground surface. If we are given M
independent measurements

{distance, height}Mm=0 = {Zm, Ym}Mm=0

and associated standard deviations σm (see [6] for the stereo
triangulation error propagation), the goal is to find an optimal
control vector c∗ such that B(Z) best fits to the measurements.
The goodness of the fit can be expressed by a cost function
evaluating the sum of deviations from the measurements:

c∗ = min
c

{∑
m

1
σ2
m

(B(Zm)− Ym)2
}

. (3)

This boils down to finding the coefficient vector c∗ which
minimizes the weighted sum:

c∗ = min
c

{∑
m

1
σ2
m

(
Nγ(Zm)>c− Ym

)2}
(4)

⇔ c∗ = min
c




1
σ2
0
Nγ(Z0)>

...
1
σ2

M

Nγ(ZM )>


︸ ︷︷ ︸

A

c−


Y0

...
YM


︸ ︷︷ ︸

h


(5)

and yields the familiar form of the least-squares problem

A>Ac∗ = A>h . (6)

Equation (6) can be solved either directly by matrix inversion
or iteratively using any matrix-vector solver. Due to the
embedding in a Kalman filter framework, these equations
are fed as measurements to the Kalman Filter and are not
directly solved. The state vector of the Kalman filter is the
coefficient vector c. Each row of {Ac− h} is a Kalman filter
measurement equation.

D. Camera Parameters
Until now the outer orientation of the camera is assumed to

remain unchanged, therefore only changes in surface topology
are accounted for. In vehicle applications, because of vehicle
motion, one has to model for changes in the camera pitch angle
α and for an offset in the camera height Hoff. To account for
these parameters, the surface equation is extended by these
two parameters:

Height(Z) = cos(α)Nγ(Z)>c + sin(α)Z +Hoff . (7)

Recall, that distance Z and height are given in the world
coordinate system of the moving observer. Because the camera
height and the camera pitch angle could be modeled by trans-
lating and rotating the ground surface, additional boundary

Fig. 5. The figure shows the camera parameters pitch angle α and height
offset Hoff. The touch and gradient constraints imposed on the B-spline can
be seen as boundary conditions ensuring that the spline surface has height 0
and no slope at the camera foot print.

conditions have to be imposed. For moving platforms, these
boundary conditions are straight-forward: The vehicle has to
touch the ground surface and the surface gradient where the
vehicle touches the ground has to vanish. Mathematically this
can be formulated as:

Touch constraint: B(0) = 0 (8)
Gradient constraint: B′(0) = 0 . (9)

We include both equations in the Kalman filter framework as
measurements {mt = B(Z0) − 0} and {mg = B′(Z0)− 0}.
Because the B-spline equation is linear in the coefficient
vector c, the measurement equation mt for the Kalman filter
is a linear measurement equation. The same linearity of the
coefficients is true for the derivative measurement mg; the
derivative of a B-spline B′(Z) computes as

B′(Z) =
n∑
i=0

ciN
′
i,d(Z)

with (see [8])

N ′i,d(Z) =
d

Zi+d − Zi
Ni,d−1(Z)− (10)

d

Zi+d+1 − Zi+1
Ni+1,d−1(Z) .

E. Surface Smoothness
For measurements corrupted by noise, a best fitted curve

approximation is not necessarily the best continuous approxi-
mation. Two problems may arise: the number of measurements
is too small to estimate all parameters and / or outliers may
influence the result. One way to solve for such problems
is prior knowledge in terms of smoothness. The curvature
and the inclination of road surfaces are usually small. This
knowledge can be introduced by penalizing high curvature
and derivatives of the resulting B-spline. Since integration
and differentiation are linear operators on the vector space
of B-splines (compare Equation (10)), this can be formulated
by additionally penalizing the quantities∫

(B′(Z))2 =
∫ (

N′γ(Z)>c
)> (

N′γ(Z)>c
)

(11)

and ∫
(B′′(Z))2 =

∫ (
N′′γ(Z)>c

)> (
N′′γ(Z)>c

)
. (12)
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The integrals over the basis functions are computed efficiently
using Gaussian quadrature. This step is computed offline
because the basis functions remain constant.

The Gaussian quadrature with ng being the number of
(control) weights is exact for polynomials with degree 2ng−1.
For ng = 2 the corresponding weights become ω1,2 = 1 at

position x1 = −
√

1
3 and x2 =

√
1
3 and the approximation is

exact for polynomials of degree ≤ 3. The Gaussian quadrature
is defined on the interval [a, b] as∫ b

a

f(x) dx ≈ b− a
2

ng∑
i=1

ωif

(
b− a

2
xi +

a+ b

2

)
. (13)

For computing the smoothness constraints in (11) and (12)
the function f(x) becomes the multiplication of two basis
functions,

f(x) = N ′i,d(x)N ′j,d(x) and f(x) = N ′′i,d(x)N ′′j,d(x) .

Because each of the first derivative basis function has degree
d−1, the Gaussian quadrature for the integral of derivatives is
exact for B-splines of degree d = ng . The Gaussian quadrature
for the integral of the second derivatives is exact for B-splines
of degree d = 2ng . Note that the local support of the basis
polynomials can be used to gain real time processing.

III. ROAD SURFACE KALMAN FILTER

Since we work on image sequences, we impose regularity
over time by applying a Kalman filter. This section describes
the filter steps for the surface fit based on B-splines. Measure-
ment equations for 3D world points are derived. A Kalman
update is formulated and the Kalman prediction step is derived
for the B-spline coefficients assuming a moving platform. For
an introduction on Kalman filters we refer to [9].

The Kalman filter state vector x consists of the current
parameter vector c describing the road profile, the camera pitch
angle α and the camera height offset Hoff

x =
[

c α Hoff
]>

. (14)

This includes the physical actual movement of the vehicle
in terms of height and pitch angle change and also implies
optimization of the road surface in the coefficient space. In
practice this is still acceptable because a one-to-one mapping
from the coefficient space into world coordinates (height and
distance) exists.

A. Kalman Update Step
Given an initial estimate x′ = [c′, α′, H ′off]

>, the goal is to
derive an equation for the update ∆x = [∆c,∆α,∆Hoff]

>

to get a better (updated) solution

x∗ = x′ + ∆x = [c∗, α∗, H∗off]
> .

Recall that B-splines form a function vector space and are
linear in their coefficients. Assuming a small pitch angle we
can set cos(α) ≈ 1 and sin(α) ≈ α and get:

Nγ(Z0)> Z0 1
...

Nγ(ZM )> ZM 1


>  c′ + ∆c

α′ + ∆α
H ′off + ∆Hoff

 =


Y0

...
YM

 .

The standard deviations for the single measurements are calcu-
lated via error propagation from stereo triangulation [10]. We
assume a disparity standard deviation of 0.4 px. Our cameras
used in the experiments have a base line of 35 cm and a focal
length of 840 px.

The touch and gradient constraint boundary conditions in
Equations (8) and (9) need to be formulated as measurements
for the Kalman filter. This is done by introducing the deviation
from zero for the B-spline and its derivative as additional
measurements:[

Nγ(0)>

N′γ(0)>

]
︸ ︷︷ ︸

PC

[c′ + ∆c] =

[
0
0

]
. (15)

We choose the standard deviations for these measurements
in the order of 10−5, allowing only small deviations to the
constraints.

The smoothness constraints in Equations (11) and (12) are
quadratic in the coefficients c. We linearize the equations
around the given estimate c′ to solve for the update. Hence,
we used lagged feedback for the smoothness constraints:[

c′>
∫

N
′
γ(Z)N

′
γ(Z)> dZ

c′>
∫

N
′′
γ(Z)N

′′
γ(Z)> dZ

]
︸ ︷︷ ︸

PS

[c′ + ∆c] =

[
0
0

]
. (16)

The summarized Kalman filter update equations for the
measurement equations, the constraints and the smoothness
equations read

Nγ(Z0)> Z0 1
...

Nγ(ZM )> ZM 1
PC 0 0

PS 0 0


 c′ + ∆c

α′ + ∆α
H ′off + ∆Hoff

 =



Y0

...
YM

0

0


.

Both matrices, PC and PS can be precomputed for a
fixed node vector to save online computation time. Most of
the measurement equations can also be precomputed using a
simple trick (at the cost of some negligible inaccuracies): for
each measurement equation, the basis functions Nγ need to
be evaluated at the given distance Zm. In our experiments we
sum up all measurements within discrete equidistant distance
intervals

{IZi , IZi+1} with Zi+1 = Zi + ∆Z.

The basis functions can be precomputed for the middle point
of every discrete interval and the corresponding row of the
Kalman filter update equations is multiplied with the square
root of the number of measurements per interval (because the
solution is computed via least squares). For the sum of vari-
ances we use error propagation to weight the measurements
of the Kalman filter with the correct variances [10].
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B. Kalman Prediction Step
The Kalman filter prediction step models the dynamics of

the system. For a moving vehicle, translation and rotation of
the vehicle has to be modeled.

We model the road surface in the coordinate system of a
moving observer. The node vector is kept fix in predefined
distances. Keeping the node vector fix, old B-spline coeffi-
cients c′ have to be projected onto the current coefficients c.
Minimizing the quadratic difference between last and current
surface parametrization under the translation T yields

min
c

∫ (
Nγ(Z)>c−Nγ(Z + T )>c′

)2
dZ . (17)

This can be directly formulated into∫
Nγ(Z) dZ

∫
Nγ(Z)> dZ c = (18)∫

Nγ(Z) dZ
∫

Nγ(Z + T )> dZ c′ . (19)

Again, the integrals can be computed using Gaussian quadra-
ture. The Kalman filter hence acts as a low-pass filter on the
coefficients. As the ground is assumed to be static, we set a
low variance to the state coefficients and increase the variance
with increasing distance.

Instead of projecting onto a static node vector, one can also
shift the node vector with the ground plane. Then however,
one has to deal with inserting new nodes and removing nodes
at the endpoints.

Prior knowledge about change in camera pitch and camera
height is also modeled in the prediction step. Such knowledge
can either be estimated using ego-motion or applying the
robust v-disparity approach in the vehicle vicinity. In our
experiments we use the second approach and estimate the
camera height and the camera pitch angle in the vehicle
vicinity using the v-disparity approach. We update the state
vector with the calculated height and tilt angle and allow only
low variance as we assume these parameters to be accurate in
the vehicle vicinity (up to 15 m).

IV. FREE SPACE COMPUTATION

In this section we describe our approach to compute the
free space in front of a vehicle. The computation of the free
space computation has two main goals:
• Find the distances to the closest objects.
• Find the road surface segmentation.

While finding the distance to objects aims at navigating the car
or triggering safety systems, the second objective is probably
of the same importance. It is crucial for the road surface
estimation task described in the first part of this paper. The
reason for this is, that measurements on vehicles and other
objects in crowded scenarios influence the B-spline curve
and the resulting curve estimation may become unstable in
such scenarios. Therefore, only 3D measurements in the free
space are used for the spline estimation, neglecting all stereo
measurements on objects.

First, we present a literature overview describing different
approaches to free space computation and motivate our choice

of free space computation in Section IV-A. We describe the
ideas presented in [11], which our algorithm is based on, in
more detail in Section IV-B. Simultaneously, we describe how
the non-planar road surface representation can be used for
the free space computation and subsequently focus on our
proposed changes and extensions.

A. Review of Free Space Algorithms
The computation of free space is an important issue in the

autonomous robot domain. The motion planning problem im-
plies the autonomous displacement of a robot from one place
to another while avoiding collisions with obstacles on its way.
For this purpose, occupancy grids are built [12] and the free
space is obtained analyzing the occupancy likelihood of the
grid cells (e.g. [13]). The literature on robot motion planning
and occupancy grids is quite extensive and an overview of the
state-of-the-art is given in [14].

Occupancy grids are also used in the automotive environ-
ment. The main difference is that robots usually maintain a
global grid, while vehicles only build a local grid from the
current ego-position. In [15] stereo measurement are used to
build an occupancy grid. Free space is obtained applying a
threshold to the occupancy likelihood of the cells.

In [16] free space is computed independently of evidence
grids by applying inverse perspective mapping.

In [17] stochastic occupancy grids are computed based on
stereo information. Stereo is integrated over time in order
to reduce the disparity uncertainty and improve the accuracy
of the occupancy grids. Free space is obtained by applying
dynamic programming to a polar-like representation of the
occupancy grid.

The algorithm presented in [11] computes a globally optimal
solution to the road/obstacle boundary. The authors proposed
an energy combining measurements on objects as well as
measurements on the road surface. The maximum of this
energy is found by dynamic programming. To our knowledge,
this is the first time that measurements on the road surface in
the free space directly contribute to the road/obstacle boundary
estimation. We use the basic idea of this approach and extend
it to use a B-spline representation of the road surface instead
of the planar ground assumption. We also show how to
integrate direct disparity measurements next to edge directions
as originally proposed in [11].

B. Free Space using Dynamic Programming
The basic procedure to find the road-obstacle (free space)

boundary via dynamic programming (see [11], [17]) is as
follows:

1) Estimate the road surface orientation parameters.
2) Calculate a disparities matching score.
3) Find a consistent road-obstacles boundary.

In our case, the road surface orientation parameters are given
by the B-spline B(Z), where Z encodes distance and B(Z)
encodes the height of the road surface in the coordinate system
of the moving observer. In order to distinguish between image
pixels on the road surface and pixels on obstacles, the expected
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Fig. 6. Example of free space segmentation on planar ground. The gray
value encodes disparity (white = near, black = far), the free space border is
shown in yellow. The linear dependency (v-disparity) between disparity d and
column v for the ground plane is depicted by the white triangle at the left.

disparity of the road surface for an image pixel has to be
known. Under the common assumption of no road bank angle,
the disparity of the road surface for an image row v is constant
and depends on the relative height of the surface. We denote
the disparity of the road surface for an image row v by d(v):

d(v) = disparity of mapped road at image row v . (20)

This equation is linear if and only if the ground plane is planar,
yielding the v-disparity equation.

The first goal of a free space algorithm is to find the distance
to the bounding obstacles. In image space this results in finding
the disparity value d of the obstacles which bound the free
space. The disparity of the obstacle becomes the same as the
disparity value of the road surface in the image row, where the
foot print of an obstacle touches the ground surface. A free
space algorithm needs to know in which image row obstacles
of disparity d touch the ground plane. We denote this image
row v(d):

v(d) =
v-coordinate of the foot print
of objects with disparity d .

(21)

The free space can now be described by its boundary
v(d, u), respectively the distance Z(u) or the disparity d(u)
of bounding obstacles, for every image column u (see Fig. 6).

But how is the correct free space boundary found? The key
idea is to inspect every individual image column u (see Fig. 6
for an example). A matching score is obtained, summing up
a score which evaluates the likelihood of pixels belonging to
the road surface from the bottom of the image up to the free
space boundary v(d, u). A second matching score evaluates
the fit of pixels belonging to objects with disparity d from the
free space boundary in the image on upwards. The total score
for an image row u and an an obstacle at disparity d becomes:

SCORE(u, d) = ROAD(u, d) + OBJECT(u, d) . (22)

The best boundary match is given as the maximal score:

v(d, u) = max
d
{SCORE(u, d)}

If the maximal score for every image column is calculated
independently (winner takes all strategy), the results will be
noisy (differ from column to column). This is mainly due
to low texture and low information content in some image

Fig. 7. Shadowed area, seen only by one camera. The upper draft shows
distance encoded in world coordinates (X axis versus Z axis). The lower
draft shows the same top view with distances encoded in disparities (X versus
image disparity).

regions. Another reason is stereo occlusion, shown in Fig. 7:
obstacle one is visible in both, the left and the right camera;
parts of obstacle two are only visible in the left camera and
occluded by obstacle one in the right camera. A disparity
measurement for this region is not possible. Hence, for the
image columns within the occluded region, the free space
boundary will be undefined.

This is where the idea of dynamic programming comes
in [11], [17]: deviations in the results between neighboring
image columns are penalized in order to reduce the influence
of outliers and to smooth the resulting free space boundary.

Fig. 7 also illustrates, why disparities are used instead of
world distances to describe the free space boundary. If world
distances were used, the shape of the shadowed area depends
on object distances and camera setting. If on the other hand,
distance is encoded in disparities, the incline has always an
angle of 45◦ (change in u : change in d = 1 : 1). Hence,
penalizing disparity differences is preferred over penalizing
world distances due to the simple handling of shadowed
regions and the direct inaccuracy treatment.

Algorithms which introduce smoothness in a global opti-
mum manner via dynamic programming make use of a d-u
(disparity-column) matching score table (see Fig. 10 in the
results section). It has the dimensions image width by disparity
range and encodes for every image column u and disparity
d the likelihood that d is the disparity of the road-obstacle
boundary v(d). For details on finding the optimal boundary
given the d-u table we refer to [11] or [17].

We will now describe two matching scores, image edges
and disparity values, to construct a d-u table. We will discuss
the advantages and disadvantages of both matching scores
and combine both scores by adding the table entries for both
approaches. The better accuracy in free space computation
using the combined approach is verified in the experiments.
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Fig. 8. The figure describes the idea of plane sweep stereo. The right image is translated according to a given disparity value and the consistency of gray
values in the left image and the translated right image corresponds to the likelihood of a stereo match. In the figure, the superposition of the right and left
image for different disparity values results in sharp structures in the background (for small disparities), mid plane, or foreground (for large disparities).

C. Image Based Matching Score proposed in [11]
In [11] a direct image based disparity score is proposed to

find the free space boundary using stereo vision. It is based
on the plane sweep idea [18]: for every disparity value d the
pixel (u, v) in the left image is compared with the pixel (u+
d, v) in the right image. This corresponds to shifting the right
image over the left image, or equivalent, projecting the left and
right images onto a plane which is swept along the Z-axis of
the camera coordinate system. The principle is illustrated in
Fig. 8 using plain gray values. Only obstacles with the correct
disparity value are in focus and the gray values in the right and
left images coincide. All other regions of the image seem to be
out of focus. [18] took this principle and applied an edge filter
on the input images to provide a geometric reconstruction of
the scene.

The same idea of matching image edges is adopted by [11]
to construct the d-u table. Let EL,R(u, v) be the edge direction
in the left and right image respectively at image position (u, v).
The image based disparity score is then computed as

ROAD(u, d) =
vmax∑
v=v(d)

w (EL (u, v)− ER (u, v + d (v))) (23)

OBJECT(u, d) =
v(d)∑

v=vmin

w (EL (u, v)− ER (u, v + d)) (24)

with w(arg) = 1 if |arg| < threshold and 0 otherwise. vmin
and vmax are the upper and lower bound of the region of
interest in the images. The threshold for computing w is set
to an angle of 10 degrees. A too large threshold yields an
oversmooth free space boundary while a too small threshold
does not accumulate enough edges. Equation (23) counts the
number of matched edge directions on the road between the
obstacle and the camera. Considering the homography of the
road surface between the left and right images improves the
results (see [19]). Equation (24) on the other hand counts the
number of matches for the image column u on any potential
obstacle with the disparity d.

D. Disparity Based Matching Score
If disparity maps are computed for pixels in the left image

(we use the dense semi-global matching method [20]), the
plane sweep approach can be replaced by direct disparity
measurements. This has the advantage of implicit robustness
because edge directions may be match for more than one
disparity value. Furthermore, this speeds up the calculation of

the disparity score table because no sweep step is necessary
(here we assume, the disparity estimates are already available).
Let (u, v) be an image position and du,v the corresponding
disparity value. The height Y (v, d) and distance Z(d) of the
corresponding world point are computed by stereo triangula-
tion. We define the disparity based score (with w as before
and a threshold of 20 cm and 3 px resp.):

ROAD(u, d) =
vmax∑
v=v(d)

w

Y (v, du,v)− Y (v, d(v))︸ ︷︷ ︸
relative height

 (25)

OBJECT(u, d) =
v(d)∑

v=vmin

w (du,v − d) . (26)

Note that Equation (25) is equivalent to thresholding the height
of measurements. Only measurements on the ground surface
contribute to the ROAD score. In Equation (26) the distance
to possible objects is thresholded. Again, measurements are
summed up in the road area respectively on obstacles where
the boundary is defined by the foot print of obstacles, v(d).

E. Discussion and Combined Approach
The image based approach yields dense measurements and

accurate boundaries. However, measurements may vote for
many different disparity values which may yield instable
results. An edge in the right image matches every edge with
the same direction in the corresponding row of the left image.
Hence, one can be sure that every possible match is found
at the cost of many miss-matches. One way to reduce the
number of miss-matches is a coarse-to-fine approach (see
[11]). Such procedure however implies that one looses the
global optimality of the solution.

The disparity based score relies on the disparity algorithm to
dissolve multiple hypotheses. This implies, that the number of
miss-matches is reduced. But if a false disparity measurement
is present, the correct match is not in the set of disparity
solutions. A disparity score is more robust (in terms that
matches are unique) but less dense (no disparity available at
some pixel positions) than the edge score.

We propose to combine both approaches, the edge based
matching score and the disparity based matching score, by
adding the single scores. This combines the robustness of
the direct disparity measurements and the density of edge
information. Experimental results showing the improved free
space calculation are found in the next section.
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Free space with edge based score. Free space with disparity based score. Free space using the combined approach.

Fig. 9. Comparison of free space computation using the different cost functions described in this paper. The edge based approach has problems in low
contrast areas on the concrete wall. The disparity based approach does not pick up enough measurements at large distances, yielding to smoothing between
the sign posts. The combined approach looks most convincing.

V. EXPERIMENTAL RESULTS.

In our experiments we use stereo cameras with a base line
of 35 cm and a focal length of 840 px. The image resolution is
640× 480 px. Overall computation time (Intel CPU) is below
25 ms, using the hardware version of SGM stereo [20].

Fig. 9 compares the proposed cost functions. The edge
based approach has some problems in low contrast areas of
the image; the high contrast on the coming van for example
influences the free space estimation and the free space is too
large. The disparity based approach has not enough disparity
measurements at large distances which yields to a smoothing
of the free space boundary between objects (the sign posts).
In the combined approach, the result looks most convincing.

In Fig. 10 the free space segmentation for a challenging
scene in rainy conditions is shown. Note, that although only
part of the vehicle on the left is visible the free space is
determined correctly using the combination of edges and
disparities. A smooth path from the left to the right with
a large energy (depicted in gray value) is found in the d-u
score table and describes the free space.

The following experiments evaluate the B-spline modeling
of the road surface. In our experiments we use B-splines with
degree 3 and five control points (equally distributed in the
observed interval). The computational time is below 15 ms
per frame on standard consumer hardware. Note, that for
the ground approximation only the measurements within the
free driving corridor are used. Using all stereo measurements
would result in an unstable estimation. This can be seen in
Fig. 11, where traffic blocks the view onto the road surface
such that a reliable estimate is only possible up to 15 m.

Fig. 12 compares the pitch angle estimation using the
proposed B-spline fit and the original v-disparity approach.
In the scene, the road is mainly planar and we may assume
that the v-disparity approach yields trustful results. The plot
demonstrates similar results obtained by our algorithm when
solving for the road surface parameters and the pitch angle
within one Kalman filter (for the experiment we disabled the
v-disparity prediction in the Kalman filter). It can also be seen,
that the Kalman filter acts as a low-pass filter as long as no
dynamic for the pitch angle is modeled. Experimentally, this
demonstrates that the road surface and vehicle dynamics can
be modeled in a Kalman filter.

Road surface approximations using the B-spline fit are

Fig. 10. The top image shows a typical free space segmentation in a
challenging environment due to the partly visible windshield wiper and bad
illumination in rainy weather. In the d-u table (bottom) brightness depicts the
likelihood of the free space boundary; dynamic programming was used to find
a smooth path from the left to the right with the largest likelihood.

Fig. 11. Due to the free space segmentation (left) the height estimate (right)
is not influenced by the vehicle 16 m ahead. The free space between the
vehicle in front and the truck on the right allows for an B-spline estimate up
to 30m, but reliable height measurements are found only up to 15 m.

Fig. 12. Comparison of the pitch rate (rad/frame) obtained using the
algorithm described in this paper (green) and using the v-disparity approach
(red) on the scene shown at the top. Both plots show only small differences.
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Fig. 13. Examples of the vertical road surface estimation for different scenarios. The proposed approach is able to estimate the height of the road surface
up to 75 m, in uphill and downhill scenarios. The right image shows an Autobahn scene with road surface estimation up to 250 m.

Fig. 14. Comparison of free space calculation using a planar road surface
(top) and a B-spline representation of the road surface (bottom). The improve-
ment compared to the flat ground assumption where the uprising road shows
up as an obstacle becomes visible.

Fig. 15. The plot shows height measurements and variances used in the
Kalman filter estimation of the B-spline road model for the example in Fig. 1.
The camera is at the left. As one would expect, with increasing distance the
measurement variance and the variance of the spline increase.

shown in Fig. 13. In the first two scenes the road surface
is modeled up to 75 m in the Autobahn scene (camera focal
length is 1400 px) up to 250 m. The qualitative experimen-
tal results demonstrate that modeling the road surface with
B-splines is suitable and yields accurate results.

Fig. 14 now shows the result for the combination of B-
spline road modelling and free space estimation. It also shows
the result when modeling the road with a planar surface.
This assumption holds for the close-by environment. Then
the road rises to above one meter within the next 70 meters.

Using a planar ground assumption, the image based free space
computation fails because the assumed displacement of the
road surface beyond 50m has an offset of several pixels; the
disparity based approach fails because the height of the road
surface beyond 50m is above any appropriate height threshold.
Using the B-spline representation of the road surface, the free
space is correctly determined.

An example of measurements and their approximating
spline surface for the example from Fig. 1 can be seen in
Fig. 15. The road profile is estimated correctly and as one
expects, with increasing distance the measurement variance
and the variance of the spline increase. The road course ahead
falls before it rises again. In contrast to Fig. 14, the free space
is estimated too large if the ground plane is assumed planar.

VI. CONCLUSIONS AND OUTLOOK.
We introduced an algorithm to robustly track smooth non-

planar road surfaces. In contrast to existing approaches which
are based on a piecewise planar or quadratic ground assump-
tion, we allow for non-planar ground planes represented by a
flexible B-spline curve. Thus our approach is a generalization
of known surface approximations in literature and bridges the
gap between these different approaches.

We experimentally demonstrated the accuracy of the
B-spline representation for the application of free space esti-
mation. To this end we modified a lately published free space
algorithm to make use of the road surface approximation tech-
nique and directly use disparity values. Experimental results
in planar and undulating terrain verify the gained availability
of free space in everyday traffic.

Some open issues to be addresses in future work are
• Evaluating the visibility of surfaces to accumulate stereo

measurements more intelligent.
• Integrating prior knowledge in terms of map data in the

B-spline estimation.
• Robust M-estimator techniques to reduce the influence of

outliers in the B-spline estimation.
• A quantitative evaluation of the B-spline modeling for the

road profile.
The presented generalization of the v-disparity approach

does not only offer more flexibility in road modelling from
image sequences; it enables road modelling using range sen-
sors such as the Velodyne 3-D laser scanner. The topic of
sensor fusion is of broad interest. A possible research topic
may be the fusion of stereo and laser scanner distance values
within the presented approach for the road surface.
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