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Abstract Point processes constitute a natural exten-

sion of Markov Random Fields (MRF), designed to han-

dle parametric objects. They have shown efficiency and

competitiveness for tackling object extraction problems

in vision. Simulating these stochastic models is how-

ever a difficult task. The performances of the exist-

ing samplers are limited in terms of computation time

and convergence stability, especially on large scenes. We

propose a new sampling procedure based on a Monte

Carlo formalism. Our algorithm exploits the Markovian

property of point processes to perform the sampling

in parallel. This procedure is embedded into a data-

driven mechanism so that the points are distributed in

the scene in function of spatial information extracted

from the input data. The performances of the sampler

are analyzed through a set of experiments on various

object detection problems from large scenes, including

comparisons to the existing algorithms. The sampler is

also tested as optimization algorithm for MRF-based

labeling problems.

Keywords Stochastic modeling · Monte Carlo

sampling · object detection · large scenes · energy

minimization · point processes · Markov Random

Fields

1 Introduction

Markov point processes are probabilistic models intro-

duced by Baddeley and Lieshout (1993) to extend the

traditional Markov Random Fields (MRF) by using an
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object-based formalism. Indeed, Markov point processes

can address object recognition problems by directly ma-

nipulating parametric entities in dynamic graphs,whereas

MRFs are restricted to labeling problems in static graphs.

These mathematical tools exploit random variables whose

realizations are configurations of parametric objects,

each object being assigned to a point positioned in the

scene. The number of objects is itself a random vari-

able, and thus must not be estimated or specified by

a user. Another strength of Markov point processes is

their ability to take into account complex spatial in-

teractions between the objects and to impose global

regularization constraints in a scene. A point process is

usually specified by three key elements:

Some parametric objects. They can be defined in

discrete and/or continuous domains. They usually

correspond to geometric entities, e.g. segments, rect-

angles, circles or planes, but can more generally be

any type of multi-dimensional function. The com-

plexity of the objects directly impacts on the size of

the configuration space.

An energy. It is used to measure the quality of a

configuration of objects. The energy is typically de-

fined as a combination of a term assessing the con-

sistency of objects to the data, and a term taking

into account spatial interactions between objects in

a Markovian context.

A sampler. It allows the search for the object con-

figuration minimizing the energy. As the configura-

tion space is of variable dimension and the energy

is usually non-convex, Monte Carlo based samplers

capable of exploring the whole configuration space

are required, in most cases a Markov Chain Monte
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Carlo (MCMC) algorithm (Hastings, 1970; Green,

1995; Liu, 2001).

1.1 Related works

The growing interest in these probabilistic models is

motivated by the need to manipulate parametric ob-

jects interacting in complex scenes. Many works rely-

ing on point processes have been recently proposed to

address the variety of image and vision problems listed

below.

Population counting. Descombes et al. (2009) pro-

pose a point process for counting populations from aerial

images, each entity being captured by an ellipse. Ge

and Collins (2009) present a point process for a simi-

lar application, but dedicated to crowd detection from

ground-based photos, for which objects are defined as

a set of body shape templates learned from training

data. Multi-view images are used by Utasi and Benedek

(2011) to detect people by a point process in 3D where

the objects are specified by cylinders.

Structure extraction. Sun et al. (2007) and Lacoste

et al. (2005) propose point processes for extracting line-

networks from images by taking into account spatial

interactions between lines to favor the object connec-

tion and also certain types of line junctions more likely

to appear in real networks. Stoica et al. (2007) extend

these line-network models in third dimension for recov-

ering the cosmic filament network from point clouds

representing the map of the Universe. The junction

point processes developed by Chai et al. (2013) allow

the extraction of line-networks using a graph-based rep-

resentation. Junction points are not associated to geo-

metric shapes, but are instead marked by some angles

indicating the directions of the adjacent points so that

a junction-point configuration is equivalent to a planar

graph. Ortner et al. (2008) and Chai et al. (2012) de-

tect buildings by displacing and connecting rectangles

from aerial images. The latter use an auxiliary point

process of line-segments to reinforce the rectangle ex-

traction, whereas the former embed the point process

into a MRF model to provide a structure-driven seg-

mentation of images.

Texture analysis. Nguyen et al. (2010) develop a

model for texture recognition in which the spatial dis-

tribution of visual keypoints discriminates the textures.

Zhu et al. (2005) describe natural textures by a lay-

out of textons, which can be seen as a realization of a

point process specified by a texton library. Lafarge et al.

(2010) present a general model for extracting different

types of geometric features from images, including line,

rectangles and disks. A mixture of object interactions

are considered such that the process can reconstruct a

large variety of textures.

Object recognition. Lieshout (2008) develops a point

process for tracking rectangular colored objects from

video. A mono-dimensional point process is proposed

by Mallet et al. (2010) for modeling 1D-signals by mix-

tures of parametric functions while imposing physical

constraints between the signal modes.

1.2 Motivations

The results obtained by these point processes are con-

vincing and competitive with respect to other families

of methods, but the performances are particularly lim-

ited in terms of computation time and convergence sta-

bility, especially on large scenes. These drawbacks ex-

plain why industry has been reluctant until now to in-

tegrate these mathematical models in their products.

Indeed, the works mentioned in Section 1.1 emphasize

complex model formulations by proposing parametri-

cally sophisticated objects (Ge and Collins, 2009; La-

farge et al., 2010), advanced techniques to fit objects

to the data (Utasi and Benedek, 2011), and non-trivial

spatial interactions between objects (Mallet et al., 2010;

Ortner et al., 2008; Sun et al., 2007). However, these

works usually rely on standard sampling procedures,

mainly on the Reversible Jump Markov Chain Monte

Carlo (RJMCMC) algorithm (Green, 1995). The com-

putation time generated by such a sampler is reasonable

only from data of small size. For example, the building

extraction algorithm proposed by Ortner et al. (2008)

requires around six hours from an image portion of size

1000 × 1000 pixels only (0.25 km2 area). Such a so-

lution is obviously not reasonable when dealing with

entire aerial and satellite images.

In the literature, few works have addressed the opti-

mization issues from such complex models. The pro-

posed solutions are mainly based on some improve-

ments of the traditional RJMCMC sampler.

Jump-Diffusion. Proposed by Grenander and Miller

(1994), this algorithm has been designed to speed-up

the MCMC sampling by combining diffusion dynamics

with a RJMCMC sampler. Both mechanisms play dif-

ferent roles: the former performs reversible jumps be-

tween the different subspaces, whereas the latter con-

ducts stochastic diffusion within each continuous sub-

space, the global process being controlled by a com-

mon relaxation parameter. However this algorithm is

restricted to specific energy forms (Srivastava et al.,

2002; Han et al., 2004; Lafarge et al., 2010).

Data-Driven MCMC. Data considerations can also

be used to drive the MCMC sampling with more effi-

ciency (Tu and Zhu, 2002). The idea consists in mod-
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eling the proposition kernels of the sampler in function

of discriminative tests from data so that the ratio of

relevant perturbations is strongly increased. This strat-

egy can be dangerous if the proposition kernels are not

correctly estimated from data.

Parallelization mechanisms. Some works have also

proposed parallelization procedures by using multiple

chains simultaneously (Harkness and Green, 2000) or

decomposition schemes in configuration spaces of fixed

dimension (Byrd et al., 2010; Gonzalez et al., 2011).

However they are limited by border effects, and are not

designed to perform on large scenes. In addition, the

existing decomposition schemes cannot be used for con-

figuration spaces of variable dimension, and as a conse-

quence, they are not adapted to sample point processes.

Parallel tempering (Earl and Deem, 2005) runs multi-

ple chains in parallel at different temperatures while

frequently exchanging configurations during the sam-

pling. This technique brings robustness to the cooling

schedule, but remains slow in practice as each chain ex-

plores the all configuration space.

Multiple births and deaths. A mechanism based on

multiple creation and destruction of objects has also

been developed to address population counting prob-

lems (Descombes et al., 2009; Utasi and Benedek, 2011).

Nevertheless this algorithm is semi-deterministic and

can only address problems in which object interactions

are simple. In addition, object creations require the dis-

cretization of the point coordinates which induces a sig-

nificant loss of accuracy.

These alternative versions of the conventional MCMC

sampler globally allow the improvement of optimiza-

tion performances in specific contexts. That said, the

gains in terms of computation time remain weak and

are usually realized at the expense of convergence sta-

bility, especially in large scenes. Finding a fast efficient

sampler for general Markov point processes clearly rep-

resents a challenging problem.

1.3 Contributions

We present an original solution to address this prob-

lem and to drastically reduce computation times while

guaranteeing convergence stability and quality of the

reached configurations. Our algorithm presents several

important contributions to the field.

Sampling in parallel. Contrary to the conventional

MCMC sampler which makes the solution evolve by

successive perturbations, our algorithm can perform

a large number of perturbations simultaneously us-

ing a unique chain. The Markovian property of point

processes is exploited to make the global sampling

problem spatially independent in a local neighbor-

hood.

Data-driven mechanism. Point processes mainly

use uniform proposition kernels which are compu-

tationally easy to simulate, but make the sampling

particularly slow. We propose an efficient mecha-

nism allowing the modifications, creations or removals

of objects by taking into account spatial informa-

tion extracted from the observed data. Contrary to

the data-driven solutions proposed by Tu and Zhu

(2002) and Ge and Collins (2009), our proposition

kernel is not built directly from image likelihood,

but is created via a space-partitioning tree in order

to guarantee the sampling parallelization.

Efficient GPU implementation. We propose an

implementation on GPU which significantly reduces

computation times with respect to existing algo-

rithms, while increasing stability and improving the

quality of the obtained solution. The potential of

GPU is efficiently exploited in both optimizing the

number of operations in parallel, and limiting the

memory transfer between GPU and CPU.

Original models for object extraction. To eval-

uate the performance of the sampler, we propose

original point processes for vision problems. In par-

ticular, a model for detecting complex 3D objects in

large-scale point clouds is designed. This model is

applied to tree recognition from laser scans of large

urban and natural environments. To our knowledge,

it is the first point process sampler to date to per-

form in such highly complex state spaces.

This paper extends the work presented in (Verdie and

Lafarge, 2012) by detailing the proposed sampler and

its implementation, by presenting new results, compar-

isons and performance tests, as well as proposing a ver-

sion dedicated to the optimization of MRF-based ener-

gies for labeling problems.

The paper is organized as follows. Background on point

processes is presented in Section 2. Section 3 demon-

strates how a RJMCMC-based algorithm can sample

point process in parallel. Section 4 details how to cre-

ate data-driven proposition kernels while keeping the

parallelization characteristics of the sampler. Our new

sampling procedure is then detailed in Section 5. Exper-

iments with point processes in 2D and 3D are presented

and discussed in sections 6 and 7 respectively, includ-

ing comparisons with the existing algorithms. Note that

datasets, results and evalutation tools are available on-
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line (Benchmark, 2013). Section 8 demonstrates the in-

terests of our sampler for optimizing energies in case of

MRF-based labeling problems, before presenting con-

clusions in Section 9.

2 Point Process background

2.1 Definitions and notations

A point process describes random configurations of points

in a continuous bounded set K. Mathematically speak-

ing, a point process Z is a measurable mapping from a

probability space (Ω,A,P) to the set of configurations

of points in K such that

∀ω ∈ Ω, pi ∈ K,Z(ω) = {p1, ..., pn(ω)} (1)

where n(ω) is the number of points associated with the

event ω. We denote by P, the space of configurations

of points in K. Fig. 1 shows a realization of a point

process for K ⊂ R2.

The most natural point process is the homogeneous

Poisson process for which the number of points follows

a discrete Poisson distribution whereas the position of

the points is uniformly and independently distributed

in K. Point processes can also provide more complex

realizations of points by being specified by a density

h(.) defined in P and a reference measure µ(.) under

the condition that the normalization constant of h(.) is

finite:∫
p∈P

h(p)dµ(p) <∞ (2)

The measure µ(.) having the density h(.) is usually de-

fined via the intensity measure ν(.) of an homogeneous

Poisson process such that

∀B ∈ B(P), µ(B) =

∫
B

h(p)ν(dp) (3)

Specifying a density h(.) allows the insertion of data

consistency, and also the creation of spatial interactions

between the points. Note also that h(.) can be expressed

by a Gibbs energy U(.) such that

h(.) ∝ exp−U(.) (4)

2.2 Markovian property

Similarly to random fields, the Markovian property can

be used in a point process to create a spatial depen-

dency of the points in a neighborhood.

A point process Z of density h is Markovian under the

neighborhood relationship ∼ if and only if ∀p ∈ P such

that h(p) > 0,

(i) ∀p̃ ⊆ p, h(p̃) > 0,

(ii) ∀u ∈ K, h(p ∪ {u})/h(p) only depends on u and

its neighbors {p ∈ p : u ∼ p}.

The expression h(p∪{u})/h(p) can be interpreted as a

conditional intensity. The Markovian property for ran-

dom fields can thus be naturally extended in case of

point processes by defining a symmetric relationship

between two points of K. As shown later, the Marko-

vian property is essential to facilitate the sampling of

point processes.

2.3 From points to parametric objects

Each point pi can be marked by additional parameters

mi such that the point becomes associated with an ob-

ject xi = (pi,mi). This property is particularly attrac-

tive to address vision problems requiring the handle of

complex parametric objects. We denote by C, the cor-

responding space of object configurations where each

configuration is given by x = {x1, ..., xn(x)}. For exam-

ple, a point process on K×M with K ⊂ R2 and the ad-

ditional parameter space M =]− π
2 ,

π
2 ]×[lmin, lmax] can

be seen as random configurations of 2D line-segments

since an orientation and a length are added to each

point (see Fig. 1). Such point processes are also called

marked point processes in the literature.

The most popular family of point processes corresponds

to the Markov point processes of objects specified by

Gibbs energies on C of the form

∀x ∈ C, U(x) =
∑
xi∈x

D(xi) +
∑
xi∼xj

V (xi, xj) (5)

where ∼ denotes the symmetric neighborhood relation-

ship of the Markov point process, D(xi) is a unitary

data term measuring the quality of object xi with re-

spect to data, and V (xi, xj), a pairwise interaction term

between two neighboring objects xi and xj . The∼relationship

is usually defined via a limit distance ε between points

such that

xi ∼ xj = {(xi, xj) ∈ x2 : i > j, ||pi − pj ||2 < ε} (6)

In the sequel, we consider Markov point processes of

this form. Note that this energy form has similarities

with the standard multi-label energies for MRFs (Szeliski

et al., 2008). Our problem can indeed be seen as a gen-

eralization of these MRF models. This particular case

is detailed in Section 8.
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Fig. 1 From left to right: realizations of a point process in 2D,
of a Markov point process, and of a Markov point process of

line-segments.The grey dashed lines represent the pairs of points
interacting with respect to the neighboring relationship which is

specified here by a limit distance ε between two points (Eq. 6).

2.4 Simulation

Point processes are usually simulated using a RJMCMC

sampler (Green, 1995) to search for the configuration

which minimizes the energy U . This sampler consists

of simulating a discrete Markov Chain (Xt)t∈N on the

configuration space C, converging towards a target den-

sity specified by U . At each iteration, the current con-

figuration x of the chain is locally perturbed to a con-

figuration y according to a density function Q(x→ .),

called a proposition kernel. The perturbations are local,

which means that x and y are very close, and differ by

no more than one object in practice. The configuration

y is then accepted as the new state of the chain with a

certain probability depending on the energy variation

between x and y, and a relaxation parameter Tt. The

kernel Q can be formulated as a mixture of sub-kernels

Qm chosen with a probability qm such that

Q(x→ .) =
∑
m

qmQm(x→ .) (7)

Each sub-kernel is usually dedicated to specific types of

moves, as the creation/removal of an object (Birth and

Death kernel) or the modification of parameters of an

object (e.g. translation, dilatation or rotation kernels).

The kernel mixture must allow any configuration in C
to be reached from any other configuration in a finite

number of perturbations (irreducibility condition of the

Markov chain), and each sub-kernel has to be reversible,

i.e. able to propose the inverse perturbation. Details on

kernel computation for image and vision problems can

be found in (Descombes, 2011).

The RJMCMC sampler is controlled by the relaxation

parameter Tt, called the temperature, depending on

time t and approaching zero as t tends to infinity. Al-

though a logarithmic decrease of Tt is necessary to en-

sure the convergence to the global minimum from any

initial configuration, one uses a faster geometric de-

Algorithm 1 RJMCMC sampler (Green, 1995)
1- Initialize X0 = x0 and T0 at t = 0;

2- At iteration t, with Xt = x,

– Choose a sub-kernel Qm according to probability qm
– Perturb x to y according to Qm(x→ .)

– Compute the Green ratio

R =
Qm(y → x)

Qm(x→ y)
exp

(
U(x)− U(y)

Tt

)
(8)

– Choose Xt+1 = y with probability min(1, R), and Xt+1 = x

otherwise

crease which gives an approximate solution close to the

optimum (Baddeley and Lieshout, 1993; Salamon et al.,

2002).

3 Sampling in parallel

The conventional RJMCMC sampler performs succes-

sive perturbations on objects. Such a procedure is obvi-

ously long and fastidious, especially for large scale prob-

lems. A natural idea but still unexplored for Markov

point processes consists in sampling objects in paral-

lel by exploiting their conditional independence outside

the spatial neighborhood. Such a strategy implies parti-

tioning the space K so that simultaneous perturbations

are performed at locations far enough apart to not in-

terfere and break the convergence properties.

3.1 From sequential to parallel sampling

Let (Xt)t∈N, be a Markov chain simulating a Markov

point process with a MCMC dynamics, and {cs} be a

partition of the space K, where each component cs is

called a cell. Two cells c1 and c2 are said to be indepen-

dent on X if the transition probability for any random

perturbation falling in c1 at any time t does not depend

on the objects and perturbations falling in c2, and vice

versa.

One can demonstrate that the transition probability

of two successive perturbations falling in independent

cells under the temperature Tt is equal to the prod-

uct of the transition probabilities of each perturbation

under the same temperature. In other words, realizing

two successive perturbations on independent cells at the

same temperature is equivalent to performing them in

parallel. To do so, let us consider two cells c1 and c2
independent on (Xt)t∈N. We denote by x, a realization

of the point process such that x = (x1, x2, u) where x1
(respectively x2) represents the set of points falling in

the cell c1 (respectively c2), and u is the remaining set
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of points falling in K −{c1, c2}. Let y be a new config-

uration of points obtained from x by two perturbations

on the cells c1 and c2 so that y = (y1, y2, u), as illus-

trated on Fig. 2.

Fig. 2 Illustration of the equivalence between two successive per-
turbations on independent cells c1 and c2, and two simultaneous

perturbations on each cell.

The transition probability Pr[Xt+2 = y|Xt = x] of

moving from the state x at time t to the state y at

time t+ 2 can be expressed as

Pr[Xt+2 = y|Xt = x]

= Pr[Xt+2 = (y1, y2, u)|Xt+1 = (y1, x2, u)]

× Pr[Xt+1 = (y1, x2, u)|Xt = x]

+ Pr[Xt+2 = (y1, y2, u)|Xt+1 = (x1, y2, u)]

× Pr[Xt+1 = (x1, y2, u)|Xt = x]

(9)

or, the temperature parameter is constant between t

and t+ 2, which means that

Pr[Xt+2 = y|Xt+1 = (y1, x2, u)]

= Q((y1, x2, u)→ y)

×min
[
1, Q(y→(y1,x2,u))
Q((y1,x2,u)→y) exp

(
U((y1,x2,u))−U(y)

Tt+1

)]
= Q((y1, x2, u)→ y)

×min
[
1, Q(y→(y1,x2,u))
Q((y1,x2,u)→y) exp

(
U((y1,x2,u))−U(y)

Tt

)]
= Pr[Xt+1 = y|Xt = (y1, x2, u)]

(10)

The cells c1 and c2 being independent, the transition

probability for the perturbation y2 falling in c2 does

not depend, by definition, on x1 and y1. Thus we have

in particular

Pr[Xt+1 = (y1, y2, u)|Xt = (y1, x2, u)]

= Pr[Xt+1 = (x1, y2, u)|Xt = (x1, x2, u)]
(11)

This leads to the equation

Pr[Xt+2 = y|Xt+1 = (y1, x2, u)]

= Pr[Xt+1 = (x1, y2, u)|Xt = x]
(12)

Similarly, one can demonstrate that

Pr[Xt+2 = y|Xt+1 = (x1, y2, u)]

= Pr[Xt+1 = (y1, x2, u)|Xt = x]
(13)

Finally, by inserting Eq. 12 and 13 in Eq. 9, the ex-

pected result is obtained

Pr[Xt+2 = y|Xt = x]

= 2! Pr[Xt+1 = (y1, x2, u)|Xt = x]

× Pr[Xt+1 = (x1, y2, u)|Xt = x]

(14)

where 2! is the combinatorial coefficient corresponding

to the number of permutations of perturbations in the

sequential chain. This proof can be easily extended by

recurrence in case of n cells mutually independent on

(Xt)t∈N, with n > 2.

3.2 How to guarantee cell independence?

By definition, two cells are independent if the transi-

tion probability for any random perturbation falling in

the first cell does not depend on the objects and per-

turbations falling in the second cell, and vice versa. It

implies that the two cells must be located at a mini-

mum distance from each other. As illustrated in Fig.

3, this distance must take into account the width ε of

the neighboring relationship induced by the Markovian

property so that every possible object falling in the first

cell cannot be a neighbor of the objects falling in the

second cell. As an object can be displaced to another

cell during a perturbation, the minimum distance must

also consider the length of the biggest move allowed

as object perturbation, denoted by δmax. Considering

these two constraints, the independence between two

cells c1 and c2 can then be guaranteed when

min
p1∈c1, p2∈c2

||p1 − p2||2 ≥ ε+ 2δmax (15)
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Fig. 3 Independence of cells. On the left case, the width of the
cell c2 is not large enough to ensure the independence of the cells

c1 and c3: the two grey points in c1 and c3 cannot be perturbed

at the same time. On the right case, the cells c1 and c3 are inde-
pendent as Eq. 15 is satisfied.

Fig. 4 Regular partitioning scheme of K. In dimension two

(left), the cells are squares of identical size regrouped into 4 mic-

sets (yellow, blue, red and green). Each cell is adjacent to cells
belonging to different mic-sets. In dimension three (right), the

cells are cubes regrouped into 8 mic-sets.

3.3 How to construct a cell partition?

Knowing a condition for insuring the cell independence

(Eq. 15), the objective is now to find a partitioning of

the space K optimizing the performance of the sam-

pling in parallel.

The natural idea consists of partitioning K into a reg-

ular mosaic of cells with size greater than or equal to

the minimum distance between independent cells, i.e.

to ε+2δmax. The cells can then be regrouped into 2dimK

sets such that each cell is adjacent to cells belonging to

different sets. Fig. 4 illustrates the partitioning scheme

for dimK = 2 and dimK = 3. This partitioning scheme

guarantees the mutual independence between all the

cells of a same set. In the sequel, such a set is called a

mic-set (set of Mutually Independent Cells). Each cell

of a mic-set can thus be perturbed simultaneously us-

ing a MCMC dynamics.

However, the number of cells which can be perturbed

simultaneously is limited by the computer architecture,

in our case by the number of threats available in GPU.

When sampling in large scenes, this number is usually

much lower than the number of cells in a mic-set if a

cell width of ε + 2δmax is imposed. One solution could

consist in fixing the cell width so that the number of

cell in a mic-set cannot exceed the maximum number of

simultaneous perturbations. This option does not take

advantage of the Markovian property, and leads to av-

erage performances in practice. In order to fully exploit

both the potential of the computer architecture and the

Markovian property, a non-regular partitioning of K is

required. This problem is addressed in the next section

where spatial information from input data is exploited

to ideally partition K.

4 Data-driven mechanism

The creation of a non-regular partitioning of K leads

us to consider a proposition kernel which distribute the

points non-uniformly in the space K. In other words,

perturbations do not have the same occurrence accord-

ing to their locations in K. To design such a proposition

kernel, one needs to take into account the characteris-

tics of observed scenes. Contrary to the data-driven so-

lution proposed by Tu and Zhu (2002), our mechanism

must be compatible with the parallelization constraints

mentioned in Section 3.

4.1 Principle

Our idea consists in creating a proposition kernel as an

accumulation of uniform sub-kernels spatially restricted

on the domain of the cells. Indeed, such a mixture of

sub-kernels has the interesting property of still guar-

anteeing the parallelization of the sampling. In the lit-

erature, mixtures of sub-kernels are frequently used in

MCMC dynamics to simulate point processes, but with

a restricted role where each sub-kernel is dedicated to

a perturbation type (e.g. birth and death, translation,

rotation, etc).

The sub-kernel accumulation mechanism is driven by

a space-partitioning tree K which is defined as a set

of L sub-partitions of K, denoted by {cs}(1), .., {cs}(L),
and organized so that, for i = 2..L, {cs}(i) is a sub-

divided partition of {cs}(i−1). Each level of the space-

partitioning tree corresponds to a set of cells having

an identical size. A 1-to-2dimK hierarchical subdivision

scheme is considered to build the space-partitioning

tree, typically a quadtree in dimension two and an oc-

tree in dimension three.

Given a space-partitioning tree, a density map specify-

ing how the points must be spatially distributed in the

space K can then be constructed. The creation of this

density map relies on the accumulation of the uniform
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Fig. 5 Space-partitioning tree in dimension two. (b) A class of interest (blue area) is estimated from (a) an input image. (c) A
quadtree is created so that the levels are recursively partitioned according to the class of interest. Each level is composed of four

mic-sets (yellow, blue, red and green sets of cells) to guarantee the sampling parallelization. (d) The accumulation of the probabilities

qc,t over the different levels of the quadtree generates a density map allowing the points to be non-uniformly distributed in the scene.
Note how the density map focuses on the class of interest while progressively decreasing its intensity when moving away.

sub-kernels spatially restricted to the subspace support-

ing every cell of the space-partitioning treeK, as defined

in Eq. 7 and illustrated in Fig. 5.

4.2 Data-driven space-partitioning tree

In order to create a relevant space-partitioning tree, the

data are used to guide the cell subdivision. We assume

that a class of interest in K, in which the objects have

a high probability to belong to, can be roughly distin-

guished from the data. The extraction of such a class is

not addressed in this paper, and is supposed to be done

by a segmentation algorithm of the literature adapted

to the considered application. A cell at a given level of

the tree is divided into 2dimK cells at the next level if it

overlaps with the given class of interest. The hierarchi-

cal decomposition is stopped before that the size of the

cell becomes inferior to ε + 2δmax, i.e. before that the

cell independence condition (Eq. 15) is not longer valid.

The space-partitioning tree allows the creation of a propo-

sition kernel in an elegant way as points are naturally

and efficiently distributed in K. On the area of inter-

est, the intensity of the density map is maximal. When

moving far from the class of interest, the intensity pro-

gressively decreases as shown in Fig. 5, while being en-

sured to be non-null. In addition, the sampling is not

severely affected when the class of interest is inaccu-

rately extracted.

4.3 Proposition kernel formulation

Given a space-partitioning tree K composed of L levels,

and 2dimK mic-sets for each level, a general proposition

kernelQ can then be formulated as a mixture of uniform

sub-kernels Qc,t, each sub-kernel being defined on the

cell c of K by the perturbation type t ∈ T , such that

∀x ∈ C, Q(x→ .) =
∑
c∈K

∑
t∈T

qc,tQc,t(x→ .) (16)

where qc,t > 0 is the probability of choosing the sub-

kernel Qc,t(x → .). The probability qc,t allows us to

specify the intensity of the density map, given the space-

partitioning tree. In practice, this probability is chosen

as

qc,t =
Pr(t)

#cells in K
(17)

where Pr(t) denotes the probability of choosing the per-

turbation type t ∈ T . The expression of qc,t (Eq. 17)

allows the finest levels in the space-partitioning tree to

be favored so that the perturbations mainly focus on

the domain supporting the class of interest and its sur-

rounding. As discussed later in Section 6.1, other possi-

ble expressions may become more interesting when the

class of interest cannot be reliably extracted.

Four types of perturbations are usually considered in

practice so that T = {birth and death, translation, ro-

tation, scale}. When objects have several possible mod-

els, the perturbations consisting in switching the model

of an object can also be used. Note that the proposition

kernel Q is reversible as a sum of reversible sub-kernels.

Note also that such a proposition kernel allows us to

visit the whole configuration space C, as guaranteed by

the sub-kernels of the coarsest level of K.
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Fig. 6 Bird counting by a point process of ellipses. (right) More than ten thousand birds are extracted by our algorithm in a few
minutes from (left) a large scale aerial image. (middle) A quadtree partitioning the scene is used to create a density map so that the

objects are more frequently proposed in the locations of interest. Note, on the cropped parts, how the birds are accurately captured

by ellipses in spite of the low quality of the image and the partial overlapping of birds.

5 New sampling procedure

The kernel defined in Eq. 16 is embedded into a MCMC

dynamics so that the proposed sampler allows a high

number of simultaneous perturbations generated by a

data-driven proposition kernel.

5.1 Algorithm

The proposed sampler, detailed in Algorithm 2, can

be seen as a parallelized extension of the traditional

RJMCMC with data-driven proposition kernel. As il-

lustrated on Fig. 7, each perturbation is completely

independent of the other perturbations simultaneously

proposed in the cells of the considered mic-set.

Note that the temperature parameter is updated after

each series of simultaneous perturbations such that the

temperature decrease is equivalent to a cooling schedule

by plateau in a standard sequential MCMC sampling.

Note also that the space-partitioning tree protects the

sample from mosaic effects. In practice, the sampling is

stopped when no perturbation has been accepted dur-

ing a certain number of iterations.

5.2 Implementation

The algorithm has been implemented on GPU using

CUDA. A thread is dedicated to each simultaneous per-

turbation so that operations are performed in paral-

lel for each cell of a mic-set. The sampler is thus all

Algorithm 2 Our data-driven parallel sampler
1-Initialize X0 = x0 and T0 at t = 0;

2-Compute a space-partitioning tree K;
3-At iteration t, with Xt = x,

– Choose a mic-set Smic ∈ K and a kernel type t ∈ T according

to probability
∑

c∈Smic

qc,t

– For each cell c ∈ Smic,

– Perturb x in the cell c to a configuration y according to

Qc,t(x→ .)
– Calculate the Green ratio

R =
Qc,t(y → x)

Qc,t(x→ y)
exp

(
U(x)− U(y)

Tt

)
(18)

– Choose Xt+1 = y with probability min(1, R), and

Xt+1 = x otherwise
– Update Tt+1 = αTt

the more efficient as the mic-set contains many cells,

and generally speaking, as the scene supported by K

is large. Moreover, the code has been programmed to

avoid time-consuming operations. In particular, the threads

do not communicate between each other, and memory

coalescing permits fast memory access. The memory

transfer between CPU and GPU has also been mini-

mized by indexing the parametric objects. The experi-

ments presented in this section have been performed on

a 2.5 Ghz Xeon computer with a Nvidia graphics card

(Quadro 4800, architectures 1.3 and 2.0).
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Fig. 10 Behavior of the sampler with a non relevant space-partitioning tree. (top left) When the class of interest cannot be correctly
extracted, the space-partitioning tree is of low quality, as shown on the closeup in which a large area of interest is missed. (bottom

left frame) The probability qc,t defined in Eq. 17 does not perform well. (bottom center frames) More interesting choices for qc,t can

then be used, as the linear, constant and hyperbolic formulations which progressively favors the selection of the coarsest levels in the
space-partitioning tree. The graph in the frames represents the probability of selecting the space-partitioning tree levels, the value 0

being the coarsest level of the tree. (bottom right frame) Note that the use of a regular partitioning can become especially efficient in

such a situation. (top right) the energy decrease graph summarize the performances of these different formulations.

Fig. 7 Mechanism of the sampler. At a given iteration, a mic-

set is chosen in the space-partitioning tree (here, the set of yel-
low cells), as well as a kernel type (here, births illustrated by

the insertion of blue dots). (left) During the proposition step,

a perturbation will be proposed simultaneously in each cell of
the selected mic-set, independently from each other. (right) Each

perturbation will then be either accepted (green dot) or rejected
(red dot) during the decision step. The decisions are independent,

relying on the Green ratio computations and numbers randomly

chosen in the interval [0, 1], as formulated in Eq. 18.

6 Experiments with 2D-Point processes

6.1 Population counting

The algorithm has been evaluated on population count-

ing problems from large-scale images using a point pro-

cess in 2D, i.e. with dimK = 2. The problem presented

in Fig. 6 consists in detecting migrating birds to ex-

tract information on their number, their size and their

spatial organization. The point process is marked by

ellipses which are simple geometric objects defined by

a point (center of mass of an ellipse) and three addi-

tional parameters. This object shape is well adapted to

capture the bird contours. The energy is specified by

a unitary data term based on the Bhattacharyya dis-

tance between the radiometry inside and outside the

object, and a pairwise interaction penalizing the strong

overlapping of objects. Details on the energy are given

in Appendix A. The probability Pr(t) of choosing the

perturbation type t is set to 0.2 if t =’birth and death’,

0.4 if t =’translation’, 0.2 if t =’rotation’, and 0.2 if

t =’scale’ in our experiments.

Computation time, quality of the reached energy, and

stability are the three important criteria used to evalu-

ate and compare the performance of samplers. As shown

on Fig. 8, our algorithm obtains the best results for

each of the criteria compared to the existing samplers.

In particular, we reach a better energy (-8.76 vs -5.78

for Descombes et al. (2009), and -2.01 for Green (1995))

while significantly reducing computation times (269 sec

vs 1078 sec for Descombes et al. (2009), and > 105 sec

for Green (1995), Tu and Zhu (2002), and Earl and

Deem (2005)). Fig. 8 also underlines an important lim-

itation of the point process sampler of reference for pop-

ulation counting (Descombes et al., 2009) compared to
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Fig. 8 Performances of the various samplers. The top graph

describes the energy decrease over time from the bird image

presented in Fig. 6 (the colored dots correspond to algorithm
convergence). Note that time is represented using a logarithmic

scale, and that the slow convergence of RJMCMC (Green, 1995),

DDMCMC (Tu and Zhu, 2002), and parallel tempering (Earl and
Deem, 2005) algorithms is not displayed on the graph. The bot-

tom graph shows the evolution of the number of objects during

the sampling. Contrary to the other samplers, the number of ob-
jects found by our sampler with and without space-partitioning

tree (PT) is very close to the ground truth (black line). Note
that estimating the correct number of objects does not mean

that the objects are correctly fitted to the data, but it is an im-

portant criterion for population counting problems as underlined
by Lempitsky and Zisserman (2010).

Table 1 Stability of the various samplers. The coefficients of
variation of the energy, time and number of objects reached at

the convergence are computed over 50 simulations.

Coefficient of variation
energy time #objects

RJMCMC (Green, 1995) 7.3% 4.2% 1.7%

Parallel tempering 5.0% 20% 4.4%
(Earl and Deem, 2005)

DDMCMC (Tu and Zhu, 2002) 8.1% 0.7% 1.8%

multiple birth and death 5.0% 2.1% 1.3%
(Descombes et al., 2009)

our sampler with 7.4% 6.2% 1.6%

regular partitioning

our sampler with 4.4% 1.8% 1.1%

space-partitioning tree

our algorithm. Indeed, the discretization of the object

parameters required in (Descombes et al., 2009) causes

approximate detection and localization of objects which

explains the average quality of the reached energy. The

stability is analyzed by the coefficient of variation, de-

fined as the standard deviation over mean, and known

to be a relevant statistical measure for comparing meth-

ods having different means. Our sampler provides a bet-

ter stability than the existing algorithms, including the

multiple birth and death sampler which is supposed to

be particularly stable thanks to its semi-deterministic

mechanism. Note that the DDMCMC algorithm is par-

ticularly stable in terms of time, but is more likely to

be stuck in local minimums as energy variation is high.

Fig. 9 Impact of the data size on the computation times. (top)

The performances of our sampler have been tested from a set of

simulated images of ellipses corrupted by blur and noise, whose
size progressively increases. (bottom) The results are displayed

on the graph representing the evolution of the average time of

detection per object in function of the image size. The minimum
average time is met (here, 15 ms) when the optimal occupancy

conditions of the GPU architecture are reached. In this exper-
iment, note that the image size is directly proportional to the

number of used threads as the cell size at the finest level of the

trees is identical for all simulated images.

This gap with the others algorithms in terms of perfor-

mances becomes more marked when the input scene is

larger. Contrary to the existing samplers, the average

time of detection per object of our sampler does not

explode when increasing the data size, but it falls until

reaching the optimal occupancy conditions of the GPU

architecture (see Fig. 9). During this stage, there is in-
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deed no extra cost in terms of computation time for

using additional threads, i.e. for increasing the num-

ber of simultaneous perturbations. The average time of

detection per object then slightly increases before be-

coming stable.

The impact of the data-driven mechanism is also mea-

sured by performing tests with a proposition kernel

based on a regular partitioning of the space K (see Fig.

4). The performances decrease but remain better than

the existing algorithms. In particular, the sampler loses

stability, and the objects are detected and located less

accurately than by using a relevant space-partitioning

tree. However the use of a regular partition of K can be-

come an interesting solution when the class of interest

is not correctly extracted from the data, more precisely

when entire parts of the class of interest are omitted.

Indeed this leads to generate space-partitioning trees of

low quality. Fig. 10 shows the behavior of the sampler

in such a situation. In particular, one can see that the

formulation of the probability qc,t proposed initially in

Eq. 17 is not relevant anymore, and needs to be modi-

fied in order to favor the selection of the coarsest levels

in the space-partitioning tree. A constant or hyperbolic

formulations for qc,t then become interesting solutions.

Because of the construction of the density map, note

that the sampler is not affected when the contours of

the class of interest are rough.

Fig. 11 Cell counting from (left) the microscope image cell17.
(middle) Ground Truth shows the location of each cell through
a blue cross. (right) Our 2D point process of ellipses captures

the cells with very few errors. As illustrated on the right crop,
omissions can appear when many cells are regrouped in a tiny

area. Note that, in such a case, it is very difficult to visually

detect the cells, even for an expert.

Fig. 11 and 12 and Tab. 2 show results on cell counting

from microscope images. These images have been sim-

ulated by Lehmussola et al. (2007) and are provided

with ground truth, i.e. the exact number and location

of cells are known for each image. Our algorithm has

been compared to the supervised approach proposed by

Lempitsky and Zisserman (2010) in Tab. 2. Note that,

contrary to our algorithm, their approach just delivers

an estimated number of cells per images without locat-

ing and delineating them. As shown in Tab. 2, the root

mean square error (RMSE) in terms of number of cells

from our sampler is more than twice lower than from

(Lempitsky and Zisserman, 2010).

Table 2 Comparisons with the cell counting approach proposed

by Lempitsky and Zisserman (2010) from the microscope images

simulated by Lehmussola et al. (2007). The given values corre-
spond to the number of cells detected in a set of images. Our al-

gorithm provides a better estimation of the number of cells than
both the L1- and Tikhonov-regularization versions of (Lempit-

sky and Zisserman, 2010). In particular, our algorithm is more

accurate where cells are highly concentrated.

our Lempitsky Lempitsky Ground
method (L1-reg.) (Tikhonov-reg.) Truth

cell17 209 202.9 194.1 213

cell18 184 184.6 175.9 185

cell19 187 192.2 180.1 188

cell20 169 174.1 170.4 169

cell21 147 148.6 144.4 149

cell22 184 182.6 176.5 184

cell23 159 158.3 157.6 161

RMSE 1.93 4.71 9.21 -

Fig. 12 Performances of various samplers on cell counting. The

top right graph presents the performances of the existing algo-
rithms in terms of time and energy from (top left) a microscope

image, whereas the bottom close-ups show the quality of the

reached configurations. Our sampler allows both low running time
and good configuration quality.

Note finally that the proposed model is general and can

be used for many different population counting prob-

lems, as illustrated on Fig. 13. This model does not

just count a population but it also provides helpful in-

formation on its spatial organization in order to track

and analyze its behavior. Note also that ellipses can be
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Fig. 13 Various population counting problems. Our algorithm

captures different objects of interest by ellipses in large scenes, as
(top) bees from beehive pictures, (middle) opened stomata from

microscope images of leaf, and (bottom) yellow cabs from aerial

images. 1167 bees (respectively 757 stomata and 87 taxis) are de-
tected in 12 minutes (respectively 168 seconds and 165 seconds).

Note that the computation time is higher for bee detection be-

cause the partitioning scheme contains few cells, i.e. 75. As shown
on the close-ups, the objects of interest are globally well detected

in spite of the high concentration and overlap of objects.

substituted by any type of parametric 2D-objects in the

model formulation.

6.2 Structure extraction

The algorithm has also been tested for recovering spe-

cific structures from images, in this case line-networks.

The parametric objects are specified by line-segments

defined as a point (center of mass of a line-segment)

and two additional parameters (length and orientation).

Contrary to the population counting model previously

used, the pairwise potential includes a connection in-

teraction to link the line-segments. This constraint al-

lows the object configurations to be structured as line-

networks, each connection between line-segments rep-

resenting a junction in the line-network. Details on this

energy formulation can be found in Appendix B. The

probability Pr(t) of choosing the perturbation type t is

set to 0.4 if t =’birth and death’, 0.1 if t =’translation’,

0.4 if t =’rotation’, and 0.1 if t =’scale’ in our experi-

ments.

Time (s) FPR FNR model

our sampler 16.8 0.02 0.25 line

Lafarge et al. (2010) 108 0.02 0.45 line

Lacoste et al. (2005) 2700 0.01 0.35 line

Rochery et al. (2006) 600 0.01 0.50 pixel

Fig. 15 Extraction of a river network from a satellite image by
different methods. The result obtained from our method is visu-

ally competitive with respect to existing methods. The structure

of the river is correctly recovered by connected line-segments. The
accuracy of our algorithm in terms of False Positive / False Neg-

ative rates is relatively competitive, being better than Lafarge

et al. (2010) and Rochery et al. (2006), and similar to Lacoste
et al. (2005). Note that our algorithm significantly improves the

computation times.

Figure 14 shows a road network extraction result ob-

tained from a satellite image. Our method significantly

improves the computation times with respect to exist-

ing methods, as detailed on Benchmark (2013). 16 sec-

onds are required in our case, compared to 7 minutes

by a Jump-Diffusion algorithm (Lafarge et al., 2010),

155 minutes for a RJMCMC-based method (Lacoste

et al., 2005), and 60 minutes for an Active Contour ap-

proach (Rochery et al., 2006). One can see in Fig. 15

that the visual quality of our extracted networks is rel-

atively inferior to those of Lacoste et al. (2005), even

if the quantitative results are similar. That said, their
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Fig. 14 Line-network extraction by a point process of line-segments. (middle) Even with a rough density map, (right) the road
network is recovered (red segments) by our algorithm in 16 seconds from (left) a satellite image. Similarly to existing methods, some

parts of the network can be omitted when roads are hidden by trees at some locations, as shown on the close-up.

method relies on a heavy formalism, i.e. the Quality

Candy model, requiring many parameters (i.e. around

fifteen) whose tuning by trial and error is a difficult task

as several parameters have unstable behaviors.

7 Experiments with 3D-Point processes

Our algorithm has been tested with dimK = 3 on an

original model for extracting predefined parametric 3D-

templates from unstructured point clouds containing a

lot of outliers and noise. This model has been used to

detect trees from Laser scans of urban environments

composed of many other different objects such as build-

ings, ground, cars, fences, wires, etc. This model also

allows the recognition of the shapes and types of trees.

The objects associated with the point process corre-

spond to a library of different 3D-templates of trees de-

tailed in Appendix C (Fig. 19 and 20). The unitary data

term of the energy measures the distance from points to

the surface of the 3D-object, whereas the pairwise in-

teraction takes into account constraints on object over-

lapping as well as on tree type competition. Compared

to the former applications, the configuration space C
is of higher dimension since the objects are parametri-

cally more complex. This allows our algorithm to ex-

ploit more deeply its potential. The rotation kernel is

not used here since the objects are invariant by rota-

tion. However, a switching kernel is used in order to ex-

change the type of object (i.e. conoidal, elliptical and

semi-elliptical). The probability Pr(t) of choosing the

perturbation type t is set to 0.4 if t =’birth and death’,

0.2 if t =’translation’, 0.1 if t =’switching’, and 0.3 if

t =’scale’ in our experiments.

Fig. 16 shows results obtained from laser scans of large

urban and natural environments. 30 (respectively 5.4)

thousand trees are extracted in 96 (resp. 53) minutes

on the 3.7km2 mountain area (resp. 1km2 urban area)

from 13.8 (resp. 2.3) million input points. The computa-

tion times can appear high, but finding non-trivial 3D-

objects in such larges scenes by point processes is a chal-

lenge which, to our knowledge, has not been achieved

until now due to the extreme complexity of the state

space. Note also that the performances could be im-

proved by reducing the space C with a 3D-point pro-

cess on manifolds, i.e. where the z-coordinate of points

is determined by an estimated ground surface.

Evaluating the detection quality with accuracy for this

application is a difficult task since no ground truth ex-

ists. As illustrated on the cropped part in Fig. 16, we

have manually indexed the trees on different zones from

aerial images acquired with the laser scans. The objects

are globally well located and fitted to the input points

with few omissions, even when trees are surrounded by

other types of urban entities such as buildings. The non-

overlapping constraint of the energy allows us to obtain

satisfactory results for areas with high tree concentra-

tion. Errors may occur in distinguishing the tree type

in spite of the tree competition term of the energy. Fig.
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Fig. 16 Tree recognition from point clouds by a 3D-point process specified by 3D-parametric models of trees. Our algorithm detects
trees and recognizes their shapes in large-scale (left, input scan: 13.8M points) natural and (top right, input scan: 2.3M points) urban

environments, in spite of other types of urban entities, e.g. buildings, car and fences, contained in input point clouds (red dot scans).

An aerial image is joined to (bottom right) the cropped part to provide a more intuitive representation of the scene and the tree
location. Note, on the cropped part, how the parametric models fit well to the input points corresponding to trees, and how the

interaction of tree competition allows the regularization of the tree type in a local neighborhood.

17 shows the evolution of object configurations during

the sampling procedure.

Fig. 17 Evolution of the object configurations during the sam-
pling. At high temperature, objects of low quality are frequently

accepted, leading to non relevant object configurations (top left

close-ups). When the temperature decreases, the process becomes
progressively selective (top right close-ups). At low temperature,
the current object configuration evolves through some local ad-

justments: the process is stabilizing close to the global minimum
(bottom right close-ups).

8 Experiments with Markov Random Fields

As Markov point processes can be seen as a gener-

alization of MRFs, we evaluated the potential of our

sampler for optimizing energies for MRF-based label-

ing problems. Indeed, traditional MRFs represent sim-

plified point processes having the two following charac-
teristics:

(i) the dimension of the configuration space is fixed

(graph structure is not dynamic anymore, but static),

(ii) the parametric objects become labels, i.e. a finite

set of integers.

Under these conditions, the standard energy form of

Markov point process (Eq. 5) can be reformulated as

U(l) =
∑
i∈V

Di(li) +
∑

(i,j)∈E

V (li, lj) (19)

where V is the set of vertices (pixels in case of images),

E is the set of edges (i.e. pairs of adjacent vertices), and

l ∈ [1, N ]card(V) is a configuration of labels over V with

N , the number of labels of the problem. This formula-

tion is actually the standard MRF-energy for labeling

problems, as described by Szeliski et al. (2008). Note

that there is no constraint imposing on the form of the

pairwise interaction term V when using our sampler.
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our sampler α-expansion α-β swap BP ICM

energy time(s) energy time(s) energy time(s) energy time(s) energy time(s)

Simulated (260k pix.)
8 labels, ε = 1 pix. 1.3192 0.92 1.3187 6.759 1.3186 7.71 1.3185 8.25 4.1186 4.7

(×103) (×103) (×103) (×103) (×103)

Elephants (10M pix.)

2 labels, ε = 1 pix. 40.74 40.01 40.64 45.22 40.64 73.84 40.63 209.7 40.77 55.5

(×103) (×103) (×103) (×103) (×103)

Aerial (72M pix.)
3 labels, ε = 21 pix. 3.751 2047.6 - - - - - - 18.69 132600

(×106) (×106)

Fig. 18 Image segmentation. (left) Input images (from top to bottom: Simulated, Elephants and Aerial). (second column) Results

obtained by our sampler, by (third column) α-expansion, and by (last column) ICM. The goal here is not to evaluate the segmentation
model which is obviously not optimal, but to compare the results from various optimization techniques with different input image sizes

and neighboring distances ε. (Table) Performances of various optimization algorithms in terms of reached energy and computation

time. From a small image, the gain of performance of our sampler is relatively minor: the reached energy is similar to graph-based
methods while running times are slightly improved. From a big image and a large neighborhood distance, e.g. Aerial, our algorithm

becomes more interesting as the conventional graph-based approaches encounter memory problems whereas iterative methods, e.g.

ICM, are extremely slow. Note that the energy value from the ICM algorithm can be poor as this optimization method gets stuck in
local minimums.

This point constitutes an important advantage com-

pared to graph-cut based methods.

In order to compare the potential of our sampler with

the other optimization algorithms, we assume that no

data knowledge can be extracted from the input images.

A regular partitioning scheme (Fig. 4) is then used,

and the labels at each pixel are perturbed randomly.

The width of a cell is given by the cell independence

condition (Eq. 15). As δmax = 0 (objects are fixed spa-

tially), the width of cells must be superior or equal to

the limit distance ε of the neighborhood relationship.

For instance in case of an image labeling problem with

a 4- or 8-connexity neighborhood, the condition simply

implies that each cell can be associated to one single

pixel.

The performances of our sampler have been tested from
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a basic model for image segmentation. The unitary data

term Di(li) measures the quality of label li at pixel

i through Gaussian distributions. More precisely, the

radiometry distribution of each class is modeled by a

Gaussian law whose mean and standard deviation are

model parameters to be estimated or fixed by a user.

The potential V corresponds to the conventional Potts

model (Li, 2001) so that the labeling is smoothed in a

local neighborhood of length ε.

Fig. 18 shows the performances obtained from vari-

ous images and provides comparisons with the stan-

dard optimization techniques1, i.e. max-product Belief

Propagation (BP) (Weiss and Freeman, 2001), Graph-

Cut based algorithms (Boykov et al., 2001) and Iterated

Conditional Modes (ICM) (Besag, 1986). Our sampler

competes well with these algorithms. From a small in-

put image, the reached energy is usually slightly higher

than by using α-expansion, α-β swap or BP, but the

computation time is lower. The gain of time becomes

especially attractive when the image size and the neigh-

borhood length increase. In particular, the results ob-

tained from Aerial, show that our sampler proposes an

interesting alternative to the standard graph-based op-

timization techniques which encounter memory prob-

lems from such very big images, here 8, 500 × 8, 500

pixels with neighborhood radius ε = 21 pixels.

Our sampler benefits from three advantages compared

to graph-cut methods: (i) it can be performed from very

big images without memory problems, (ii) the potential

term V can have any form, and (iii) data-driven propo-

sition kernels can be introduced in the sampler. For

instance, one can use an edge descriptor from the input

image to create a space-partitioning tree in which the

lowest levels focus on discontinuities whereas the high-

est levels target the homogeneous zones of the image.

Note also that the neighborhood distance ε can be con-

sidered as variable on the image domain. In particular,

one can spatially adapt the subdivision stopping crite-

rion of cells in function of local maximal neighborhood

distances.

9 Conclusion

We propose a new algorithm to sample point processes

whose strengths lean on the exploitation of Markovian

properties to enable the sampling to be performed in

parallel, and the integration of a data-driven mecha-

nism allowing efficient distributions of the points in the

scene. Our algorithm improves the performances of the

1 GCO C++ library (http://vision.csd.uwo.ca/code/).

existing samplers in terms of computation times and

stability, especially on large scenes where the gain is

very important. It can be used without particular re-

strictions, contrary to most samplers, and even appears

as an interesting alternative to the standard optimiza-

tion techniques for MRF labeling problems. In particu-

lar, one can envisage using the model proposed in Sec-

tion 7 to extract any type of parametric objects from

large 3D-point clouds. This new algorithm has two limi-

tations. First the performances are not significant when

dealing with small input data, as a result of a partition-

ing of the space K restricted in terms of number of cells.

Second, the performance of the algorithm depends on

the potential of the graphics card of the computer.

In future works, it would be interesting to extend the al-

gorithm to point processes in 4D for addressing spatio-

temporal problems in which 3D-objects evolve during

time. Also, one could improve the algorithm to optimize

MRF-based energies and develop a more competitive

solution by modeling a data-driven proposition kernel

whose density map is of lower intensity in homogeneous

regions.

Appendix A: Population counting model

Let x denote a configuration of ellipses for which the

center of mass of an ellipse is contained in the compact

set K supporting the input image (see Fig. 19). The

energy follows the form specified by Eq. 5. The unitary

data term D(xi) and the potential V (xi, xj) are given

by:

D(xi) =

{
1− d(xi)

d0
if d(xi) < d0

exp(d0−d(xi)
d0

)− 1 otherwise
(20)

V (xi, xj) = β
A(xi ∩ xj)

min(A(xi), A(xj))
(21)

where

• d(xi) represents the Bhattacharyya distance between

the radiometry inside and outside the object xi:

d(xi) =
(min −mout)

2

4(σ2
in + σ2

out)
− 1

2
ln(

2σinσout
σ2
in + σ2

out

) (22)

where min and σin (respectively mout and σout) are

the intensity mean and standard deviation in Sin
(respectively in Sout).

• d0 is a coefficient fixing the sensitivity of the object

fitting. The higher the value of d0, the more selective

the object fitting. In particular, d0 has to be high

when the input images are corrupted by a significant

amount of noise.
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• A(xi) is the area of object xi.

• β is a coefficient weighting the non-overlapping con-

straint with respect to the data term.

Note that a basic mathematical dilatation is used in

practice to roughly extract the class of interest from the

image of birds for creating a space-partitioning tree.

Fig. 19 Objects and their parameters for the various presented
models. (left) Ellipses and (middle) line-segments are defined by

a 2D-point p ∈ K (center of mass of the object) and some marks.

These additional parameters are the semi-major axis b, the semi-
minor axis a, and the angle θ for an ellipse, and the semi-length

b, the semi-width a, the orientation θ, and the anchor length c

for a line-segment. The inside (respectively bordering) volume of
the object is denoted by Sin (respectively Sout). The anchors are

denoted by A1 and A2. (right) 3D-trees are defined by a 3D-point
p ∈ K (center of mass of the object), a type t ∈ {conoidal, ellip-

soidal, semi-ellipsoidal} illustrated on Fig. 20, and 3 additional

parameters which are the canopy height a, the trunk height b and
the canopy diameter c. The cylindrical volume Cxi represents the

attraction space of object xi in which the input points are used

to measure the quality of this object.

Appendix B: Line-network extraction model

A line-segment is defined by five parameters, including

the 2D point corresponding to the center of mass of

the object (Fig. 19). Similarly to the population count-

ing model detailed in Appendix A, the fitting quality

with respect to the data is based on the Bhattacharyya

distance: the unitary data term D(xi) of the energy

is given by Eq. 20. The potential V (xi, xj) penalizes

strong object overlaps (see Eq. 21), but also takes into

account a connection interaction in order to favor the

linking of the line-segments. The potential term is thus

given by:

V (xi, xj) = β1
A(xi ∩ xj)

min(A(xi), A(xj))
+1xi∼ncxj

×β2f(xi, xj)

(23)

where

• β1 and β2 are two coefficients weighing respectively

the non-overlapping and connection constraints with

respect to the data term.

• ∼nc is the non-connection relationship between two

objects. xi ∼nc xj if the anchor areas of xi and xj
(see Fig. 19) do not overlap.

• 1condition is the indicative function returning one

when condition is valid, and zero otherwise.

• f(xi, xj) is a symmetric function weighting the pe-

nalization of two non-connected objects xi and xj
with respect to their average fitting quality. The

function f is introduced to slightly relax the con-

nection constraint when the two objects are of very

good quality.

As for the bird counting problem, a basic mathematical

dilatation has been used to roughly extract the class of

interest from the aerial image shown on Fig. 14. Indeed

the pixels corresponding to the class road in this image

are relatively bright compared to the background. The

segmented result is obviously not optimal, but sufficient

to create an efficient space-partitioning tree.

Appendix C: Tree recognition model formula-

tion

Let x represent a configuration of 3D-models of trees

from a template library described in Fig. 20. The cen-

ter of mass p of a tree is contained in the compact set

K supporting the 3D bounding box of the input point

cloud (Fig. 19). We denote by ∂xi the surface of the

object xi, and by Cxi the cylindrical volume having a

vertical axis passing through the center of mass of xi,

in which the input points are considered to measure

the quality of xi. The unitary data term D(xi) and the

Fig. 20 Library of tree models - the objects are specified by a

3D point (center of mass illustrated by a red dot) and additional
parameters (blue arrows) including the canopy type whose shape

can be conoidal (e.g. pine or fir), ellipsoidal (e.g. poplar or tilia)
or semi-ellipsoidal (e.g. oak or maple).
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pairwise potential V (xi, xj) are given by:

D(xi) =
1

|Cxi|
∏

pc∈Cxi

γ(d(pc, ∂xi)) (24)

V (xi, xj) = β1Voverlap(xi, xj) + β2Vcompetition(xi, xj)

(25)

where

• |Cxi| is a coefficient normalizing the unitary data

term with respect to the number of input points

contained in Cxi.
• d(pc, ∂xi) is a distance measuring the coherence of

the point pc with respect to the object surface ∂xi. d

is not the traditional orthogonal distance from point

to surface because, as real trees do not describe ellip-

soidal/conoidal shapes, input points are not homo-

geneously distributed on the object surface. Here,

d is defined as the combination of the planimetric

distance, i.e. the projection in the plane of equation

z = 0 of the Euclidean distance, and the altimet-

ric variation such that points outside the object are

more penalized than inside points. Note that d is

invariant by rotation around the Z-axis.

• γ(.) ∈ [−1, 1] is a quality function which is strictly

increasing.

• Voverlap is the pairwise potential penalizing strong

overlapping between two objects, and given by:

Voverlap(xi, xj) =
A(xi ∩ xj)

min(A(xi), A(xj))
(26)

where A(xi) is the area of the object xi projected

onto the plane of equation z = 0.

• Vcompetition is the pairwise potential favoring a sim-

ilar tree type t in a local neighborhood:

Vcompetition(xi, xj) = 1ti 6=tj (27)

where 1. is the indicative function.

• β1 and β2 are two coefficients weighting respectively

the non-overlapping constraint and the competition

term with respect to the data term.

In order to roughly extract the class of interest from the

point clouds, the scatter descriptor proposed by Lafarge

and Mallet (2012) is used to identify the points which

potentially correspond to trees.
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