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Abstract— In this paper we propose a robust algorithm that
generates an efficient and accurate dense 3D reconstruction
with associated semantic labellings. Intelligent autonomous
systems require accurate 3D reconstructions for applications
such as navigation and localisation. Such systems also need to
recognise their surroundings in order to identify and interact
with objects of interest. Considerable emphasis has been given
to generating a good reconstruction but less effort has gone
into generating a 3D semantic model.

The inputs to our algorithm are street level stereo image pairs
acquired from a camera mounted on a moving vehicle. The
depth-maps, generated from the stereo pairs across time, are
fused into a global 3D volume online in order to accommodate
arbitrary long image sequences. The street level images are
automatically labelled using a Conditional Random Field (CRF)
framework exploiting stereo images, and label estimates are ag-
gregated to annotate the 3D volume. We evaluate our approach
on the KITTI odometry dataset and have manually generated
ground truth for object class segmentation. Our qualitative
evaluation is performed on various sequences of the dataset
and we also quantify our results on a representative subset.

I. INTRODUCTION

In this paper we propose a robust computer vision algo-
rithm that uses images from stereo cameras mounted on a
vehicle to generate a dense 3D semantic model of an urban
environment. In our 3D model, every voxel is either assigned
to a particular object category like road, pavement, car, etc.,
free space or object’s interior. We are motivated by the fact
that autonomous robots navigating in an urban environment
need to determine their path and recognise the objects in
the scene [1], [21], [5] .

Currently most autonomous vehicles rely on laser based
systems which provide sparse 3D information [15] or a
locally metric topological representation of the scene [12].
Sparse laser-based systems lack the details that are re-
quired for classifying objects of interest [6], [18] and for
accurate boundary predictions [20]. To obtain an accurate
understanding of the scene, a dense metric representation is
required [16]. We show that such a representation can be
obtained using a vision based system. Moreover, compared
to normal cameras, the laser sensors are expensive and power
hungry, can interfere with other sensors, and have a limited
vertical resolution [9].

Recently, Newcombe et al. [16] proposed a system for
dense 3D reconstruction using a hand-held camera. The
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Fig. 1: 3D semantic reconstruction. The figure shows a sam-
ple output of our system. Dense 3D semantic reconstruction
along with class labels is shown in the left and the surface
reconstruction is shown in the right. Bottom right shows one
of the image corresponding to the scene.

dense model is generated from overlapping depth-maps com-
puted using every image pixel instead of sparse features,
thus adding richness to the final model. Geiger et al. [9]
proposed a method for fast dense reconstruction of road
scenes from stereo images. Their method uses a point cloud
representation which is updated by averaging the estimated
3D points and as a consequence, can quickly suffer from
accumulated drift.

In the context of object class segmentation, computer
vision algorithms have been effectively applied to the seman-
tics of road scenes [3]. These algorithms work in the image
domain where every pixel in the image is classified into an
object label such as car, road, pavement etc. Object class
segmentation in the image domain was extended to generate
a semantic overhead map of an urban scene from street level
images [20], or a coarse 3D interpretation in the form of
blocks in [10], and with a stixel representation in [7]. The
most related to our work is [14], where a joint representation
of object labelling and disparity estimation is performed in
the image domain. However, none of these methods deliver
a dense and accurate 3D surface estimation.

In this paper we perform a 3D semantic modelling for
large scale urban environments. Our approach is illustrated
in Fig. 2 and a sample output of our system is shown
in Fig. 1. The input to our system is a sequence of cali-
brated, stereo image pairs rectified so that the image scan
lines correspond to epipolar lines. We use a robust visual
odometry method with effective feature matching to track
the camera poses (§ II-A). The estimated camera poses are
used to fuse the depth-maps generated from stereo pairs,
producing a volumetric 3D representation of the scene. This



Fig. 2: System Overview. (a) Shows the input to our method which is a sequence of rectified image pairs. The disparity map
(b) is computed from the images and (c) is the camera track estimation. The outputs of (b) and (c) are merged to obtain
a volumetric representation of the scene (d). (e) shows the semantic segmentation of the street images which is then fused
into a 3D semantic model of the scene (f). Best viewed in colour.

is done online to enable reconstruction over long street image
sequence (§ II-B). In parallel, the pixels in the input views
are semantically classified using a CRF model. The label
predictions are aggregated across the sequence in a robust
manner to generate the final 3D semantic model (§ II-C).
We evaluate both object labelling and odometry results our
method on the KITTI [8] dataset.

II. SEMANTIC 3D RECONSTRUCTION OF THE WORLD

In this section we explain the individual stages of the
semantic 3D reconstruction pipeline in detail.

A. Camera Pose Estimation

The camera pose estimation has two main steps, namely
feature matching and bundle adjustment. We assume cali-
brated stereo cameras positioned on a rigid rig.

Fig. 3: Bundle adjustment results, showing camera centres
and 3D points, registered manually to the Google map.

Feature matching: The feature matching comprises of
two stages, stereo matching and frame by frame matching.
For stereo matching we try to find potential matches across
the epipolar line based on the sum of squared differences
score of an 8× 8 patch surrounding the candidate pixel (for
an image of resolution 1241× 376). Each potential match is
cross-checked to ensure it lies in a valid range (i.e. minimum
depth/maximum disparity magnitude) and the fact that points
must be in front of both cameras. The image matches are
cross-checked for both left-right and right-left pairs and the
agreed matches are kept. After the list of stereo matches is
obtained, we perform frame to frame matching for both left
and right images. The basic approach is similar to the stereo
matching framework, except that we do not rely on epipolar
constraints.

Once the matches are computed, the corresponding feature
tracks are generated. All the stereo matches which also have
corresponding frame-to-frame matches are kept in the track.
Having this agreement between both the stereo and ego-
motion helps the bundle adjuster to estimate the camera
poses and feature points more accurately by rejecting false
matches, and simplifies the feature point initialisation phase
in the bundle adjuster. We use a bundle method where our
optimiser estimates camera poses and the associated features
viewed by the last n cameras, leading to lower accumulated
drift by reducing noise over n frames. In our experiments
we set n = 20 which we found to be a good compromise
between speed and accuracy. The example result of bundle
adjustment is shown in Fig. 3, where the camera track and
the 3D points are overlayed manually on the Google map
demonstrating a near perfect match between the tracked
camera positions and the actual street layout.

B. Surface Reconstruction
For generating the surface, we first estimate the depth

maps from stereo pairs. These are merged using the Trun-
cated Signed Distance Function (TSDF) and finally a mesh is
created using marching tetrahedra algorithm. The individual
steps are described in detail below.



Depth Map Generation: Given a rectified stereo image
pair, a depth map is computed from the disparity image as:
zi = B.f/di, where zi and di are the depth and the disparity
corresponding to the ith pixel respectively. The terms B and
f are the camera baseline and the focal length, which are
computed from the camera matrix. The disparity is computed
using the OpenCV implementation of Semi-Global Block
Matching (SGBM) method [11]. The depth values are clipped
based on a permissible disparity range.

TSDF Volume Estimation: Each depth map with es-
timated camera parameters is fused incrementally into a
single 3D reconstruction using the volumetric TSDF repre-
sentation [4]. A signed distance function corresponds to the
distance to the closest surface interface (zero crossing), with
positive values corresponding to free space, and negative
values corresponding to points behind the surface. The
representation allows for the efficient registration of multiple
surface measurements, by globally averaging the distance
measures from every depth map at each point in space.

We assume that the depth of the true surface lies within
±µ of the observed values from the depth maps. So the
points that lie in the visible space at a distance greater than
µ are truncated to µ. The points beyond µ in the non-visible
side are ignored. The TSDF values are computed for each
depth map. They are merged using an approach similar to
[16] where an averaging of all TSDF’s is performed. This
smoothens out the irregularities in the surface normals of
the individual depth estimate computed from a single stereo
pair.

Online Volume Update: As we are reconstructing road
scenes which can run from hundreds of meters to kilometers,
we use an online grid update method. We consider an active
3×3×1 grid of voxel volumes at any time of the fusion. We
allow for only one volume in the vertical direction assuming
minor elevation changes compared to the direction of motion.
For every new depth map, the grid is updated. As the vehicle
track goes out of the range of current grid, the current grid
blocks are written to memory and a new grid is initialised.
This allows us to handle arbitrarily long sequence without
losing any granularity of the surface.

Triangulated Meshing using Marching Tetrahedra:
In order to obtain a complete meshed surface, we first
infer an iso-surface from the TSDF field by finding all
the zero crossings. Then we use the Marching Tetrahedra
algorithm [17] to extract a triangulated mesh of the zero
valued iso-surface. Fig. 4 shows an example output of the
surface reconstruction. The reconstructed model captures fine
details which is evident with the pavements, cars, road and
vegetation. Once the rendered mesh is obtained, the faces of
the mesh are associated with object class labellings. This is
more efficient than performing labelling of all the 3D points
and still produces a dense labelling.
C. Semantic Model Generation

We use a Conditional Random Field (CRF) based approach
that performs a pixel-wise classification on the street level
images similar to [13] which is briefly described below.
Consider a set of random variables X = {X1, X2, . . . , Xn},

Fig. 4: Volumetric surface reconstruction. Top figure shows
the 3D surface reconstruction over 250 frames (KITTI se-
quence 15, frames 1-250) with street image shown at the
bottom. The arrow highlights the relief of the sidewalk which
is correctly captured in the 3D model.

where each variable Xi ∈ X takes a value from a pre-
defined label set L = {l1, l2, . . . , lk}. A labelling x refers
to any possible assignment of labels to the random variables
and takes values from the set L = LN . The random field is
defined over a lattice V = {1, 2, . . . , N}, where each lattice
point, or pixel, i ∈ V is associated with its corresponding
random variable Xi. Let N be the neighbourhood system
of the random field defined by sets Ni,∀i ∈ V , where Ni
denotes the set of all neighbours (usually the 4 or 8 nearest
pixels) of the variable Xi. A clique c is defined as a set
of random variables Xc which are conditionally dependent
on each other. The corresponding energy E(x) is given by:
E(x) =

∑
c∈C ψc(xc), where the term ψc(xc) is known as

the potential function of the clique c, and C is the set of all
the cliques. The most probable or maximum a posteriori la-
belling x∗ of the CRF is defined as: x∗ = argminx∈LE(x).
The energy minimisation problem is solved using a graph-cut
based Alpha Expansion algorithm [2].

Street Level Image Segmentation: For our application,
the label set is L = {pavement, building, road, vehicle, veg-
etation, signage, pedestrian, wall/fence, sky, post/pole}. We
used the associative hierarchical CRF [13] which combines
features and classifiers at different levels of the hierarchy
(pixels and superpixels). The Gibbs energy for a street-level
image is:

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψij(xi, xj) +∑
i∈V,j∈Ni

ψdij(xi, xj) +
∑
c∈C

ψc(xc) (1)



Fig. 5: Label fusion scheme. The white dots Zfi are the sam-
pled points on the face of a mesh triangle. The corresponding
image points xjfi are obtained by projecting the face points
onto the labelled street image. The mesh is labelled with the
class label with the most votes on the mesh face.

Unary potential: The unary potential ψi describes the
cost of a single pixel taking a particular label. We have used
the multi-feature variant of the TextonBoost algorithm [13].

Pairwise potentials: The pairwise term ψij is an edge
preserving potential which induces smoothness in the solu-
tion by encouraging neighbouring pixels take the same label.
It is defined over an neighbourhood of eight pixels taking the
form of a contrast sensitive Potts model:

ψij(xi, xj) =

{
0 if xi = xj ,

g(i, j) otherwise, (2)

, where the function g(i, j) is an edge feature based on the
difference in colours of neighbouring pixels [13], defined as:

g(i, j) = θp + θv exp(−θβ ||Ii − Ij ||22), (3)

where Ii and Ij are the colour vectors of pixels i and j
respectively. θp, θv , θβ ≥ 0 are model parameters set by cross
validation. The disparity potential ψdij(xi, xj) takes the same
form as the pairwise potential but operates on the disparity
image, where neighbouring pixels with similar disparity are
encouraged to take same labels. Adding information from
both image and disparity domain helps us to achieve more
consistent results (we give equal importance to both these
terms). An alternative potential based on the full depth map
could be considered, however the back projected points can
be sparse in the image domain, which is not suitable for the
per-pixel inference used here.

Higher Order Potential: The higher order term ψc(xc)
describes potentials defined over overlapping superpixels as
described in [13]. The potential encourages the pixels in a
given segment to take the same label and penalises partial
inconsistency of superpixels. This captures longer range
contextual information.

Semantic Label Fusion : Once the street level image
segmentations are obtained, the label predictions are fused
as follows: for each triangulated face f in the generated

Fig. 6: Semantic image segmentation: The top row shows
the input street-level images and the middle row shows
the output of the CRF labeller. The bottom row shows the
corresponding ground truth for the images.

mesh model, we randomly sample i points (Zfi ) on the
face. The points are projected back in to K images using
the estimated camera pose (P k), resulting in a set of image
points (xkfi ). The label predictions for all those image points
are aggregated and the majority label is taken as the label
of the face in the output model. The label histogram Zf for
the face f is given as:

Zf =
1 +

∑
i∈Zfi

∑
k∈K δ(x

k
i = l)

|L|
(4)

where l is a label in our label-set L and |L| is the number of
the labels in the label set. This provides a naive probability
estimation for a mesh face taking label l. We set i = 10
in our experiments. The fusion step is illustrated in Fig. 5.
The white dots in the model (top) are projected back to
the images. The class label prediction of all those image
points are aggregated to generate the histogram of labels
and the final label prediction is made accordingly. Instead
of considering all the points in the face triangle, sampling
a few random points is fast, provides robustness to noise
and avoids aliasing problems. This is better than considering
only the face vertices label in the image because in the final
model the face vertices’ labels are likely to coincide with the
object class boundary.

III. EXPERIMENTS

To demonstrate the effectiveness of our proposed system,
we have used the publicly available KITTI dataset [8] for our
experiments. The images are 1241 × 376 at full resolution.
They are captured using a specialised car in urban, residential
and highway locations, making it a varied and challenging
real world dataset. We have manually annotated a set of 45
images for training and 25 for testing with per-pixel class
labels. The class labels are road, building, vehicle, pedestrian,
pavement, tree, sky, signage, post/pole, wall/fence1 .

We evaluate our camera pose estimation using two metrics,
translation error (%) and rotation error (degrees/m) over an
increasing number of frames with the ground truth provided
by [8] of sequence 8 (see table I). We evaluate our sliding
window bundle method (full ) and a fast variant of that. The

1available at http://cms.brookes.ac.uk/research/visiongroup/projects.php



TABLE I: Odometry results: Translational and rotational
error with increasing number of frames.

Trans. Error (%) Rot. error (degs/m)
Length (frames) fast full fast full

5 12.2 12.15 0.035 0.032
10 11.84 11.82 0.028 0.026
50 8.262 8.343 0.021 0.018
100 4.7 4.711 0.019 0.013
150 3.951 3.736 0.017 0.01
200 3.997 3.409 0.015 0.009
250 4.226 3.209 0.013 0.007
300 4.633 3.06 0.012 0.007
350 5.057 2.939 0.011 0.006
400 5.407 2.854 0.01 0.004

fast method performs the Levenberg-Marquardt minimisation
for two successive frame pairs to estimate camera pose and
the feature points. As expected the average error for the full
method reduces with increasing number of frames. Also the
absolute magnitude of error for the fast method is larger
than compared to the full method. Our full bundle method
runs takes around 3.5 seconds per frame on a single core
machine. However the fast method runs at approximately 4
fps. The feature extraction takes about 0.02 seconds, feature
matching (both stereo and frame to frame) takes 0.2 seconds
per frame. For disparity map extraction we use OpenCV
implementation of semi-global block matching stereo [11]
which takes around 0.5 seconds for the full sized 1280×376
image. The TSDF stage is highly parallelisable as each voxel
in the TSDF volume can be treated separately. Currently,
our implementation considers around 10 million voxels per
3×3×1 grid of TSDF volume, running on a single core. All
these steps can be optimised using the GPU implementation
[19].

Fig. 6 shows the qualitative results of the street level
image segmentation using our CRF framework. The first
column shows the street-level images captured by the vehicle.
The second and the third column show the semantic image
segmentation of the street images and the corresponding
ground truth. A qualitative view of our 3D semantic model
is shown in Fig. 7. The arrows relate the positions in the
3D model and the corresponding images. We can see in

Fig. 7: Closeup view of the 3D model. The arrows relate the
image locations and the positions in the 3D model.

Fig. 8: Semantic model of the reconstructed scene overlayed
with the corresponding Google Earth image. The inset image
shows the Google earth track of the vehicle.

(a), both fence and pavement are present in the model as
well as the associated images. The model can capture long
and thin objects like posts as shown in (b). The circle in
the image (c) shows the car in the image, which has been
captured correctly in the final model. In (d) arrows show the
vegetation and the car respectively. In Fig. 8, a large scale
semantic reconstruction, comprising of 800 frames from
KITTI sequence 15, is illustrated. An overhead view of the
reconstructed model is shown along with the corresponding
Google Earth image. The inset image shows the actual path
of the vehicle (manually drawn).

Next we describe the quantitative evaluation. For object
level classification, we use an approach similar to [20].
As generating ground truth data for large sequences is
expensive, we evaluate our model by projecting the semantic
labels of the model back into the image domain using the
estimated camera poses. Points in the reconstructed model
that are far away from the particular camera (> 20m) are
ignored. The projection is illustrated in Fig. 9. We show
quantitative results on two metrics, recall and intersection
vs union measures, for both street image segmentation and
semantic model. Our results are summarised in table II.
‘Global’ refers to the overall percentage of pixels correctly

Fig. 9: 3D semantic model evaluation. (a) shows the 3D
semantic model. (b) shows the input image (top), correspond-
ing image with labels back-projected from the 3D model
(middle) and the ground truth image (bottom).
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Image Segmentation 97.0 93.4 93.9 98.3 48.5 91.3 49.3 81.68 88.4

Semantic Model 96.1 86.9 88.5 97.8 46.1 86.5 38.2 77.15 85
Intersection vs Union
Image Segmentation 86.1 82.8 78.0 94.3 47.5 73.4 39.5 71.65

Semantic Model 83.8 74.3 63.5 96.3 45.2 68.4 28.9 65.7

TABLE II: Semantic Evaluation: Pixel-wise percentage accu-
racy on the test set, Recall= True Positive

True Positive + False Negative , Intersection vs

Union= True Positive
True Positive + False Negative + False Positive

Fig. 10: Model Depth Evaluation

classified, and ‘Average’ is the average of the per class
measures. In this evaluation we have not considered the class
‘sky’ which is not captured in the model. Due to lack of
test data we have also not included the classes ‘pedestrian’
and ‘signage’ in our evaluation. As expected, after back-
projection the classification accuracy for the model reduces
due to errors in camera estimate, when compared with street
image segmentation results. This would especially affect the
thin object classes like ‘poles/posts’ where small error in
projection leads to large errors in the evaluation. Classes
like ‘vegetation’, where the surface measurement tends to
be noisy, have increased error in classification. Our system
is designed to model static objects in the scene, which causes
an adverse effect when considering moving objects such
as cars which is reflected in the results. To evaluate the
accuracy of the structure, we use the ground truth depth
measurement from Velodyne lasers as provided in [8]. The
depth measurements from both the Velodyne lasers (δgi ) and
our generated model (δi) are projected back into the image
and evaluated. We measure the number of pixels that satisfy
|δi − δgi | ≥ δ, where δ is the allowed error in pixels. The
results of our method are shown in Fig. 10. δ ranges between
1 to 8 pixels. It can be noted that the estimated structural
accuracy at δ = 5 pixels is around 88% which indicates the
performance of the structure estimation.

IV. CONCLUSION

We have presented a novel computer vision-based system
for 3D semantic modelling and reconstruction of urban
environments. The input to our system is a stereo video
feed from a moving vehicle. Our system robustly tracks the
camera poses which are used to fuse the stereo depth-maps
into a TSDF volume. The iso-surface in the TSDF space
corresponding to the scene model is then augmented with
semantic labels. This is done by fusing CRF-based semantic
inference results using the input frames. We have demon-
strated desirable results both qualitatively and quantitatively
on a large urban sequence from the KITTI dataset [8]. In
future we would like to perform semantic labelling and
reconstruction jointly, where we would like to exploit the
depth while performing object labelling. We believe this will
improve the overall performance of our system.
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