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Abstract— This paper describes a method for producing a
semantic map from multi-view street-level imagery. We define
a semantic map as an overhead, or bird’s eye view of a region
with associated semantic object labels, such as car, road and
pavement. We formulate the problem using two conditional
random fields. The first is used to model the semantic image
segmentation of the street view imagery treating each image
independently. The outputs of this stage are then aggregated
over many images to form the input for our semantic map
that is a second random field defined over a ground plane.
Each image is related by a simple, yet effective, geometrical
function that back projects a region from the street view image
into the overhead ground plane map. We introduce, and make
publicly available, a new dataset created from real world data.
Our qualitative evaluation is performed on this data consisting
of a 14.8 km track, and we also quantify our results on a
representative subset.

I. INTRODUCTION

In this paper, we introduce a computer vision based system
exploiting visual data for semantic map generation. Images
can be acquired at a low cost and provide much more
informative features than laser ranger scans. This makes
our application unique compared to those that use other
modalities for recognition and semantic mapping [4], [9],
[17], [18], [19]. Another important motivation for using
visual data is that it can be captured at high frequency and
resolution, allowing us to classify all the individual pixels
in the image rather than a sparse set of returns from a laser
scan [20], [21]. We call this dense visual semantic mapping.

The ability to automatically create outdoor mapping data
with semantic information is valuable for many robotic
tasks such as determining drivable regions for autonomous
vehicles [7], navigating structured environments [25], and
interacting with objects [5].

Our method for performing semantic mapping combines
two distinct conditional random fields (CRF). The first CRF
works with a stereo pair (or more) of images taken from
synchronized cameras on the vehicle, feeding into and
updating the second that globally optimizes the semantic
map. We chose to use CRFs as promising results have been
demonstrated on street-level imagery [23], [15]. The two
CRFs’ are linked via a homography. The two stage process
enables us to model spatial contextual relations in both the
image domain as well as on the ground plane. CRFs are
flexible probabilistic models, so that other suitable modalities
of data could be included into our framework in the future.

We evaluate our method on a subset of data that covers all
the roadways of the United Kingdom captured by YottaDCL
[8]. Their capturing process is performed by a specialized

Fig. 1. Dense Semantic Mapping. Top: Visualization of the route taken by
a specialized van to capture this street level imagery that we use to evaluate
our method. The Semantic map (bottom) is shown for the corresponding
track along with some example street view images. The palette of colours
shows the corresponding class labels. Best viewed in colour.

vehicle, see Fig. 5, fitted with two frontal, two sideways and
two rear cameras. The vehicle also has GPS and odometry de-
vices so that its location and camera tracks can be determined
accurately. Our qualitative evaluation is performed on an area
that covers 14.8 km of varying roadways. We have hand
labelled a relatively small, but representative set of these
images with per-pixel labels for training and quantitative
evaluation. All 6 views of our 14.8km track are publicly
available along with the annotation data1. We hope that
this stimulates further work in this area. This type of data
along with our formulation allows us to aggregate semantic
information over many frames, providing a robust classifier.
Some results are shown in Fig. 1 along with the associated
Google Earth [11] satellite view and our street-level images.
For a graphical overview of the proposed system see Fig. 2.

In summary our main contributions are:

• We introduce the problem of dense semantic mapping

1Please see http://cms.brookes.ac.uk/research/visiongroup/projects.php



Fig. 2. Overview of our Algorithm (a) Each image is treated independently and each pixel in the image is classified, giving a labelling x∗ ( §II-A). (b) A
homography gives the relationship between the pixel on the ground plane to a pixel in a sub-set of the images, where the ground pixel is visible ( §II-B).
Tm denotes the set of the image pixels that correspond to the ground plane pixel zm. (c) The CRF producing a labelling of the ground plane, or a semantic
map ( §II-C).

from multiple view street level imagery: §I.
• We define a CRF model to address the problem: §II.
• We make publicly available a street-level dataset

with multiple views, camera tracks and partially hand
labelled ground truth to stimulate research in the
area: §III.

II. CONDITIONAL RANDOM FIELD MODEL

We model the problem of dense visual sematic mapping
using two CRFs. In this section we fist introduce notations
[23] and then define both models and a homography that
links them together.

Conditional Random Field Notation: Consider a set
of random variables X = {X1, X2, . . . , Xn}, where each
variable Xi ∈ X takes a value from a pre-defined label
set L = {l1, l2, . . . , lk}. A labelling x refers to any possible
assignment of labels to the random variables and takes values
from the set L = LN . The random field is defined over a
lattice V = {1, 2, . . . , N}, where each lattice point, or pixel,
i ∈ V is associated with its corresponding random variable
Xi. Let N be the neighbourhood system of the random field
defined by sets Ni,∀i ∈ V , where Ni denotes the set of all
neighbours (usually the 4 or 8 nearest pixels) of the variable
Xi. A clique c is defined as a set of random variables Xc

which are conditionally dependent on each other. The pos-
terior distribution Pr(x|D) = 1

Z exp(−
∑
c∈C ψc(xc)) over

the labellings of the CRF is a Gibbs distribution, where the
term ψc(xc) is known as the potential function of the clique
c, and C is the set of all the cliques. The corresponding Gibbs
energy E(x) is given by: E(x) = − log Pr(x|D) − logZ,
or equivalently E(x) =

∑
c∈C ψc(xc) The most probable or

maximum a posteriori labelling x∗ of the CRF is defined as:
x∗ = argmaxx∈L Pr(x|D) = argminx∈LE(x).

A. Semantic Image Segmentation

For this part of our semantic mapping system we use an
existing computer vision system [14] that is competitive to

state-of-the art for general semantic image segmentation [10]
and leading the field in street scene segmentation within the
computer vision community [23]. We give a brief overview
of their method here with respect to our application. Our
label set is L = {pavement, building, road, vehicle, tree, shop
sign, street-bollard, misc-vegetation, pedestrian, wall-fence,
sky, misc-pole, street-sign}. We used the associative hierar-
chical CRF [14] which combines features and classifiers at
different levels of the hierarchy (pixels and superpixels). The
Gibbs energy for a street-level image is

ES(x) =
∑
i∈V

ψSi (xi) +
∑

i∈V,j∈Ni

ψSij(xi, xj) +
∑
c∈C

ψSc (xc).

(1)
Unary potential: The unary potential ψSi describes the

cost of a single pixel taking a particular label. It is learnt as
the multiple-feature variant [14] of TextonBoost algorithm
[22].

Pairwise potential: The 4-neighbourhood pairwise term
ψSij takes the form of a contrast sensitive Potts model:

ψSij(xi, xj) =

{
0 if xi = xj ,

g(i, j) otherwise, (2)

where the function g(i, j) is an edge feature based on the
difference in colours of neighbouring pixels [1], defined as:

g(i, j) = θp + θv exp(−θβ ||Ii − Ij ||22), (3)

where Ii and Ij are the colour vectors of pixels i and j
respectively. θp, θv , θβ ≥ 0 are model parameters which can
be set by cross validation. Here we use the same parameters
as [23] as we have a limited amount of labelled data and our
street views are similar in style to theirs. The intensity-based
pairwise potential at the pixel level induces smoothness of
the solution encouraging neighbouring pixels take the same
label.

Higher Order Potential: The higher order term ψSc (xc)
describes potentials defined over overlapping superpixels



Fig. 3. Semantic Image Segmentation: The top row shows the input street-level images followed by the output of our first CRF model. The last row shows
the corresponding ground truth for the images. Best viewed in colour.

obtained using multiple unsupervised meanshift segmenta-
tions [6]. The potential models the likelihood of pixels in
a given segment taking similar label and penalizes partial
inconsistency of superpixels. The costs are learnt using bag-
of-words classifier. Please read [14] for more details. The
energy minimization problem is solved using graph-cut based
alpha expansion algorithm [2].

B. Homography
In this section we describe how the image and the ground

plane are related through a homography. We use a simplify-
ing assumption that the world comprises of single flat ground
plane. Under this assumption we estimate heuristically a
frontal rectangular ground plane patch for each image, using
the camera viewing direction and camera height; we assume
a constant camera height. For computing the camera viewing
direction we refer to [12]. Each ground plane pixel zi in
the ground plane patch is back-projected into the the kth

image Xk, as xkj = P kzi, where P k is the corresponding
camera matrix. This then allows us to define the set Ti of
valid ground plane to image correspondences (as shown in
Fig. 2(b) ). Fig. 4 shows an example ground plane patch and
a registered corresponding image region. Any object such
as the green pole (Fig. 4(a)), that violates the flat world
assumption will thus create an artifact on the ground plane
that looks like a shadow, seen in the circled area in Fig. 4(a).
If we only have a single image then this shadowing effect
would cause the pole to be mapped onto the ground plane
incorrectly as seen in Fig. 4(b). If we have multiple views of
scene then we will have multiple shadowing effects. These

shadows will overlap where the violating object meets the
ground, as seen in Fig. 4(c). This is precisely the part of the
object we are interested while building an overhead map.
Also the flat ground around the object, shown in blue, will
be correctly mapped in more views. This means that if we use
voting over many views we gain robustness against violations
of the flat world assumption.

C. Dense Semantic Map

Our semantic map that represents the ground plane as if
being viewed from above and is formulated as a pairwise
CRF. The energy function for the map EM is defined over
the random variables Z = {Z1, Z2, ..., ZN} corresponding
to the ground plane map pixels as

EM (z) =
∑
i∈V

ψMi (zi) +
∑

(i,j)∈E

ψMij (zi, zj), (4)

With the same label set as that of the image domain (§II-A),
except for sky that should not be on the ground plane.

Unary potential: The unary potential ψMi (zi) gives the
cost of the assignment: Zi = zi. The potential is calculated
by aggregating label predictions from many semantically
segmented street-level images (§II-A) given the registration
(§II-B). The unary potential ψMi (zi = l) is calculated as:

ψMi (zi = l) = −log(
1 +

∑
t∈Ti

δ(xt = l)ct

|L|+
∑
t∈Ti

ct
) (5)

where |L| is the number of the labels in the label set. Ti
denotes the set of image plane pixels with valid registration
via the homography as defined in II-B. The factor ct is used



Fig. 4. Flat World Assumption: In order to find a mapping between the local street level images to our global map a we use a the simplifying assumption
that the world is flat. The camera’s rays act like a torch, depicted in yellow in (a). The green pole, which violates this assumption creates an artifact on
the ground plane that looks like a shadow, seen in the circled area in (a). With single image, the shadowing effect would cause the pole to be mapped
onto the ground plane incorrectly as seen in (b). With multiple views of scene, we have multiple shadowing effects. These shadows overlap where the
violating object meets the ground, as seen in (c). Each view votes onto the ground plane, results in more votes for the correct label. (d) shows the effect
of the multiple views from different cameras. Best viewed in colour.

to weight the effect of the image plane pixel contributing
to the ground plane. Ideally we would like to have a
lower weight for all the image pixels that are farther away
from that camera, but due to lack of the training data we
weight all the pixels uniformly. This kind unary potential
represents a form of naive Bayes probabilistic measure which
is easy to update in an online fashion. This voting scheme
captures information across multiple views and time inducing
robustness in the system.

Pairwise potential: The pairwise potential ψMij (zi, zj)
represents the cost of the assignment: Zi = zi and Zj = zj
and takes the form of a Potts model:

ψMij (zi, zj) =

{
0 if zi = zj ,
γ otherwise, (6)

The pairwise potential encourages smoothness over the
ground plane. A strong hypothesis for a particular label in
the ground plane position is likely to be carried over to its
neighbours. Thus, for uncertain regions, this property will
help in getting correct labelling. The pairwise parameter γ,
is set manually by eye on unlabelled validation data.

III. EXPERIMENTS

For qualitative and quantitative evaluation of our method,
we create a dataset that is 14.8 km long captured by
YottaDCL2 using a specialized road vehicle with 6 mounted
cameras, 2 frontal, 1 either side and 2 rear facing. The van
used to capture the data is depicted in Fig. 5.

YottaDCL Pembrokeshire Dataset: Our dataset com-
prises of an 8000 long sequence of images captured from
each camera at every 2 yards (approximately 1.8 meters)
interval in the Pembrokeshire area of the United Kingdom.
The images at full resolution are 1600 × 1200. This area
contains urban, residential, and some rural locations making
it a quite varied and challenging real world dataset. The
camera parameters, computed from the GPS and odometry
information are also provided. We have manually selected a

2This data has been used in the past for real-world commercial applica-
tions and has not been designed for the purpose of this paper. Please see
http://www.yottadcl.com/

Fig. 5. YottaDCL van: The van used to capture the data by YottaDCL [8]
with 6 mounted cameras, 2 frontal, 1 either side and 2 rear facing. Some
images captured by the van are also shown.

small set of 86 images from this sequence for ground truth
annotation with 13 object classes, 44 of the labelled images
are used for training the potentials of ES and remaining
42 are used for testing. The 13 labels are road, build-
ing, vehicle, pedestrian, pavement, tree, misc-vegetation,
sky, street-bollard, shop-sign, post-pole, wall-fence, street-
signage. For evaluation, we measure the global number of
correctly labelled pixels over all classes on the re-projected
results into the image plane using the registration process.

Results: Fig. 3 shows the output of the first level of our
CRF framework. The first row shows the street-level images
captured by the vehicle. The second and the third row show
the semantic image segmentation of the street images and the
corresponding ground truth. For computational efficiency we
have downsampled the original image size into 320 × 240.
Fig. 6 shows the map and corresponding street imagery. The
arrows shows the positions on the ground plane map where
the image objects are located. We can see in Fig. 6(a) a T-
junction and cars can be seen in both the map and images.
Similarly in Fig. 6(b) the cars are shown in the map. In Fig.
6(c) a car-park (modelled as road) and a fence are shown in
both map and the images and finally in Fig. 6(d) we see the



buildings and the pavement in the map. In the semantic map
we do not have the sky as it lies above the horizon in the
street images and are not captured in the ground plane-image
registration. The classes like road, pavement, building, fence,
vehicle, vegetation, tree which have long range contextual
information and span across many images, appear more
frequently in the map. For the similar reason, the smaller
objects classes like pedestrian, post-pole, street-signage do
not show up often. This is because the images are taken
at approximately every two yards, so the objects without
a long range contextual information tend not to appear in
the map. Quantitatively, we achieve a global pixel accuracy
of 82.9%. Fig. 7 shows another output of our algorithm,
where the map spans a distance of 7.3km. Both the vehicle
track (white track on Google Earth) and the semantic map
output (overlaid image) is shown. The map building for this
example takes 4000 consecutive frontal street-level images
as the input.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a framework where we generate a
semantically labelled overhead view of an urban region
from a sequence of street-level imagery. We formulated the
problem using two conditional random fields. The first one
performs semantic image segmentation locally at the street
level and the second updates a global semantic map. We have
demonstrated results for a track of 7.3 km showing object
labelling of the map.

In the future we aim to scale the work to much larger
regions, and even the whole of the U.K. This poses a
challenge of accommodating the variety of visual data for
classification, taken across geographical locations spanning
thousands of km’s of roadways. We would like to go beyond
the current flat world assumption and create a dense semantic
reconstruction using the multiple street view images. We also
aim to increase the computational efficiency of the system.
For this we would like to speedup the feature calculation
using GPU or FPGA implementation of the same and use
computationally efficient binary features like [3], [16]. The
inference stage can be made faster using dynamic approaches
for MAP solutions [13] or the more recent fast mean-field
based approach [24]. We hope that these measures will
improve the overall system time to deploy it in a real vehicle.
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Fig. 6. Overhead Map with some associated images. The arrow shows the positions in the map where the image were taken. In (a) we see from the
image there is a T-junction, which is also depicted in the map. The circle in the image (b) shows the car in the image, which has been labelled correctly
in the map. Similarly in (c) the fence and the carpark from the images are also found in the map. In (d) arrows showing the pavement and the buildings
being mapped correctly. Best viewed in colour.

Fig. 7. Map output 2 Semantic Map showing a road path of 7.3km in the Pembroke city, UK. The Google Earth image (shown only for visualization
purpose) shows the actual path of the vehicle (in white). The top overlaid image shows the semantic map output corresponding to the vehicle path. Best
viewed in colour.


