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Abstract— Today’s autonomous vehicles rely extensively on
high-definition 3D maps to navigate the environment. While
this approach works well when these maps are completely up-
to-date, safe autonomous vehicles must be able to corroborate
the map’s information via a real time sensor-based system. Our
goal in this work is to develop a model for road layout inference
given imagery from on-board cameras, without any reliance
on high-definition maps. However, no sufficient dataset for
training such a model exists. Here, we leverage the availability
of standard navigation maps and corresponding street view
images to construct an automatically labeled, large-scale dataset
for this complex scene understanding problem. By matching
road vectors and metadata from navigation maps with Google
Street View images, we can assign ground truth road layout
attributes (e.g., distance to an intersection, one-way vs. two-
way street) to the images. We then train deep convolutional
networks to predict these road layout attributes given a single
monocular RGB image. Experimental evaluation demonstrates
that our model learns to correctly infer the road attributes
using only panoramas captured by car-mounted cameras as
input. Additionally, our results indicate that this method may
be suitable to the novel application of recommending safety
improvements to infrastructure (e.g., suggesting an alternative
speed limit for a street).

I. INTRODUCTION

The effort to develop autonomously driven cars has seen
tremendous progress in recent years. Several automobile
manufacturers and technology companies have showcased
cars that can now drive on their own in a variety of settings,
including highways and limited urban environments. How-
ever, for precise car localization and access to road layout
information, these systems rely on ultra high-definition (HD)
maps that must be pre-scanned prior to deployment of a
driverless vehicle. While this is an adequate approach when
up-to-date maps and strong GPS signals (to initialize the
car’s localization) are available, such a dependency leaves
autonomous vehicles vulnerable to malfunctioning in their
absence. These high-definition maps can become inaccurate
as construction and road modifications occur. Addition-
ally, skyscrapers and other infrastructure often impede GPS
signals, limiting the viability of self-localization in urban
settings [1].

In this work, our goal is to develop a model that estimates
a set of road layout attributes given a single RGB street
view image captured by a car’s on-board camera (Figure
1). Included in this attribute set are driveable path headings,
distances to intersections, traffic directionality (one-way vs.
two-way), and several others (see Sec. IV for a complete
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Fig. 1. Given a street view image, our model learns to estimate a set of
driving-relevant road layout attributes. The ground truth attribute labels for
model training are automatically extracted from standard navigation maps.

list with descriptions). Such a system can serve as a backup
for safety and reliability, corroborating the HD map in real
time. In any technology where fatal consequences result
from incorrect functioning, this minimal level of redundancy
is essential. Additionally, if this map-like information can
be inferred on the fly, autonomous cars may eventually be
unrestricted, able to venture beyond the boundaries of high-
definition maps.

However, road layout inference is quite a challenging task.
There exists substantial variability in types of intersections,
street/lane width, and road appearance, especially in urban
environments. Additionally, because of infrastructure, vege-
tation, and other vehicles, portions of the road and upcoming
intersections are often occluded. Having a very large amount
of training data is absolutely crucial to developing a well-
generalized model.

Here, we leverage the availability of street view image
databases and standard navigation maps to construct a large-
scale dataset1 for this complex scene understanding task.
By harnessing this source of images and corresponding map
information, we bypass both manual image capturing (e.g.,
with a data-collection vehicle [2]) and intensive manual
annotation of ground truth labels.

To construct this dataset, we gather one million Google
Street View (GSV) images to serve as input instances to
our model. These images are similar to those acquired
by today’s highly abundant and inexpensive car-mounted
cameras, albeit they are panoramas with a slightly higher
mount point. In order to label the images with a ground
truth description of the driving scene, we extract information
from OpenStreetMap2 (OSM). As an open-source map, OSM

1All code, data, and pre-trained models are available at http://www.
cs.princeton.edu/˜aseff/mapnet.

2www.openstreetmap.org
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Fig. 2. Two Google Street View images are shown from the same segment
of Eddy St., San Francisco in 2009 (left) and 2014 (right). Our trained model
can handle infrastructure modifications over time without re-annotation,
correctly identifying the scene on the left as a one-way street and the right
as a two-way street.

stores road vectors and descriptive metadata that are freely
available for download.

Given this high volume of annotated data, the road
attribute inference problem becomes amenable to a deep
learning approach. Here, we exploit the recent success of
convolutional neural networks (ConvNets) across a range of
computer vision tasks and train models for this specific prob-
lem. Standard ConvNet architectures equipped for classifica-
tion or regression allow for estimating both categorical and
numerical road attributes. Importantly, the trained models can
cope with modifications to infrastructure over time without
any re-annotation (Figure 2).

The contributions of this work are three-fold: (1) We
construct an automatically-labeled image dataset for road
layout inference larger than any previously available. (2) We
demonstrate that convolutional networks may be trained on
this self-supervised data to accurately predict a set of road
scene attributes given a single RGB panorama, without any
reliance on HD maps. (3) We further find that such models
may also be employed to recommend improvements to city
infrastructure (e.g., recommending an alternative speed limit
for a road) if the ground truth attribute set for a road does
not match the set indicated by its visual appearance.

II. RELATED WORK

Here we review work spanning road layout inference, deep
learning as applied to autonomous driving, and the use of
OSM/GSV data for developing other applications.

Estimating road layout from sensor input: In [1], Geiger
et al. aimed to estimate intersection topology and geometry
as well as localize other traffic using a set of hand-crafted
image features. In contrast to our work, they used stereo
imagery from a small-scale dataset of 113 manually labeled
intersections. In addition, their probabilistic model reasoned
over multi-frame videos leading up to each intersection,
while our model performs inference using a single monocular
image as input. Yao et al. recently utilized a structured
SVM coupled with edge, color, and homography features to
segment the collision-free space in monocular video [3]. In
our work, the set of driveable path headings (without regard
to traffic) is one of several road attributes our model learns
to estimate from a single frame.

A lidar-based approach to intersection detection was ex-
plored in [4]. Here, we focus on RGB imagery from cameras,

bypassing the use of lidar which is both much more expen-
sive and of lower resolution. While [4] focuses solely on
identifying two types of intersection topology, our method
focuses on inference about both intersections and regular
road segments. In addition, our work focuses on a set of nine
categorical and numerical road layout attributes, several of
which have not been previously been studied in the context
of computer vision.

Deep learning for autonomous driving: In an early
application of deep learning to autonomous driving [5], the
small, off-road, remote-controlled truck DAVE learned to
avoid obstacles. A ConvNet was trained to map stereo image
frames directly to an ideal steering angle for DAVE. In a
similar system also trained in an end-to-end fashion, a group
at Nvidia recently demoed a real car with steering controlled
by a ConvNet [6]. In [7], Chen et al. trained a ConvNet to
predict several “affordance indicators” (e.g., distance to the
preceding car) for driving in a race car simulator. This is
similar to our work in that we do not directly compute a
driving action, but rather several road layout attributes that
can later inform a driving controller. In [2], Huval et al.
trained a ConvNet for car and lane detection on highway
driving videos. In contrast to our image dataset, theirs was
manually annotated via Amazon Mechanical Turk. While
OpenStreetMap is also developed through crowdsourcing, in
our system the ground truth label transfer to Google Street
View images is fully automated.

Leveraging OSM/GSV: Recently, researchers have ex-
ploited the OSM or GSV datasets for a few localization-
related applications. Floros et al. [8] paired visual odometry
with OSM to alleviate visual odometry’s tendency to drift. In
[9], Máttyus et al. developed a model to segment OSM roads
in aerial images, thereby providing road widths and enhanc-
ing the map’s accuracy and applicability to localization. Lin
et al. [10] trained a ConvNet-based model to match GSV
images with their corresponding location in aerial images.
While we construct and leverage a dataset based on OSM
and GSV, in contrast to the above work our model does
not attempt to localize the street view image and instead
estimates road layout attributes given the surrounding visual
scene.

III. DATASET

Given a street scene panorama taken by a car-mounted
camera, we wish to train a model to predict a set of road
layout attributes. To train such a model, we first construct
an appropriate large-scale dataset.

Image collection: Google Street View contains panoramic
images of street scenes covering 5 million miles of road
across 3,000 cities. Each panorama has a corresponding
metadata file storing the panorama’s unique “pano id”, geo-
graphic location, azimuth orientation, and the pano ids of ad-
jacent panoramas. Beginning from an initial seed panorama,
we collect street view images by running a bread-first
search, downloading each image and its associated metadata
along the way. Thus far, our dataset contains one million
GSV panoramas from the San Francisco Bay Area. GSV



panoramas can be downloaded at several different resolutions
(marked as “zoom levels”). Finding the higher zoom levels
unnecessary for our purposes, we elected to download at a
zoom level of 1, where each panorama has a size of 832×416
pixels.

Map data: OpenStreetMap is an open-source mapping
project covering over 21 million miles of road. Unlike pro-
prietary maps, the underlying road coordinates and metadata
are freely available for download. Accuracy and overlap with
Google Maps is very high, though some inevitable noise is
present as information is contributed by individual volunteers
or automatically extracted from users’ GPS trajectories. For
example, roads in smaller cities may lack detailed annota-
tions (e.g., the number of lanes may be unmarked). These
inconsistencies result in varying-sized subsets of the data
being applicable for different attributes.

Label transfer: Given latitude and longitude bounds for
a set of street view images, we export the corresponding
bounding box from OSM. Each road in OSM is represented
with a a series of segments called “ways”, each of which is
made up of a series of nodes (a polyline) with geographic
coordinates. In order to assign to each image a set of ground
truth attributes, we must first match each image with the
road segment it was captured on so that the road segment’s
annotations may be transferred over.

We treat the panorama locations and way coordinates
as points on a 2D plane3 (i.e., a Mercator projection) and
compute the distance from each point to each polyline. For
each panorama, the road segment found to be closest is
selected. We note that this 2D method of matching images
to streets is imperfect, as a GSV image on a bridge or
street under a bridge may be incorrectly assigned. While
this does add some noise to our training data, it occurs very
infrequently.

In addition to outdoor street scenes, GSV also contains
images captured within buildings as well as non-street scenes
such as beaches. To ensure that most indoor images and
non-street scenes are removed from the downloaded pool
of images, we threshold the minimum distances to the road
segments. Thresholding at 10.5 m seems to be effective while
maintaining a high recall.

IV. TARGET ATTRIBUTES

Here we describe the road scene attributes, automatically
extracted from OSM, that will serve as targets for prediction.
All images labeled with ground truth attributes are cropped
and unwarped from the GSV panoramas at size 227 × 227
and with a wide field of view of 100◦.

Intersections: Intersections are a source of dangerous
driving scenarios, often accompanied by drastic changes in
speed and complex interactions with other cars/pedestrians.
Using our automated labeling procedure, we gather data to
train our model to detect upcoming intersections (Figure 3),
predict the distance to them, and infer their topology. To this

3This approximation is acceptable because the region of focus here is
sufficiently distant from the poles.

Fig. 3. Intersection detection heatmap. Images are cropped from test set
GSV panoramas in the direction of travel indicated by the black arrow. The
probabilities of “approaching” an intersection output by the trained ConvNet
are overlaid on the road. (The images are from the ground level road, not
the bridge.)

Fig. 4. Distance to intersection estimation. For images within 30 m of true
intersections, our model is trained to estimate the distance from the host car
to the center of the intersection across a variety of road types.

end, we first locate intersections on OSM by finding nodes
shared by two or more road segments. Then, for panoramas
located on the road segments involved in intersections, the
distances and headings from the images to their nearest
intersections are computed.

For the binary classification problem of there is/is not an
intersection ahead, we face the ambiguity of not knowing if
the closest intersection to a given GSV panorama is actually
visible (no human checks the images during the labeling
pipeline). After manually assessing a sample of images, we
decided to count 30 m and below as positive and 100 m
and above as negative. This thresholding provides a clear
distinction between the two classes for ease of training.
Images are cropped from the panoramas at the specified
headings and labeled as positive (intersection) or negative
(non-intersection). The distances to the intersections are
also saved with the positive images to serve as targets for
regression (Figure 4). The topology of the intersections is
addressed via “driveable headings” below.

Driveable headings: The detection of driveable road
paths (as opposed to sidewalk, buildings, etc.) is critical for
corroborating portions of the HD maps used in autonomous
driving. Given the specificity of annotations available here,



Fig. 5. Intersection topology is one of several attributes our model learns
to infer from an input GSV panorama. The blue circles on the Google
Maps extracts to the left show the locations of the input panoramas. The
pie charts display the probabilities output by the trained ConvNet of each
heading angle being on a driveable path (see Figure 3 for colormap legend).

Fig. 6. Driveable headings. A ConvNet is trained to distinguish between
non-drivable headings (left) and drivable headings aligned with the road
(right). The ConvNet weakly classifies the middle example as drivable
because the host car’s heading is facing the open alleyway between the
buildings.

the goal for our model will be to predict which headings (in
the x direction) of a panorama align with driveable road. For
our purposes, “driveable” simply means a street segment at
the specified heading (with origin at the panorama’s location)
is present, disregarding specific lanes. Here, we define a
heading to be driveable if it is within 22.5◦ of an actual
road heading; other headings are considered non-driveable
(Figure 6). Using this setup, we can also label the driveable
headings at intersections, allowing our model to learn to infer
intersection topologies (Figure 5).

Heading angle: While we treat driveable heading as a
binary classification problem above, we can also treat this as
a regression problem. In this case, we crop images from each
panorama up to 60◦ to the left and right of a true driveable
heading and label them with the relative angle (Figure 7).
For this attribute, we do not include panoramas located at
intersections as it is unclear how to label images facing in
between two road segments involved in the junction. We
include only those images that are at least 30 m away from

Fig. 7. Heading angle regression. The network learns to predict the
relative angle between the street and host vehicle heading given a single
image cropped from a GSV panorama. Below each GSV image, the graphic
visualizes the ground truth heading angle.

Fig. 8. The ConvNet learns to detect bike lanes adjacent to the vehicle.
The GSV images are arranged from left to right in increasing order of
probability output by the ConvNet of a bike lane being present (ground
truth labels from left to right are negative, negative, positive). The middle
example contains a taxi lane, resulting in a weak false positive.

the closest intersection.
Bike lanes: Roadside bike lanes indicate the possible

presence of nearby bikers. Autonomous cars must be extra
cautious and stay out of bike lanes, just as human drivers
should. OSM roads often have the presence or absence of
bike lanes annotated. For a given GSV image’s road, if the
presence of a standard roadside bike lane is labeled on OSM,
we crop the panorama at 45◦ to the right (for right-hand
traffic cities) relative to the forward road heading so the
bike lane (or absence thereof) is maximally in view. Bike
lane detection can then be treated as a binary classification
problem for our model (Figure 8).

We note that occasionally, a “way” (road segment) on
OSM may be labeled as having a bike lane, but this does
not mean the bike lane continues along the entire length of
the road segment. Thus, this is a source of occasional noise in
our training labels, as our automated labeling pipeline cannot
account for this.

Speed limit: As speed limits are key safety mechanisms
for driving, it is important that an autonomous vehicle
comes equipped with an intuitive notion of an appropriate
speed given the surrounding environment. Obviously the road
type, e.g., highway vs. small residential road, serves as a
key indicator for this. Many OSM roads are labeled with



Fig. 9. Speed limit regression. The network learns to predict speed limits
given a GSV image of road scene. The model significantly underestimates
the speed limit in the middle example as this type of two-way road with a
single lane in each direction would generally not have a speed limit as high
as 50 mph.

Fig. 10. One-way vs. two-way road classification. The probability output
by the ConvNet of each GSV scene being on a one-way road is shown.
From left to right the ground truth labels are two-way, two-way, and one-
way. The image on the left is correctly classified as two-way despite the
absence of the signature double yellow lines.

speed limits, and these can trivially transferred over to GSV
panoramas located on these roads. To collect a training set
for this problem, we crop road-aligned images from the
panoramas and label them with the corresponding speed
limits (Figure 9).

One-way vs. two-way: Knowing that a particular road
is two-way allows an autonomous vehicle to anticipate
oncoming traffic and help prevent changing into an incorrect
lane. It is important that these cars can use on-board cameras
to verify this type of information stored in the HD map.
Similarly to the previous section, one-way and two-way
labels for roads on OSM can be trivially transferred over to
corresponding GSV images to serve as training labels (Figure
10).

Wrong way detection: Inferring that a vehicle is facing
the wrong way based on a single image captured by a
car-mounted camera is a particularly challenging problem,
requiring fine-grained reasoning about context clues. For
example, a human faced with this challenge may know to
look at the orientation of other cars, the direction street signs
are facing, etc. To train our model for this task, we define
“right” way images to be facing within 22.5◦ of the forward
road heading and “wrong” way images to be facing within
22.5◦ of the backwards road heading (Figure 11).

Number of lanes: When planning for an upcoming
turn/exit, the number of lanes on the road (and which lane
the host car is in) determines what maneuvering will be
necessary. The number of lanes is also often correlated

Fig. 11. Wrong way detection. The probability output by the ConvNet of
each GSV image facing the wrong way on the road is displayed. From left
to right the ground truth labels are wrong way, right way, and right way. For
two-way roads with no lane markings (left), this is an especially difficult
problem as it amounts to estimating the horizontal position of the host car.
The problem can also be quite ill-defined if there are no context clues as is
the case with the rightmost image.

Fig. 12. Number of lanes estimation. The predicted and true number
of lanes for three roads are displayed along with the corresponding GSV
images. For streets without clearly visible lane markings (left), this is
especially challenging. Although the ground truth for the rightmost image
is two lanes, there is a third lane that merges just ahead.

with the speed limit. Here, we crop one forward image
aligned with the road heading from each panorama and
train our model to predict the number of lanes (Figure 12).
Unfortunately, there is substantial inconsistency in OSM
regarding whether the number of lanes for two-way roads
includes one or both directions of travel. To bypass this issue,
we only include one-way roads in our training data for this
attribute.

V. MODEL

Our problem setup and labeling pipeline are agnostic to
the actual ConvNet architecture employed. Here, we take
the AlexNet architecture [11] and train it to predict both
the categorical and numerical road layout attributes. We
acknowledge that there are other recent, deeper alternatives
that could also be used here.

The target road layout attributes of focus in this work are
related to each other, and there may be mutually useful image
features for the different tasks. While this intuition suggests
jointly training one network for every task, our experiments
here use a separate network for each task. As the set of
training images differs for each attribute, we focus on each
attribute separately for simplicity. Of course, for deployment
in a real vehicle, it would be preferable to have only a single
network.

For the classification tasks and regression tasks, the net-
works are identical except for the loss layers. The classifi-



cation networks have a standard softmax layer followed by
a multinomial logistic loss layer. For the regression tasks,
smooth L1 loss is used.

VI. EVALUATION

Train-test split: To train our networks for road layout
inference and subsequently evaluate their performance, we
geographically split our dataset into distinct training and test
sets. Specifically, we select a line of longitude such that 80%
of the GSV panoramas are to the west (training set) and the
20% are to the east (test set). In this manner, the trained
models are evaluated on previously unseen GSV imagery in
novel locations. We note that a small portion of the training
and test images may originate from the same road segments
if they are very close to the longitudinal boundary. Our
experimental results reported here are based on an initial
iteration of our dataset of size 150K panoramas.

Network training: For each task, a network is trained
with stochastic gradient descent using a batch size of 256 and
learning rate of 0.001. To provide a good initialization for
the ConvNets, we first pretrain them on the Places database
[12]. This dataset contains 2.5 million images across 205
scene categories, many of which are outdoors like the GSV
imagery. Fine-tuning from this initialization greatly reduces
the training time required. In our experiments, training
tended to converge after a few thousand iterations for each
task. The ConvNets are implemented in the Marvin deep
learning framework [13] and trained using a Tesla K40C.

Label balancing: The labels for a specific attribute’s
training data may be very unbalanced initially. For example,
non-intersection GSV images are more common than those
located at intersections. To counteract this imbalance in the
case of classification tasks, random training instances from
the sparser ground truth classes are duplicated until the
classes are equally represented. Alternatively, the ConvNet
data layer could be configured to randomly samples training
instances for each batch uniformly among the classes. Simi-
lar balancing is carried out for the test set to allow for more
interpretable performance results.

Human baseline: To provide a reference point for the
performance of our system on the newly collected dataset,
we obtain a human baseline. We ask two volunteers to
estimate the road layout attributes on 1000 randomly sampled
images from each attribute’s test set. The volunteers are each
shown several example images and corresponding ground
truth labels for each attribute prior to starting in order to
clear up any ambiguity regarding attribute definitions.

While some of the categorical attributes are quite natural
for a human to estimate given a single image (e.g., bike lane
detection), some numerical attributes are not. For example,
a human driver does not always think about distances to
intersections or objects in numerical terms explicitly. Addi-
tionally, a human driver utilizes stereoscopic vision while
we provide our volunteers with only monocular imagery.
Nevertheless, we collect the human baseline performance for
each attribute using the same monocular imagery that serves
as input to the ConvNets.

Human Ours
Intersection Accuracy (%, ↑) 94.7 88.3
Intersection Dist. MAE (m, ↓) 7.8 4.3
Driveable Accuracy (%, ↑) 96.8 94.9
Heading Angle MAE (deg, ↓) 10.7 9.2
Bike Lane Accuracy (%, ↑) 73.2 75.9
Speet Limit MAE (mph, ↓) 11.6 6.8
One-way Accuracy (%, ↑) 75.1 80.4
Wrong Way Accuracy (%, ↑) 82.2 72.0
Number of Lanes MAE (↓) 0.6 0.9

TABLE I
ACCURACY OF ROAD ATTRIBUTE ESTIMATION. ↑ (↓) INDICATES HIGHER

(LOWER) IS BETTER.

Comparison to other methods: As both our dataset and
target attributes are new, we do not quantitatively compare
our approach to other methods.

Performance metrics: The performance for categorical
attribute estimation is evaluated in percentage accuracy. For
numerical attributes, we compute the mean absolute error
(MAE).

VII. RESULTS AND DISCUSSION

A. Road Layout Inference

As shown in Table I, the networks learn to estimate
a variety of road layout attributes after training on the
automatically labeled dataset.

Categorical attributes: For three of the five classification
tasks (detecting intersections, driveable headings, and wrong
way orientations), the human baseline performs comparably
to or better than the ConvNets. In particular, for wrong way
detection, the human baseline achieves a 10 percentage point
higher accuracy than the corresponding trained network. The
background knowledge that humans can leverage for wrong
way detection allows them to perform fine-grained reasoning
about object orientations (e.g., street signs and other cars),
while the model must learn to recognize these cues solely
from examples. While on a two-way road with no visible lane
markings, determining if the host car is facing the wrong way
is especially challenging (Figure 11, left).

In both bike lane detection and one-way vs. two-way
classification, the trained models achieve higher accuracies
than the human baseline. In the case of bike lanes, the trained
model is able to overcome the substantial noise inherent to
this label (OSM does not indicate whether a bike lane con-
tinues along the entire length of a road segment) in addition
to the bike lanes often being partially occluded. Surprisingly,
the one-way vs. two-way classification ConvNet achieves a
6 percentage point higher accuracy than the human baseline,
despite this task seeming to require fine-grained reasoning.
For challenging scenarios when other vehicle orientations or
lane markings are not visible for reference, the ConvNet may
be learning to recognize some subtle cues about the general
appearance of the road scene.

Numerical attributes: For three of the four regression
tasks (intersection distance, heading angle, and speed limit
regression), the trained models perform comparably to or
better than the human baselines. Impressively, the ConvNet



trained to estimate distances to intersections is approximately
twice as accurate as the corresponding human baseline. As
mentioned previously, this result is not entirely unexpected as
human drivers are not necessarily accustomed to perceiving
the road layout in numerical terms. For example, when
human drivers steer a vehicle, they have a general sense of
their orientation relative to the road, but they do not need to
know the exact angle in degrees.

The network trained for number of lanes estimation did
not perform well, achieving a MAE of 0.9 while the human
baseline achieved 0.6. This task may be very ambiguous,
especially when there are parking lanes on the side of the
road or there are upcoming merging lanes (Figure 12, right).
Additionally, the labeling of number of lanes is very sparse
in OSM, with most roads not including this information. This
factor, combined with our restriction to only one-way roads
for this task, resulted in a substantially reduced training set
of 12K GSV images.

B. Application to Infrastructure Improvement

Inspired by our experimental results, we propose that our
method may be suitable for a novel application: improving
city infrastructure. After being exposed to a large-scale pool
of street view imagery and associated road attributes, the
ConvNets are in essence learning what constitutes “normal”
attributes for a given road of a certain visual appearance.
Thus, for roads where the ground truth attribute set does not
align well with its appearance, perhaps one or more of these
attributes should be altered.

For example, consider the center image in Figure 9. The
ConvNet has significantly underestimated the speed limit
for this street, outputting a prediction of 30 mph when the
ground truth is 50 mph. Is the trained ConvNet actually
wrong? Perhaps the speed limit should be 30 mph. After
all, this is a two-way road with a single lane of traffic
in each direction. If roads with such a setup are generally
assigned lower speed limits, and this is what the ConvNet
has learned, then the ConvNet’s output may be interpreted
as a recommended speed limit.

Similarly, roads that elicit a high probability from the
trained model of being one-way when in fact they are two-
way may be dangerous. If the network is fooled, it may be
the case that the road/lane appearance does not imply two-
way traffic strongly enough. Updating such roads accordingly
may improve safety. With the capability of being deployed
on a massive set of street view imagery automatically,
these networks could quickly identify problem areas and
recommend potential improvements.

We emphasize that this secondary application is only a
proposal. Further work would be required to determine if
such a system could effectively improve road safety.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we demonstrated that by leveraging ex-
isting street view image databases and online navigation
maps, we can train models for road layout inference on
a new, completely self-supervised dataset. Importantly, the

automated labeling pipeline introduced here requires no
human intervention, allowing it to scale with these large-
scale databases and maps. Quantitative evaluation indicated
that the trained convolutional networks learn to estimate a
variety of attributes about the road layout given a single
street view image as input, performing comparably to the
human baseline on most tasks.

While we developed our model using street view images
from one geographic region, it will be interesting to see how
well the learned networks can transfer across distant regions
(e.g., train on San Francisco, test on Paris). Perhaps only
some fine-tuning will be necessary. Of course, certain char-
acteristics of a given region, such as the traffic “handedness”
(left-hand or right-hand traffic), may be taken into account to
ensure that the cities grouped together have similar driving
infrastructure.

As the tasks of focus here and the constructed dataset are
both new, there is substantial opportunity for future improve-
ments on our approach. For example, instead of using single
frame convolutional networks, future work may examine the
use of temporal models (e.g., recurrent networks) to estimate
road layout attributes using contiguous sequences of street
view images.
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