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Abstract— Non-central catadioptric models are able to cope
with irregular camera setups and inaccuracies in the manufac-
turing process but are computationally demanding and thus not
suitable for robotic applications. On the other hand, calibrating
a quasi-central (almost central) system with a central model
introduces errors due to a wrong relationship between the
viewing ray orientations and the pixels on the image sensor.

In this paper, we propose a central approximation to quasi-
central catadioptric camera systems that is both accurate and
efficient. We observe that the distance to points in 3D is typically
large compared to deviations from the single viewpoint. Thus,
we first calibrate the system using a state-of-the-art non-
central camera model. Next, we show that by remapping the
observations we are able to match the orientation of the viewing
rays of a much simpler single viewpoint model with the true ray
orientations. While our approximation is general and applicable
to all quasi-central camera systems, we focus on one of the
most common cases in practice: hypercatadioptric cameras. We
compare our model to a variety of baselines in synthetic and
real localization and motion estimation experiments. We show
that by using the proposed model we are able to achieve near
non-central accuracy while obtaining speed-ups of more than
three orders of magnitude compared to state-of-the-art non-
central models.

I. INTRODUCTION

Recently, catadioptric cameras which combine the princi-
ples of refraction and reflection in one single optical systems
have gained popularity in robotics. They are able to establish
a 360◦ field of view with a very flexible geometry as the
shape of the reflecting surface is a powerful design factor.
Furthermore, efficient central projection models exist that
allow for computing the point of reflection by intersecting
a line with a quadric in case the single viewpoint (SVP)
condition is fulfilled. Also, manufacturing costs are low as
catadioptric cameras merely require combining a classical
perspective camera with a mirror coated surface. Applica-
tions include robotic perception [1], [2] as well as driver
assistance systems [3], [4], amongst others.

Catadioptric systems are usually designed to closely sat-
isfy the SVP condition, i.e., all light rays are assumed to
intersect at a single viewpoint. While leading to simple
projection models [5], [6], the SVP assumption is often
violated in practice [7], [8] (in the following we call such
cameras ’quasi-central’). The reason for this is that off-the-
shelve catadioptric cameras often use varifocal lenses where
the viewpoint depends non-linearly on the focus and the
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Fig. 1. Illustration of Centered Camera Model. This figure illustrates
the true viewing rays emanating from the optical system (bold) as well as
the rays of our centered approximation (dashed). Note that the distance to
the objects of interest is usually very large compared to the deviation of the
rays from the centered single viewpoint. Thus getting the ray orientation
right is more important than considering translational errors.

focal length. Furthermore, precisely aligning the perspective
camera center with the optical axis of the mirror is hard in
practice. While a number of non-central projection models
have been proposed [9], [10] they are slow as they either re-
quire non-linear optimization [9] or finding the solution of a
complex root-finding problem [10]. This prevents them from
being applied whenever real-time algorithms are required and
computational resources are scarce.

In this paper, we take advantage of the fact that the
distance to points in 3D is often large compared to the
deviations from the SVP as illustrated in Fig. 1. This leads us
to the conclusion that getting the orientation of the viewing
rays right is more important than considering the translational
deviation from the SVP correctly. Unfortunately, calibrating
a quasi-central catadioptric camera using traditional SVP
models [11], [12] introduces a bias in the orientation of the
viewing rays due to the fact that the calibration patterns are
presented in the vincinity of the camera.

Instead of using a central camera model for calibration, we
propose to first calibrate the camera using a state-of-the-art
non-central model [10] which we extend by a perspective
camera and an appropriate distortion model in order to
obtain the viewing ray orientations. Next, we remap the
observations in a way such that the viewing ray orientations
of a much simpler single viewpoint model coincide with
those of the more accurate non-central model as illustrated
in Fig. 1. This leads to a mapping where points at infinity are
projected to the same pixels as in the non-central model and
approximation accuracy gracefully degrades in the immediate
vicinity of the camera center.

In our experiments we show that our model combines the
efficiency of a single viewpoint model with the accuracy of a
full (but slow) non-central model in tasks such as localization
or motion estimation. Towards this goal, we construct a
dataset using two catadioptric cameras and 17 landmarks. For



performance evaluation we consider the 3D displacement in
challenging monocular and stereo localization experiments
using triplets of landmarks. We believe that these efforts
are necessary for a fair comparison and to provide novel
insights into the properties of the models and their param-
eters. Amongst others, we compare against the calibration
toolboxes of Mei et al. [11] and Scaramuzza et al. [12]
which are widely used in the robotics community. We also
investigate the approximation accuracy when deviating from
the single viewpoint in axial and radial direction as well as
in terms of the distance to the points in 3D. Furthermore, we
show that our centered model results in significant speed-ups
which are important for real-time applications as in robotics
or driver assistance systems. Our data and code in form of an
easy-to-use calibration toolbox, including a fully automatic
corner and checkerboard detector, is online available1.

II. RELATED WORK

Recently, a taxonomy for omnidirectional camera cal-
ibration methods has been proposed by Puig et al. [7].
They classify calibration methods into five catagories: Line-
based calibration [13], [14], [15], 2D pattern calibration [12],
[11], 3D pattern calibration [16], self-calibration [9] and
polarization imaging [17]. As 2D patterns are easy to employ
and constrain the problem sufficiently well, we focus on
planar checkerboards as calibration targets in this paper.

The projection models that have been developed for
omnidirectional cameras can be grouped into central and
non-central models. The central case has been intensely
researched over the last decades [5], [18], [14], [19], [20],
[16], [15]. For instance, Geyer et al. [6] propose the sphere
camera model which unifies all central catadioptric models.
To account for the properties of real lenses, Mei et al. [11]
add a perspective camera with distortions and provide their
implementation2. Another widely used calibration toolbox3

has been developed by Scaramuzza et al. [12] which de-
scribes the imaging function using a polynomial.

Unfortunatley, the SVP condition is hard to fulfill in
practice [9] and even small deviations can impact perfor-
mance when applying the model to accuracy sensitive tasks
such as 3D reconstruction, localization or motion estimation.
Furthermore, permitting more flexible arrangements allows
to compromise image characteristics such as field of view
with spatial resolution [8]. Consequently, a number of models
for non-central catadioptric systems have been proposed.
Early approaches [21], [9], [22], [23] make use of com-
putationally expensive non-linear optimization and require
an initial estimate of the pixel coordinates. Goncalves et al.
[24] increase efficiency by reducing the optimization to a 1D
search problem, but still require ∼ 200 seconds for projecting
10.000 3D points to the image plane.

Recently, Agrawal et al. [10] derived an analytical for-
ward projection (AFP) which requires solving an 8th degree
polynomial equation. While the model has been applied in a

1http://www.mrt.kit.edu/software/
2http://www.robots.ox.ac.uk/cmei/Toolbox.html
3https://sites.google.com/site/scarabotix/ocamcalib-toolbox

Fig. 2. Geometric Projection Model with Parameters. This figure shows
the setup of the full non-central model which we use for obtaining the ray
orientations in our centered approximation.

bundle adjustment context with known intrinsics, no analysis
in the context of calibrating the intrinsics and extrinsics
jointly has been carried out yet. In this paper, we combine
the AFP model with a perspective camera including lens dis-
tortions and derive an approximation that is more than three
orders of magnitude faster (i.e., five orders of magnitude
with respect to [24]), yet achieves similar accuracy in our
experiments. Our results also reveal which parameters are
important for modeling axial as well as lateral deviations
from the single viewpoint, insights which have been missing
in existing comparisons [7]. Furthermore, we investigate the
impact of parameter initialization and suggest modifications
to [12], resulting in improved convergence.

III. PROJECTION MODEL

We start with a description of the geometric model [10]
which we use as base model to obtain the ray orientations
for the proposed centered model. While this specific choice
of base model makes the assumption of a quadric mirror, our
centered approximation (Section III-B) is more general and
requires estimated light rays as the only input.

A. Geometric Model for Quadric Mirrors

Let us assume a quadric mirror with parameters A, B and C
that can be described as

x2 + y2 +Az2 +Bz−C = 0 (1)

Further, let p denote the 3D world point, m a point on the
mirror surface and c the perspective camera center (all ∈R3)
as illustrated in Fig. 2. Let the indices m, r and c denote the
mirror, the rotated mirror and the camera coordinate systems,
respectively. Using this notation, our geometric projection
model maps a 3D world point p via the point of reflection
on the mirror m to a pixel (u,v)T in the image. Recently,
Agrawal et al. [10] showed that the point of reflection m
can be obtained analytically from the 3D world point p and
the camera center c. In the following, we briefly repeat their
most important results and extend the model to include a
perspective camera with distortions.

To reduce the order of the resulting polynomial forward
projection equation, the world point pm = (xm,ym,zm)

T and
the camera location cm = (rm,sm, tm)T are rotated

pr = RR pm
cr = RR cm

RR =

 t (sm + ε) −t rm 0
t rm t (sm + ε) 0

0 0 1





such that the rotated camera cr = (0,sr, tr)T aligns with
the y/z plane, where t = 1/

√
r2

m +(sm + ε)2. Note that in
contrast to [10] we have introduced a small positive scalar ε

which regularizes RR against the identity matrix and prevents
singularities in case rm and sm are both small.

Let π denote the plane of reflection on which pr, cr and
the (rotated) point of reflection mr = (xr,yr,zr)

T are located.
π can be represented by pr, cr as well as the intersection of
π with the z axis of the mirror coordinate system, which is
given as s= (0,0,zr−Azr−B/2)T. As (mr−s) is orthogonal
to the normal of π , we have

(mr− s)T · [(pr− cr)× (s− cr)] = 0 (2)

The first constraint is obtained by solving (2) for zr and
plugging the result into the mirror equation (1). Similarly, a
second constraint can be derived from the law of reflection.
Combining both yields an 8th degree polynomial equation in
zr whose roots can be computed via eigenvalue decomposi-
tion of the companion matrix, yielding mr.

We now extend the model of Agrawal et al. [10] by a
perspective camera that includes a lens distortion model.
First, we rotate the point of reflection mr back into mirror
coordinates and map it into the camera coordinate system:

mc = (xc,yc,zc)
T = RCRT

R mr + tC (3)

Here, RR is the pre-rotation matrix from above and Rc|tC
denotes the 3D rigid transformation from mirror to camera
coordinates. Let qn = (xn,yn)

T = (xc/zc,yc/zc)
T be the nor-

malized projection. The distorted point is given by

qd = (1+ k1r2
n + k2r4

n + k5r6
n) qn

+

[
2k3xnyn + k4(r2

n +2x2
n)

k3(r2
n +2y2

n)+2k4xnyn

]
(4)

with rn =
√

x2
n + y2

n and projected to the image via[
q
1

]
=

 fu α fu cu
0 fv cv
0 0 1

 ·[qd
1

]
(5)

where q = (u,v)T denotes a pixel in the image and f ,c,α,k
are the intrinsic parameters of the camera which combined
with A, B and C define the set of all calibration parameters.

B. Centered Model

While the presented non-central projection model is accu-
rate, our experiments reveal that the complex analytic form
of the AFP renders the projection slow compared to simple
single viewpoint models, preventing real-time applications,
e.g., on mobile devices.

However, we observe that in many situations of practical
relevance the distance to the objects of interest is large
compared to the deviation from the single viewpoint. Thus,
given a calibrated non-central model we are able to specify
a central approximation which maps observations according
to the image residuals for points at infinity, i.e., in a way
which lets the viewing ray orientations coincide with the true
ones. Note that when applying the model this mapping can
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Fig. 3. Centered Viewpoint Estimation. The viewpoint v (red cross) of
the centered model is obtained as the one that minimizes the distance to all
reflected rays wr (red). The camera center c and the camera rays wc are
shown in blue.

Order: 1, Residual: 25.6 px Order: 2, Residual: 8.2 px Order: 3, Residual: 2.5 px

Order: 1, Residual: 39.8 px Order: 2, Residual: 24.3 px Order: 3, Residual: 20.3 px

Fig. 4. Centered Residual Field for re-mapping the observations of the
centered model for polynomials of different order. Top row: SVP scenario.
Bottom: 5 mm deviation from the SVP.

be pre-computed and efficiently applied to the whole input
image or individual feature points, similar to undistortion
or rectification maps for perspective cameras. Importantly,
note that our representation is able to represent any SVP
model accurately, i.e., without approximation, as long as the
mapping between the observations is smooth.

As detailed in the following sections, we first compute the
optimal single viewpoint, i.e., the point that comes closest
to all viewing rays as illustrated in Fig. 3. In a second step,
we derive an efficient centered camera model which we use
to remap the image observations (see Fig. 4). Importantly,
the quality of the centered model itself does not depend on
the actual choice of the projection function as all centered
models establish the same relationship between (remapped)
pixel coordinates and the corresponding viewing ray orien-
tations as detailed in the appendix. While our exposition is
based on the geometric model from the previous section, the
proposed centered model can be utilized as surrogate for any
other projection function as well.
Viewpoint: Let c be the estimate of the true camera position,
obtained by calibration using the non-central model pre-
sented in Section III-A. Here, we drop the mirror coordinate
index m for clarity. Denote Ω = {m} the set of all points
on the mirror surface, defined by Eq. 1. For any m ∈Ω, the



reflected ray wr(m) can be computed as

wr = wc−2n
wT

c n
nTn

(6)

with camera ray wc and normal n given by

wc =
m− c
‖m− c‖2

n = (x,y,Az+B/2)T (7)

Our goal is to find the viewpoint v that is optimal in the
least-squares sense, i.e., that minimizes the squared distance
to the set of all reflected rays {m+λwr(m) | m ∈Ω}. This
requirement can be formalized as

v = argmin
ṽ

∫
Ω

‖ṽ−m‖2
2− ([ṽ−m]Twr(m))2 dm (8)

The solution to Eq. 8 is given by the integral equation∫
Ω

v−m−wr(m)(v−m)T wr(m) dm = 0 (9)

which is linear in v. This integral can be approximated to
arbitrary precision by a summation over a discretized set of
surface points {m}. In practice, we found 2,500 equidistantly
sampled rays to yield a sufficiently good approximation.
The optimal viewpoint v is illustrated in Fig. 3 for a 2D
example. Note that even in the case of deviations from the
SVP model, distant objects are mapped accurately due to the
small displacement of v from the viewing ray. Importantly,
the orientation of each viewing ray is left unaltered by means
of a residual field applied to the observations which we
describe in the following section.
Centered Camera Model: Given the optimal viewpoint v,
we seek for a simple and efficient camera model that maps a
world point p = (x,y,z)T into image coordinates q = (u,v)T.
Note that here q refers to the remapped image observations
as described in the following.

We propose an angle-based representation

q(ϕ,θ ;cu,cv,γ) =

[
cu
cv

]
+

k

∑
i=0

γiϕ
i
[

cosθ

sinθ

]
(10)

with polynomial order k, pitch ϕ and yaw angle θ of the
light ray defined by

ϕ(p) = atan

(
z√

x2 + y2

)
θ(p) = atan

(y
x

)
(11)

Here, (cu,cv)
T denotes the location of the image center and

γ = (γ0, . . . ,γk)
T are the polynomial coefficients that describe

the relationship between the pitch angle and the distance
from the image center. The parameters of the model (cu,cv,γ)
are obtained via non-linear least-squares: Using Eq. 6, we
calculate the viewing ray orientations ϕ and θ for each pixel
q′

ϕ,θ in the calibrated geometric camera model and minimize

cu,cv,γ = argmin
c̃u,c̃v,γ̃

∑
ϕ,θ

‖q′ϕ,θ −q(ϕ,θ ; c̃u, c̃v, γ̃)‖2
2

(12)

to obtain the parameters of the centered model cu,cv,γ .
Here, q′

ϕ,θ denotes the pixel associated with ϕ and θ .
The image residuals q′ − q after optimization define the
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(b) Landmarks for Localization Experiments

Fig. 5. Experimental Setup. Fig. (a) shows the omnidirectional camera
we use (VS-C450U). Fig. (b) depicts the landmarks used in our localization
experiments in red, their footpoints (z = 0) in black and the true camera
locations of our stereo setup in blue.

residual displacement field which is applied to the image
observations before using the centered model projection.
Note that the degree of the polynomial in Eq. 10 does not
impact the quality of the approximation, but only affects the
smoothness of the residual displacement field, as illustrated
for polynomials of differing order in Fig. 4.

Experimentally, we found a third order polynomial (k =
3) sufficient for providing smooth displacement fields. By
initializing cu,cv to half the image size and γ to zero
the optimization of Eq. 12 always converged to the true
parameters. For a given camera calibration, the displacements
can be densely precomputed. When applying the centered
model, all observations are mapped through this field such
that the centered model in Eq. 10 applies. Note that for points
at infinity (or all central models) the centered model is exact,
i.e., it is equivalent to the model it is derived from. For details
we refer the reader to the appendix.

IV. EXPERIMENTAL EVALUATION

We evaluate the proposed centered model aginst a variety
of popular calibration models [12], [11], [6] on real experi-
ments and in simulation. Towards this goal, all projection
models have been integrated into a multi-camera bundle-
adjustment framework.

A. Localization

Our setup consists of two hypercatadioptric cameras (see
Fig. 5(a)) as it could be used in robotics or driver assistance
applications. In our setup, the camera violates the single
viewpoint assumption by approximately 20 mm in axial and
1 mm in lateral direction. The location of the cameras is
marked in blue in Fig. 5(b). Furthermore, we installed 17
landmarks (red circles in Fig. 5(b)) at various heights (0−2.5
m) and distances (2.5−10 m), spanning an area of 10×20
meters.

For accurate 3D ground truth we made use of a high
precision laser range finder to measure the distances between
all pairwise combinations of cameras and landmarks, as
well as their heights above ground level (black lines in Fig.
5(b)). We initialized the 3D camera and landmark locations
manually and refined them by minimizing all distance and
height errors using non-linear least-squares.



To obtain the calibration parameters for all camera models
we presented 67 checkerboard calibration patterns to the
cameras and automatically extracted the corners at sub-
pixel accuracy using [25], which we extended by a track-
ing stage and modified to better handle catadioptric image
distortions. In particular, we apply the detector of [25] on
two image scales and predict corners non-linearly in the
association stage. Note that for calibration we only make
use of the checkerboard calibration patterns for which the
pose is unknown (allowing for a simple standard calibration
procedure). The 3D landmark locations are not used for
calibration but only in our localization experiment. Using
the automatically detected checkerboard corners, we jointly
optimize the intrinsic and extrinsic calibration parameters of
the catadioptric stereo camera rig described in the previous
section using the geometric model, the centered model, the
unified central model [6] and the models of Mei et al.
[11] (unified+distortions) and Scaramuzza et al. [12]. We
initialize the mirror parameters of the geometric model to the
manufacturer settings which is a reasonable assumption for
commercial systems where these values are usually available.
All other parameters are initialized automatically assuming a
SVP model. The parameters of the competing methods have
been initialized as proposed by the authors.

We evaluate camera localization performance by minimiz-
ing the reprojection errors of the landmarks in the images
using a monocular and a stereo setup. We selected 29 non-
collinear landmark triplets as minimum sets for localization.
Our results are shown in Table I. For the geometric model,
we always calibrate the focal length and the principal point
parameters. Distortions (k), perspective camera pose (C)
and mirror parameters (M) are optimized when indicated.
Note that single viewpoint models without distortions (first
row and last row) fail completely in capturing the system
geometry. Including distortion parameters (e.g., second row,
Mei et al.) improves calibration results. As expected, using
a full non-central model yields the best results, e.g., reduces
stereo localization errors by 23% with respect to Mei et al.
[11] and by 29% with respect to Scaramuzza et al. [12]
Importantly, note that our centered model achieves almost the
same performance as the geometric model from which it has
been derived (in this case we used Geometric+C, third row)
while being significantly faster as shown in Section IV-E. In
the absence of suitable regularizers, including all parameters
of the geometric model degrades calibration quality due to
the complex interplay between the mirror, camera center and
distortion parameters. This overfitting behavior also indicates
that reprojection errors – which are often employed to judge
calibration performance – are insufficient to assess the true
accuracy of a calibration model.

Furthermore, we observed that the method of Scaramuzza
et al. [12] is sensitive with respect to the initialization
when deviating from the single viewpoint. We found the
reason for this to be mainly numerical instabilities which
can be mitigated by normalizing the polynomial coefficients
approprietly. Using this modification and optimizing all
cameras and checkerboards jointly as opposed to the two-

Method Para- Reproj. Local. Error
meter Error Mono Stereo

[Pixels] [mm] [mm]
Geometric 1.5944 207.23 166.83
SVP Model k 0.6241 50.89 45.56
Geometric C 0.5989 42.11 36.21
Non SVP C+k 0.5864 40.04 34.64
Model C+M 0.5977 43.39 38.15

C+M+k 0.5850 89.31 86.43
Centered Model - 42.14 36.26
Scaramuzza Improved 0.6241 49.51 48.08
et al. [12] Orig. 3.4143 771.93 687.86
Mei et al. [11] 0.6229 50.48 44.78
Geyer et al. [6] 0.6421 127.45 122.17

TABLE I
Calibration and Localization Experiments. THIS TABLE SHOWS OUR

EXPERIMENTS ON REAL DATA IN TERMS OF THE REPROJECTION ERRORS

OF THE CHECKERBOARD CORNERS AFTER CALIBRATION AND THE

LOCALIZATION ERRORS, AVERAGED OVER ALL TRIPLETS.

step procedure suggested in [12] improved calibration results
significantly (’Scaramuzza Improved’ vs. ’Orig’ in Table I)
compared to the original work.

B. Motion Estimation

In a second experiment, we mounted the hypercatadioptric
stereo setup from Section IV-A onto our driving platform
AnnieWAY [26] which is equipped with a high-precision
GPS/IMU that delivers the ground truth motion [27]. We cal-
ibrate both cameras jointly using 70 images of checkerboards
at various locations and orientations. Next, we recorded four
challenging inner-city and rural sequences.

Feature detection and matching between two consecutive
stereo pairs is performed using BRIEF [28] features in com-
bination with the FAST corner detector [29] which gave the
best matching results in our experiments. Using RANSAC
for robustness against outliers, we estimate the motion
between two consecutive frames by triangulating the 3D
points in the previous frame and minimizing the reprojection
errors with respect to the observations in the current frame.
Note that while more sophisticated structure-from-motion
pipelines [30], [31], [32], [33] could be used, we focus on
the two-frame motion estimation problem here to keep things
simple and avoid side-effects from the respective method. We
expect that improvements in this task directly translate into
improvements when using more advanced algorithms.

For comparing different calibration approaches, we show
endpoint errors after 200 frames (corresponding to a driven
path of up to 300 m depending on the driving speed) for all
frames of each sequence. The results are shown in Fig. 6
(d-g) , with averages given in the legend of the error plot.
Fig. 6 (b+c) shows the trajectories for sequence 1 in bird’s
eye view and from the side. Due to the large axial deviation
from the single viewpoint (20 mm), the centered model is
able to significantly reduce drift in z-coordinate direction
(corresponding to altitude), while projected on the ground
plane, all methods perform similarly. Overall, the proposed
centered calibration model is able to reduce 3D translation
errors by more than a factor of two compared to the baselines
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Fig. 7. Approximation Errors of the Centered Model. This figure shows
the average approximation error of the projection in pixels over the distance
of the 3D point from the camera center for simulations of the camera setup in
Section IV-A. Here, r denotes the distance from the image center. The errors
of the projection without warping the observations are given for reference.

which suffer from inaccuracies in the orientations of the
viewing rays.

C. Single Viewpoint Violation

To further assess the sensitivity of the methods with
respect to deviations from the SVP, we simulate a set of
scenarios by assuming a perfect hypercatadioptric system as
described by the geometric model in Section III-A using the
intrinsic and extrinsic parameters from our real camera. To
emphasize the differences we consider the noise-free case
here. We vary the location of the perspective camera laterally
(x-direction) and along the mirror axis (z-direction). For each
setting, we project the checkerboards and the landmarks onto
the image plane using the geometric model and calibrate the
cameras using the previously described models. Next, we
localize the camera as described in the previous section.

Fig. 8 shows the reprojection errors of the checkerboards
after calibration (left) and the localization errors (right) for
axial (top) and lateral (bottom) displacements. Again we
observe that the localization errors for axial displacements
are small when using a model that includes distortions.
On contrast, lateral displacements impact performance much
stronger. However, note that the centered model can handle
both cases much better than the baseline methods. The fact
that the reprojection errors of the centered model are larger
can be attributed to the proximity of the calibration patterns
to the camera (0.1− 1m), compared to the landmarks (>
2.5m). Again, small checkerboard reprojection errors are not
an indicator for a well calibrated camera with respect to some
target application, e.g., localization. In fact, this confirms our
assumption that getting the viewing ray orientation right is
much more important as small orientation errors propagate
to large translation errors at distance.

D. Approximation Analysis

In this section, we analyse the approximation properties
of the centered model experimentally. Towards this goal,
we make use of the geometric model parameters from our

Running Time
Numeric Non-Central [24] ∼ 185,000.00 ms
Geometric Model* 2,919.98 ms
Scaramuzza et al. [12] 913.93 ms
Mei et al. [11] 6.58 ms
Centered Model 3.42 ms
Centered Model* 1.79 ms

TABLE II
RUNNING TIMES FOR PROJECTING 10,000 POINTS IN MATLAB.

METHODS MARKED WITH AN ASTERISK (*) ARE WRAPPED IN C++.

real catadioptric camera system described in our experiments
in Section IV-A. Fig. 7 depicts the reprojection errors with
respect to the distance of the 3D point for various radii, i.e.,
distances from the image center. For reference we also plot
the reprojection errors with respect to the original unwarped
observations. This corresponds to applying an SVP model
without distortions to the non-central calibration problem.
Fig. 7 shows that the quality of our calibration model
degrades gracefully: All errors fall below 0.1 pixel at 1 meter
distance and below 0.01 pixel at 10 meters distance, even
though the SVP has been violated by 20 millimeters.

E. Running Times

As applications (e.g., in robotics) often require real-time
performance, we analyze the time required for projecting
a 3D world point onto the image plane. Whenever the
reprojection error needs to be computed, e.g., during localiza-
tion, motion estimation or 3D reconstruction, this function
is called (frequently) by the optimization routine. Table II
shows the time required for projecting 10,000 random 3D
points to the image plane. The running time for the numeric
non-central projection has been taken from [24] and is
considered approximate. However our results agree with the
observations in [10]. All the remaining running times have
been computed on an Intel i7 2.67 Ghz machine using a sin-
gle CPU core. As expected, the numeric optimization in the
non-central model is the slowest, requiring ∼ 185 seconds for
projecting the points. The run-time of the geometric model
is heavily dominated by the computation of the analytical
forward projection [10] (provided to us by the authors) which
involves the computation of the polynomial coefficients and
the evaluation of MATLAB’s roots function for finding
the polynomial roots. The latter is also responsible for
the relatively slow evaluation of Scaramuzza’s projection
function [12]. On contrary, the proposed centered model and
the relatively simple projection model of Mei et al. [11] are
very fast and able to project 10,000 points in a couple of
milliseconds only. Compared to the geometric model, our
centered approach yields a speed-up of more than three
orders of magnitude.

V. CONCLUSION

In this paper we have proposed to center quasi-central
catadioptric cameras while ensuring that the viewing ray
orientation matches the true one. We showed that the
proposed centered camera model approximates non-central
catadioptric systems sufficiently well as long as the distance
to the observed points is relatively large compared to the
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(f) Sequence 3: Translation Error
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Fig. 6. Motion Estimation Experiment. This figure shows the hypercatadioptric cameras on top of our recording platform which we used in our
experiments (a), the bird’s eye and side view of the estimated and ground truth trajectories of the first (and shortest) sequence (b+c) and the end-point
errors after estimating the vehicle’s motion over 200 frames (d-g) corresponding to 0−300 meters for sequences of various length.

deviation from the single viewpoint, which is a reasonable
assumption in practice, e.g., for mobile robots. Unlike exact
forward projections for the non-central case, its efficiency
makes the proposed projection model suitable for real-time
applications. We provide our dataset and code in form of a
easy-to-use calibration toolbox.We believe this to be a step
forward towards the practical use of catadioptric cameras
in settings where both, calibration accuracy and runtime
matters.

APPENDIX

Claim 1: Every central base model can be represented
exactly by the centered model presented in Section III-B.
Proof: Assuming an undistorted perspective camera, every
central projection can be represented in the form[

u
v

]
=

[
cu
cv

]
+ f (ϕ)

[
cosθ

sinθ

]
(13)

where (cu,cv) denotes the principal point, ϕ and θ are the
pitch and yaw angle of the viewing ray and f is an arbitrary
monotonic and smooth function. By rearranging the terms
we see that

ϕ = f−1
(√

(u− cu)2 +(v− cv)2

)
(14)

Substituting Eq. 14 into Eq. 10 yields a displacement field
which maps the image observations into the coordinates of
the centered model. �
Claim 2: The centered model maps points at infinity exactly
for any non-central base model.

Proof: Let p = λ (x,y,z)T denote a 3D world point and t =
(tx, ty, tz)T an arbitrary finite translation of the viewing ray
with pitch angle ϕ and yaw angle θ , i.e.,

ϕ = atan

(
λ z+ tz√

(λx+ tx)2 +(λy+ ty)2

)
θ = atan

(
λy+ ty
λx+ tx

)
For λ → ∞ we obtain

ϕ → atan

(
z√

x2 + y2

)
θ → atan

(y
x

)
Thus we can represent the viewing ray orientations exactly
using a centered model. �
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Fig. 8. Simulated Displacements from the Single Viewpoint. This figure shows the reprojection errors of the checkerboard corners after calibration
(left) and the localization errors from the localization experiment (right) using triplets of points when displacing the camera center axially (top row) and
laterally (bottom row). The geometric model (green) which has been used for generating the data produces zero error and is given for reference only.
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