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Abstract— This paper presents a system capable of recovering 
the trajectory of a vehicle from the video input of a single 
camera at a very high frame-rate. The overall frame-rate is 
limited only by the feature extraction process, as the outlier 
removal and the motion estimation steps take less than 1 
millisecond with a normal laptop computer. The algorithm 
relies on a novel way of removing the outliers of the feature 
matching process. We show that by exploiting the nonholonomic 
constraints of wheeled vehicles it is possible to use a restrictive 
motion model which allows us to parameterize the motion 
with only 1 feature correspondence. Using a single feature 
correspondence for motion estimation is the lowest model 
parameterization possible and results in the most efficient 
algorithms for removing outliers. Here we present two methods 
for outlier removal. One based on RANSAC and the other one 
based on histogram voting. We demonstrate the approach using 
an omnidirectional camera placed on a vehicle during a peak 
time tour in the city of Zurich. We show that the proposed 
algorithm is able to cope with the large amount of clutter of 
the city (other moving cars, buses, trams, pedestrians, sudden 
stops of the vehicle, etc.). Using the proposed approach, we 
cover one of the longest trajectories ever reported in real-time 
from a single omnidirectional camera and in cluttered urban 
scenes, up to 3 kilometers. 

I. INTRODUCTION 

While there exist nowadays a wide availability of algo
rithms for motion estimation using video input alone (see 
Section II), cameras are still little integrated in the motion 
estimation system of a mobile robot and even less in that 
of an automotive vehicle. The main reasons for this are the 
following: 

•	 several algorithms can still only work off-line or at low 
frame-rate, 

•	 others need high processing power or expensive and 
dedicated processors, 

•	 many algorithms are quite complex to use or are de
signed for specific cameras, 

•	 many algorithms assume static scenes and cannot cope 
with dynamic and cluttered environments or huge oc
clusions by other passing vehicles (like what happens 
in typical urban environments in real traffic with other 
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moving cars, buses, trams and pedestrians, sudden 
changes of speed, etc.), 

•	 the data-association problem (feature matching and out
lier removal) is not completely robust and can fail, 

•	 the motion estimation scheme usually requires many 
keypoints and can fail when only a few keypoints are 
available in almost absence of structure. 

Here, we will show that all these areas can be improved 
by using a restrictive motion model which allows us to 
parameterize the motion with only 1 feature correspondence. 
Using a single feature correspondence for motion estimation 
is the lowest model parameterization possible and results in 
the most efficient algorithms for removing outliers. 

Our approach exploits the nonholonomic constraints of 
wheeled vehicles, that is, they possess an Instantaneous 
Center of Rotation (ICR). Cars are typical examples of such 
vehicles. As everybody experiences in driving, one needs to 
act on the steering to change the direction of the car. What 
actually happens in practice is that the two front wheels 
are turned of a slight different angle to make the vehicle 
move instantaneously along a circle and, thus, turn about the 
ICR. As the reader can perceive, this constraint reduces the 
degrees of freedom of the motion to two, namely the rotation 
angle and the radius of curvature. The first consequence is 
that only one feature correspondence suffices for computing 
the epipolar geometry. This allows motion to be computed 
also from scenes where structure is almost absent, provided 
that at least one feature is available. The second consequence 
is that very efficient methods for removing outliers can be 
implemented. 

Note, in this paper we will show experiments with an 
omnidirectional camera but the proposed approach can be 
applied also to perspective cameras. 

The outline of the paper is the following. In Section II, 
we review the related work. In Section III, we explain how 
the nonholomic constraints of wheeled vehicles can be used 
to compute the calibrated essential matrix from one point. In 
Section IV, we describe two methods for outlier removal. In 
Section V, we summarize our motion estimation algorithm. 
Finally, in sections VI and VII we present our experimental 
results and conclusions. 
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Please observe that the following paper is accompanied by 
a demonstrative video available from the author’s webpage. 

II. RELATED WORK 

The problem of recovering relative camera poses and 
3D structure from a set of monocular images has been 
largely studied for many years and is known in the computer 
vision community as “Structure From Motion” (SFM) [1]. 
Successful results with only a single camera and over long 
distances (from hundreds of meters up to kilomeers) have 
been obtained in the last decade using both perspective and 
omnidirectional cameras (see [2]–[9]). Here, we review some 
of these works. 

Related works can be divided into three categories: fea
ture based methods, appearance based methods, and hybrid 
methods. Feature based methods are based on salient and 
repetitive features that are tracked over the frames; appear
ance based methods use only the intensity information of 
the whole image or subregions of it; hybrid methods use a 
combination of the previous two. 

In the first category are the works of [2]–[5]. In [2], 
Bosse et al. used vanishing points and 3D lines to recover 
both structure and motion on a 946-meter path. In [5], 
Nister et al. dealed with the case of a stereo camera but 
they also provided a monocular solution implementing a 
full structure from motion algorithm that takes advantage 
of the 5-point algorithm and RANSAC robust estimation. 
In [3], Corke et al. provided two approaches for monocular 
visual odometry based on omnidirectional imagery from a 
catadioptric camera. As their approach was conceived for a 
planetary rover, they performed experiments in the desert and 
therefore used keypoints from the ground plane. In the first 
approach, they used optical flow computation with planar 
motion assumption while in the second one they performed 
full SFM (with unconstrained motion). The optical flow 
method with planar assumption gave the best performance 
over 250 meters but the trajectory was not accurately re
covered showing a large drift of the rotation estimation. In 
[4], Lhuillier used 5-point RANSAC and bundle adjustment 
to recover both the motion and the 3D map. In [7], Tardif 
et al. presented an approach for incremental and accurate 
SFM from a car over a very long run (2.5 km) without 
bundle adjustment. To achieve it, they decoupled the rotation 
and translation estimation. In particular, they estimated the 
rotation using points at infinity and the translation from the 
recovered 3D map. Bad correspondences were removed with 
preemptive RANSAC [10]. However, in contrast with the 
previous works, they did not use a catadioptric camera but a 
Ladybug2 (from PointGrey) which uses six high resolution 
cameras arranged to give an omnidirectional view. 

Among the appearance based or hybrid approaches are the 
works of [6], [8], [9]. In [6], Goecke et al. used the Fourier-
Mellin Transform for registering perspective images of the 
ground plane taken from a car. Results were shown on a 
300-meter path. In [8], Milford et al. presented a method 
to extract approximate rotational and translational velocity 
information from a single perspective camera mounted on 
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Fig. 1. General Ackermann steering principle (courtesy of Bjorn Jensen). 

a car, which was then used in a RatSLAM scheme [11] to 
generate a coherent map of the urban environment. However, 
appearance based approaches alone are not very robust to 
occlusions. For this reason, in our previous works [9], [12] 
we used appearance to estimate the rotation of the car and 
features from the ground plane to estimate the translation 
and the scale factor. The feature based approach was also 
used as a firewall to detect failure of the appearance based 
method. 

Closely related to structure from motion is what is known 
in the robotics community as Simultaneous Localization and 
Mapping (SLAM), which aims at estimating the motion of 
the robot while simultaneously building and updating the 
environment map. SLAM has been most often performed 
with other sensors than regular cameras, however in the 
last years successful results have been obtained using single 
cameras alone (see [13], [14], [15], and [16]). 

III. WHY DO WE NEED ONLY ONE POINT? 

For a wheeled vehicle to exhibit rolling motion, a point 
must exist around which each wheel of the vehicle follows 
a circular course [17]. This point is known as Instantaneous 
Center of Rotation (ICR) and can be computed by intersect
ing all the roll axes of the wheels (Fig. 1). For cars the 
existence of the ICR is ensured by the Ackermann steering 
principle [17]. This principle ensures a smooth movement of 
the vehicle by applying different steering angles to the inner 
and outer front wheel while turning. This is needed as all the 
four wheels move in a circle on four different radii around 
the ICR (see Fig. 1). 

As the reader can perceive, the motion of a camera 
installed on the vehicle can be then locally described with 
circular motion; straight motion can be represented along a 
circle of infinite radius. In the remainder, we will refer to 
our motion model as “circular motion”. Now, we will see 
how this reflects on the rotation and translation and on the 
parameterization of the essential matrix. In the following we 
will assume locally planar motion. 

A. The Essential Matrix 

Under planar motion, the two relative poses of a camera 
can be described by three parameters, namely the yaw angle 
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θ and the polar coordinates (ρ,φ) of the second position 
relative to the first position (Fig. 2). Since when using only 
one camera the scale factor is unknown, we can arbitrarily 
set ρ at 1. From this it follows that only two parameters need 
to be estimated and so only two image points are required. 
However, if the camera moves locally along a circumference 
(as in Fig. 2) and the x-axis of the camera is set perpendicular 
to the radius RICR, then we have φ = θ/2; thus, only θ needs 
to be estimated and so only one image point is required. 
Observe that straight motion is also described through our 
circular motion model; in fact in this case we would have 
θ = 0 and thus φ = 0. 

Let us now derive the expression for the essential matrix 
using the considerations above. Let R and T be the unknown 
rotation and translation matrices which relate the two camera 
poses. Then, we have 

  

cos(θ) −sin(θ) 0 
 

cos(φ) 
 

R =  sin(θ) cos(θ) 0  , T = ρ ·  sin(φ)  (1) 
0 0 1 0 

because we considered the motion along the xy plane and 
the rotation about the z-axis. Then, let p = [x, y,z]T and p ′ = 
′ ′ ′ [x ,y , z ]T be the image coordinates of a scene point seen 

from the two camera positions. Observe that to make our 
approach independent of the camera model we use spherical 
image coordinates; therefore p and p ′ are the image points 
back projected onto a unit sphere (i.e. �p� = �p ′� = 1). This 
is always possible once the camera is calibrated. 

As known in computer vision, the two unknown camera 
positions and the image coordinates must verify the epipolar 
constraint 

′T p Ep = 0, (2) 

where E (called essential matrix) is defined as E = [T]×R, 
where [T]× denotes the skew symmetric matrix 

  

0 −Tz Ty 

[T]× =  Tz 0 −Tx  . (3) 
−Ty Tx 0 

Then, using (1), (3), and the constraint φ = θ/2, we obtain 
the expression of the essential matrix for planar circular 
motion: 

  

0 0 sin( θ 
2 ) 

E = ρ ·  0 0 −cos( θ 
2 ) 

 (4) 

2 ) cos( θsin( θ 
2 ) 0 

B. Recovering θ 
By replacing (4) into (2), we can observe that every image 

point contributes to the following homogeneous equation: 

θ θ′ ′ ′ ′ sin · (x z + z x) + cos · (y z − z y) = 0 (5) 
2 2 

Given one image point the rotation angle θ can then be 
obtained from (5) as: 

( 

′ 
)

′ 

θ = −2 tan−1 y z − z y 
(6) 
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Fig. 2. Relation between camera axes in circular motion. 

Conversely, given m image points, θ can be computed 
indirectly by solving linearly for the vector [sin( θ 

2 )] 2 ),cos( θ 

using Singular Value Decomposition (SVD). To this end, we 
first form a m ×2 data matrix D, where each row is formed 
by the two coefficients of Equation (5), that is: 

[ 

(x ′ z + z ′ x) , (y ′ z − z ′ y) 
] 

. (7) 

The matrix D is then decomposed using SVD: 

Dm×2 = Um×2Λ2×2V2×2 (8) 

where the columns of V2×2 contain the eigenvectors ei of 
DT D. The eigenvector e ∗ = [sin( θ 

2 )] corresponding 2 ), cos( θ 

to the minimum eigenvalue minimizes the sum of squares of 
the residuals, subject to �e ∗�= 1. Finally, θ can be computed 
from e ∗ . 

C. Discussion on our Motion Model 

Note, the equations above are valid only when the camera 
is placed along the back-wheel axis and with the x-axis 
perpendicular to it (see Oideal in Fig. 1). However in practice 
cars have small steering angle (Fig. 3), and thus a big radius 
of curvature. This allows us to relax the previous assumption 
and to place the camera anywhere above the car provided that 
the x-axis of the camera is perpendicular to the back-wheel 
axis. For our car, for instance, the camera was placed as 
shown in Fig. 1 (Oours) and Fig. 6. This position was chosen 
arbitrarily without any particular reason but having a wide 
field of view on the front of the car. 

Finally, observe that the planar assumption and the circular 
motion constraint hold only locally, but because of the 
smooth motion of cars we found that this assumption actually 
holds very well also at low frame rates (< 10 Hz while 
running at 50 Km/h). 

IV. OUTLIER REMOVAL: TWO APPROACHES 

Here, we describe two approaches for removing the out
liers of the feature matching process by using the mo
tion model of the previous section. Once the outliers are 
identified, the motion estimate can be refined using all 
the remaining inliers (see Section V). The two approaches 
explained here are based on RANSAC and histogram voting. 



Fig. 3. Steering angle (deg) vs. traveled distance (m) read from our car. 

TABLE I 

Min. set of points: 6 points 5 points 2 points 1 point 

No. of iterations: 292 145 16 7 

A. 1-Point RANSAC 

The random sample consensus (RANSAC) [18] has been 
established as the standard method for model estimation 
in the presence of outliers. Structure from motion is one 
application of the RANSAC scheme. RANSAC works by 
generating model hypothesis from randomly sampled min
imal data sets and verifying them on the whole data set. 
The number of hypothesis (iterations) N that is necessary to 
guarantee that a correct solution is found can be computed 

log(1−p)by N = log(1−(1−ε)s) , where s is the number of minimal data 
points, ε is the percentage of outliers in the data points and p 
is the requested probability of success [18]. N is exponential 
in the number of data points necessary for estimating the 
model, so there is a high interest in finding the minimal 
parameterization of the model. For unconstrained motion 
of a calibrated camera this would be 5 point correspon
dences [19], [20]. Using the 6-point algorithm [21] would 
increase the number of necessary iterations and therefore 
slow down the motion estimation algorithm. It is therefore 
of utmost importance to find the minimal parameterization 
of the model to estimate. In the case of planar motion, the 
motion model complexity is reduced and can be parame
terized with 2 points as described in [22]. For automotive 
applications we showed in Section III that an even more 
restrictive motion model can be chosen which allows us to 
parameterize the motion with only 1 feature correspondence. 
Using a single feature correspondence for motion estimation 
is the lowest model parameterization possible and results in 
the most efficient RANSAC algorithm. Table I shows the 
number of RANSAC iterations needed for different motion 
estimation algorithms which require a different number of 
minimal data points s. These values were obtained assuming 
a probability of success p = 99% and a percentage of outliers 
ε = 50%. The table shows that with the 1-point RANSAC 
the needed iterations are extremely low. 

In the hypothesis generation step, our 1-point RANSAC 
computes the relative motion from a single randomly chosen 
point correspondence. To do this, we use Eq. (6). In the 
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Fig. 4. Left: side view. Right: top view. 

Fig. 5. An example histogram from feature correspondences. 

model verification step the consensus set for the model 
hypothesis is computed, i.e. set of inliers. A directional error 
measure is used to find the inliers that support the motion 
model. The error measure is illustrated in Fig. 4. We can 
observe that for each correspondence we have d tanα = 
d′ ′ ′ ′ tanα and d sinγ = d sinγ . This implies that for each 

′ tanαcorrespondence the ratio d
d can be computed both as ′ tanα

sinγand sinγ ′ . We consider a corresponding point pair as inlier if 
the difference of both ratios is lower than a threshold t. 

B. Histogram voting 

The possibility of estimating the motion using only one 
feature correspondence allows us to to implement another 
algorithm for outlier removal that is much more efficient 
than the 1-point RANSAC approach as it requires no iter
ations. The algorithm is based on histogram voting: first, 
θ is computed from each feature correspondence using (6); 
then, a histogram H is built where each bin contains the 
number of features which count for the same θ . A sample 
histogram built from real data is shown in Fig. 5. When the 
circular motion model is well satisfied, the histogram has 
a very narrow peak centered on the best motion estimate 
θ ∗, that is θ ∗ = argmax{H}. As the reader can perceive, θ ∗ 

represents our motion hypothesis; knowing it, the inliers can 
be identified as we did the previous section by using again 
the directional error. 

Note, this method implies to compute first the histogram 
of the θ values in order to then determine θ ∗. As a matter of 
fact, we found an even more efficient solution where, instead 
of building the histogram, we set θ ∗ equal to the median of 
the distribution, that is, θ ∗ = median{θi}. We found the latter 
giving as good results as the histogram voting. 



V. STRUCTURE FROM MOTION ALGORITHM 

In the previous sections we introduced our motion model 
(locally planar circular motion) and we showed that it can be 
used to remove the outliers of the feature matching process. 
As we saw, the relative motion between two frames is also 
computed while removing the outliers. This is done in order 
to identify the number of inliers supporting the estimated 
motion. However, our circular motion model (2DoF) is 
only an approximation of the real motion of the camera. 
Therefore, we decided to compare it with the planar motion 
model (3DoF) and the unconstrained motion model (6DoF). 
The algorithms to estimate structure and motion from a set of 
inliers with or without planar assumption can be found in [1], 
[19], [20], [22]. These algorithms proceed similarly to what 
we did in Section III-B by computing the essential matrix and 
then decomposing it linearly into R and T. Observe that the 
scale (ρ) cannot be recovered from two images of a single 
camera, therefore in our experiments we used the knowledge 
of the speed of the vehicle. Our motion estimation algorithm 
operates as follows: 

1) Load a new frame 
2) Extract feature correspondences between current and 

previous frame 
3) Compute the pixel distance between the matched 

points. If more than 90% of the distances is less than 
3 pixels then assume no motion and return to step 1 

4) Remove the outliers using one of the two methods 
given in Section IV 

5) Recompute motion (θc,φc) from all the remaining 
inliers using SVD (Section III-B); remember to set 
φc = θc/2 because of the circular motion constraint. 
Set temporarily the scale factor ρ = 1 

6) Recompute motion from inliers: use (a) planar assump
tion or (b) unconstrained motion. Set temporarily the 
scale factor ρ = 1 

7) Firewall condition: if the recomputed motion param
eters differ too much (> 10◦) from the θc,φc values 
of step 5, then reject the recomputed parameters and 
return θc,φc 

8) Get the current speed of the car v and set the image 
scale ρ = vΔt 

9) Recover the 3D structure by triangulating the rays of 
the back projected image points of the last two frames 

10) Integrate the motion and repeat from step 1 

The firewall condition allows us to face those situations with 
too few features or where the features are distributed on small 
parts of the image. In these cases we found that the structure 
from motion algorithms for planar or unconstrained motion 
returned a motion vector inconsistent with the real move
ment of the car. Conversely, the circular motion constraint 
returned always consistent estimates. This is an advantage of 
exploiting the nonholonomic constraints of wheeled vehicles. 

VI. RESULTS 

The approach proposed in this paper has been successfully 
tested on a real vehicle equipped with an omnidirectional 

Fig. 6. The vehicle used in our experiments equipped with the omnidirec
tional camera (in the circle). The vertical field of view is indicated by the 
lines. 

camera. A picture of our vehicle (a Smart) is shown in Fig. 
6. Our omnidirectional camera is composed of a hyperbolic 
mirror (KAIDAN 360 One VR) and a digital color camera 
(SONY XCD-SX910, image size 640 × 480 pixels). The 
camera was installed as shown in Fig. 6. The maximum 
frame-rate of this camera is 15Hz but in practice we observed 
always 10Hz. Sometimes the frame-rate dropped to 5Hz 
because of the memory resources shared with other sensors 
on the car. For calibrating the camera we used the toolbox 
described in [23] and available from [24]. The vehicle speed 
ranged between 0 and 45Km/h. 

The dataset was taken in real traffic during the peak time 
in the city center of Zurich. Therefore, many pedestrians 
and passing trams, buses, and cars were also present. The 
images were collected from the beginning until the end of 
the tour, also when the vehicle was still in the presence of 
stop signs, pedestrian crossings, and red lights. In the absence 
of motion, the frames were skipped as explained in Section 
V. The overall length of the tour is about 3Km and is shown 
in Fig. 8 overlaid on a satellite image. 

We tested our structure from motion algorithm on different 
feature detectors: SIFT, Harris, and KLT. SIFT returned about 
700 ∼ 1000 features per frame, while Harris and KLT about 
2500 ∼ 4000 features. We applied these detectors on the same 
image dataset to enable comparison. 

For each feature type we ran the algorithm of Section 
V. We used independently our two approaches for outlier 
removal (i.e. 1-Point RANSAC and histogram voting). Both 
of them perform equally well and can be interchanged. 

Then we recomputed the motion from all the inliers using: 
a) planar circular motion model (2DoF), b) planar motion 
model (3DoF), c) unconstrained motion model (6DoF). The 
recovered trajectories for the case of the KLT features are 
shown in Fig. 7. The trajectory recovered using the planar 
motion model gave the results the most similar to the ground 
truth (Fig. 8). At this point, the reader might be wondering 
why the planar motion model performs still better than the 
circular motion alone. The reason is that the circular motion 
model is just an approximation of the real motion of the 
camera. Nevertheless, we can state that our restrictive model 
is very appropriate to describe and predict the motion of 



the vehicle locally. Furthermore, its small parameterization
(only 1 point) allows us to cope with those situations where
only very few features are present, which usually cause other
motion estimation algorithms to fail. This is also the reason
why we put a firewall condition in our algorithm (Section
V, step 7).

The comparison among the trajectories recovered using
Harris, SIFT, and KLT is shown in Fig. 9. Here we show
only the results for the planar motion model. Again, the paths
exhibit different amounts of drift. After a deep inspection we
found that the difference was not due to the quality of the
feature matching (in fact we had always a reprojection error
smaller than 0.5 pixels) but rather to the distribution of the
features on each image. For instance we observed that while
the KLT features were in many frames evenly distributed, the
Harris features were sometimes more densely concentrated
in some parts of the image. With SIFT the distribution of
the features was more dramatic; observe, for instance, that
around the turn pointed to by the arrow the path is more
bent than the others. We found that this was due to the
low number of SIFT features available (2 in this situation).
This also happened for instance in scenes with very small
clutter, like on bridges or in other areas where only the road,
the lampposts, and the other vehicles were visible. In these
situations the amount of SIFT features was much lower than
Harris and KLT.

Figure 10 shows the top view of the recovered 3D map and
camera trajectory. Here we used again the KLT features and
the planar motion model. Observe that to build this map the
features were triangulated only from two consecutive frames
(two-view geometry). Furthermore observe that the points are
aligned quite well along straight edges, which correspond to
the walls of the buildings. Finally, Fig. 11 shows a closer
view of the 3D map at the beginning of the path overlaid on
a satellite image. Here it is more clear that the 3D points are
well aligned along the straight edges of the buildings.

As mentioned earlier, the best results, in terms of agree-
ment with the ground truth, were obtained using the KLT
features and the planar motion model. The comparison is
shown in Fig. 8. As observed the path is aligned quite
well with the real trajectory except for the unavoidable
drift that increases with the traveled distance. This result
is however already quite good if one considers that the
proposed approach is incremental (at each new frame only
the current pose is updated without refining the previous
ones) and that the position of the triangulated features is
unchanged. Furthermore, the length of the recovered path
was considerably long, up to 3Km. Improvements could be
obtained by using for instance the recovered 3D structure to
update the new pose (this would allow us to compute the
relative scale from the images) or using bundle adjustment
and SLAM techniques, where both the positions of the
camera and the features are refined. These improvements are
currently under development.

Fig. 7. Visual odometry: comparison using different motion models. KLT
features were used.

Fig. 8. Comparison between visual odometry (red dashed line) and ground
truth (black solid line). The entire trajectory is 3Km long. For visual
odometry here we used the KLT features and the planar motion model.

VII. CONCLUSION

In this paper, we showed that by exploiting the nonholo-
nomic constraints of a wheeled vehicle it is possible to
parameterize the motion with only 1 feature correspondence.
Using a single feature correspondence for motion estimation
is the lowest model parameterization possible and allowed us
to develop the two most efficient algorithms for removing
outliers: one based on RANSAC and the other one based
on histogram voting. Furthermore, we showed that our re-
strictive motion model alone gives already accurate visual
odometry estimates that can be refined from all the inliers
using different motion models. In addition, we saw that this
restrictive parameterization allows us to cope with those
situations where only very few features are present, which
usually cause other motion estimation algorithms to fail. The
algorithm was tested on different feature detectors and we
showed the performance of the approach by recovering a
3Km trajectory using omnidirectional images taken from our
vehicle in a urban and very cluttered environment.



Fig. 9. Visual odometry: comparison using different feature detectors. 
Here, the planar motion model was used. 

Fig. 10. Recovered 3D map and camera positions: top view. Here we used 
the KLT features and the planar motion model. 
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