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Abstract—In this paper, we describe a real-time algorithm for
computing the ego-motion of a vehicle relative to the road. The
algorithm uses as input only those images provided by a single om-
nidirectional camera mounted on the roof of the vehicle. The front
ends of the system are two different trackers. The first one is a
homography-based tracker that detects and matches robust scale-
invariant features that most likely belong to the ground plane. The
second one uses an appearance-based approach and gives high-
resolution estimates of the rotation of the vehicle. This planar pose
estimation method has been successfully applied to videos from
an automotive platform. We give an example of camera trajectory
estimated purely from omnidirectional images over a distance of
400 m. For performance evaluation, the estimated path is super-
imposed onto a satellite image. In the end, we use image mosaicing
to obtain a textured 2-D reconstruction of the estimated path.

Index Terms—Appearance, homography, omnidirectional
camera, scale-invariant feature transform (SIFT) features,
vehicle ego-motion estimation, visual odometry.

I. INTRODUCTION

ACCURATE estimation of the ego-motion of a vehicle rel-
ative to the road is a key component for autonomous driv-

ing and computer-vision-based driving assistance. Using cam-
eras instead of other sensors for computing ego-motion allows
for a simple integration of ego-motion data into other vision-
based algorithms, such as obstacle, pedestrian, and lane de-
tection, without the need for calibration between sensors. This
reduces maintenance and cost. In the robotics community as
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well, effective use of video sensors for obstacle detection and
outdoor navigation has been a goal for many years.

Most of the work in estimating robot motion has been pro-
duced using stereo cameras, and can be traced back to Moravec’s
work [1]. Similar work has been reported elsewhere also (see
[2]–[4]). Furthermore, stereo visual odometry has also been
successfully used on Mars by the National Aeronautics and
Space Administration (NASA) rovers since early 2004 [5].
Nevertheless, visual odometry methods for outdoor applica-
tions have also been produced, which use a single camera
alone.

The problem of recovering relative camera poses and 3-D
structure from a set of 2-D camera images has been largely
studied for many years and is known in the computer vision com-
munity as “structure from motion” [6]. Very successful results
have been obtained over long distances using either perspective
or omnidirectional cameras (see [4] and [7]). The authors in [4]
deal with the case of a stereo camera, and they also provide
a monocular solution implementing a fully structure from mo-
tion algorithm that takes advantage of the five-point algorithm
and random sample consensus (RANSAC) robust estimation.
The authors in [7] provide two approaches for monocular visual
odometry based on omnidirectional imagery. In the first ap-
proach, they use optical flow computation, while in the second
one, full structure from motion.

Closely related to structure from motion is what is known
in the robotics community as simultaneous localization and
mapping (SLAM), which aims at estimating the motion of the
robot while simultaneously building and updating the environ-
ment map. SLAM has most often been performed with other
sensors than regular cameras; however, in the past years suc-
cessful results have been obtained using single cameras alone
(see [8]–[11]). Recently, the authors in [10] presented a method
for mapping large loops with a single hand-held camera. There,
the authors extend Davison’s work on visual 3-D-SLAM [9]
and build outdoor, closed-loop maps much larger than previ-
ously achieved with visual input alone.

In this paper, we do not deal with visual SLAM, rather we con-
centrate on the development of a vision-based real-time method
to estimate the motion of outdoor ground vehicles over long
distances. In our approach, we used a single calibrated omni-
directional camera mounted on the roof of the car. We assume
that the vehicle undergoes a purely 2-D motion over a predom-
inant flat ground. Furthermore, because we wanted to perform
visual odometry in city streets, flat terrains, as well as in motor-
ways where buildings or 3-D structure are not always present,
we chose to estimate the motion of the vehicle by tracking the
ground plane.
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Ground plane tracking has already been exploited by the
robotics community for indoor visual navigation and most
works have been produced using standard perspective cameras
([12]–[15]). In these works, the motion of the vehicle is
estimated by using the property that the projection of the
ground plane into two different camera views is related by a
homography.

In this paper, we propose a similar approach for central omni-
directional cameras, but our goal is to estimate the ego-motion
of the vehicle in outdoor environments and over long distances.
Due to the large field of view (FOV) of the panoramic cam-
era, interesting points from all around the car are extracted and
matched from pairs of consecutive frames. Our key points are
scale-invariant feature transform (SIFT) features [16], as they
proved to work well with omnidirectional pictures also.

Furthermore, we want to extract those key points that belong
to the ground plane only. To retain only these points and discard
all the rest, we use a RANSAC-based outlier removal, which
uses the constraint that coplanar points seen from different views
are related by a homographic transformation. The remaining
inliers are then used to compute the rotation and translation
matrices. To update the motion, we use only the magnitude
of the translation because the rotation estimated from features
alone gives rise to large drift errors after several hundreds of
meters. Conversely, to estimate the rotation angle of the vehicle,
we use an appearance-based tracker. We show that by using
this second tracker, the drift error stays very low over several
hundreds of meters.

The performance of our approach has been evaluated on a
real platform. We will show an example of a camera trajectory
estimated purely from omnidirectional images over a distance
of 400 m. For performance evaluation, the estimated path is su-
perimposed onto a satellite image of the same test environment.
Furthermore, we use image mosaicing to obtain a textured 2-D
reconstruction of the estimated path.

This paper is organized as follows. Section II describes our
homography-based ground plane navigation. Section III eval-
uates the performance of two different algorithms for tracking
the ground plane. Section IV describes the appearance-based
tracker. Section V summarizes the steps of the whole visual
odometry algorithm. Finally, Section VI presents our experi-
mental results.

II. HOMOGRAPHY-BASED GROUND PLANE NAVIGATION

The motion information that can be extracted by tracking 2-D
features is central to our vehicle navigation system. Therefore,
we briefly review a method that uses planar constraints and point
tracking to compute the motion parameters.

A. Homography and Planar Motion Parameters

Early work on exploiting coplanar relations has been pre-
sented by Tsai and Huang [17], Longuet-Higgins [18], and
Faugeras and Lustman [19]. The coplanar relation between two
different views of the same plane can be summarized as follows.
Consider two camera-centered coordinate systems, frame 1 and

frame 2, which are related by a rigid body transformation:

X2 = RX1 + T (1)

where X1 ,X2 ∈ R
3 are the coordinates of a scene point relative

to camera frames 1 and 2, respectively, and R ∈ SO(3), T ∈
R

3 are the rotation and the translation matrices encoding the
relative position of the two coordinate systems. Now, assume
that X1 lies on the plane defined by

nTX1 = h (2)

where n ∈ R
3 is the plane normal and h ∈ R is the distance to

the plane. Then, substituting (2) into (1) gives

X2 =
(
R +

TnT

h

)
X1 . (3)

We call the matrix

H = R +
TnT

h
∈ R

3×3 (4)

the (planar) homography matrix since it denotes a linear trans-
formation from X1 to X2 as

X2 = H · X1 . (5)

Note that the matrix H depends on the motion parameters
{R,T} as well as the structure parameters {n, h} of the plane.

Now, let x1 , x2 ∈ R
3 be the normalized image coordinates of

X1 ,X2 on the unit sphere, i.e.

λ1x1 = X1 λ2x2 = X2 (6)

where λ1 , λ2 are the depth factors.
Then, from (5), we have

λ2x2 = H · λ1x1 (7)

and then, we can write

x2 ∼ H · x1 (8)

where ∼ indicates the equality up to a scale factor.
Since (8) is defined up to a scale factor, H has only 8 DOF.

This implies that four corresponding feature pairs (no three
collinear) are required to linearly determine H. If more than four
points are available, then a least-square solution can be searched.
The algorithm we used in our implementation to recover H from
a set of consistent point correspondences uses the normalized
direct linear transformation (DLT) [6].

Observe that because the homography is defined up to a scale,
we are able to recover H of the form

HL = λH = λ

(
R +

TnT

h

)
∈ R

3×3 (9)

for some (unknown) scale factor λ. However, as shown in [28],
the scale factor can be computed as

|λ| = σ2(HL) (10)

where σ2(HL) ∈ R is the second largest singular value of HL .
Once λ is computed, the estimated homography can be normal-
ized, i.e., H = HL/λ.

Finally, observe that (8) also suggests a method to check
whether a given set of points are coplanar. Namely, if we can
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Fig. 1. Vehicle used in our experiments equipped with the omnidirectional
camera (in the circle). The vertical FOV is indicated by the lines.

select four coplanar corresponding point pairs that are in a suf-
ficiently general configuration, then H can be computed and
used to check whether the other points in the scene lie in the
same plane. This is actually the principle of our RANSAC-based
outlier removal and will be detailed in Section II-F.

B. Omnidirectional Camera Model and Calibration

The model we used in our work is the generalized omni-
directional model proposed in [22]. This model describes the
imaging function that maps world points into camera image
points by means of an approximated Taylor series expansion
whose coefficients are the calibration parameters. We used this
model because the calibration is straightforward due to the avail-
ability of a Matlab toolbox available on the author’s Web page
and because it is also suitable to any central omnidirectional
camera, both dioptric and catadioptric. However, it is important
to remark that any other calibration method could have been
adopted without restriction provided that the camera is central,
i.e., it possesses a single effective view point (SVP) [27]. When
the SVP property is verified, any calibrated camera, both omni-
directional and perspective, can be represented as a set of optical
rays emanating from the SVP to the viewing directions [see (6)].
The length of these optical rays can be chosen up to the user.
Depending on the application, the rays can be projected onto the
unit sphere [as we mentioned earlier before (6)] or onto a plane
(perspective projection). The coordinates of these reprojected
rays are usually referred to as normalized image coordinates.
When the image coordinates are normalized, (8) is valid for
both perspective and omnidirectional cameras.

C. Homography or Euclidean Transformation?

In our experiments, we mounted the omnidirectional camera
on the roof of the car (Fig. 1) with the z-axis of the mirror per-
pendicular to the ground plane (Fig. 2). By fixing the origin of
our coordinate system in the center of projection of the omni-
directional camera (Fig. 2), we have that n = [0, 0,−1]T . The

Fig. 2. Omnidirectional camera model. The axis origin coincides with the
single view point of the camera–mirror system. The camera axis is considered
to be perpendicular to the ground plane.

distance h of the origin to the ground plane can be measured
manually.

According to the last considerations, the homography H has
the form

H = R +
TnT

h

=


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 +

1
h


 t1

t2
0


 ·


 0

0
−1




T

=


 cos θ − sin θ −t1/h

sin θ cos θ −t2/h
0 0 1


 (11)

where θ is the rotation angle of the camera about the z-axis, and
t1 and t2 are the elements of T.

Equation (11) describes a Euclidean transformation on the
image plane, which is a particular case of homography. The
Euclidean transformation has only 3 DOF and allows us a more
stable estimation of the motion with respect to the homography
(i.e., 8 DOF) when the motion is constrained to be on the ground
plane. However, because of the unavoidable vibrations the cam-
era is subjected to during the motion of the vehicle as well as the
nonperfect verticality of the camera, the form of H may appear
slightly different from (11). Therefore, an 8-DOF homography
is more appropriate than a Euclidean transformation to describe
the relation between the two views.

In the next section, we will see two methods to decompose the
homography to extract R and T: the “Triggs algorithm” and the
“Euclidean method.” We will assume that the image coordinates
x1 and x2 are matched correctly and satisfy the homography
constraint (i.e., coplanarity). In Section II-F, we will explain
how to extract these points.

In Section III, we will evaluate the performance of the two
approaches when the planar motion constraint and the verticality
of the camera are not perfectly satisfied.
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Fig. 3. (a) Uniform distribution of features. (b) Nonuniform distribution.

D. Decomposing H

If a camera is internally calibrated, it is possible to recover
R, T, and n from H up to at most a twofold ambiguity. A
linear method for decomposing H was originally developed
by Wunderlich [25] and later reformulated by Triggs [26]. The
algorithm of Triggs is based on the singular value decomposition
of H. The description of this method as well as its Matlab
implementation can be found in [26]. This algorithm outputs
two possible solutions for R, T, and n that are all internally
self-consistent. In the general case, some false solutions can
be eliminated by sign (visibility) tests or geometric constraints,
while in our case, we can disambiguate the solutions by choosing
the one for which the computed plane normal n is closer to
[0, 0,−1]T .

Once the two solutions are disambiguated, the rotation angle
θ and the translation components t1 , t2 along the ground plane
can be computed in the following manner. Indeed, because the
Triggs algorithm also returns the normal n to the plane, and we
are only interested in computing the motion along the plane, we
can actually project the estimated R and T onto the plane using
n. From these projections, the rotation angle θ and the translation
components t1 , t2 along the ground plane are obtained.

In the remainder of this paper, we will refer to this method as
the “Triggs algorithm.”

In our implementation, we used the Triggs algorithm but we
sometimes interchanged it with another method also that we are
now going to describe. Indeed, the Triggs algorithm works in
general very well if the image points are spatially uniformly dis-
tributed on the camera image [see Fig. 3(a)]. If the image points
are too close to a degenerate configuration or they are spatially
distributed within one side of the whole omnidirectional image
[Fig. 3(b)], then it is better to use the Euclidean approximation
given in (11). The quantitative justification of this statement can
be found in Section III where we evaluate the performance of
the two methods.

Here, we describe how to use the Euclidean approximation to
derive the rotation and translation parameters. By using x1 =
[x1 , y1 , 1] and x2 = [x2 , y2 , 1], from (11), we have{

x2 = cx1 − sy1 − a
y2 = sx1 + cy1 − b

(12)

with c = cos θ, s = sin θ, a = t1/h, and b = t2/h. Each point
pair gives two equations, and hence given two point pairs we can

linearly recover c, s, a, and b. When more point correspondences
are given (say n corresponding pairs) a linear least-squares so-
lution can be found with the pseudoinverse matrix method. To
this end, observe that (12) can be rewritten as

[
x1 −y1 −1 0
y1 x1 0 −1

]
·




c
s
a
b


 =

[
x2
y2

]
�
=A ·




c
s
a
b


 = B

(13)
where A ∈ R

2n×4 and B ∈ R
2n×1 . The linear least-squares

solution of (13) is [c, s, a, b]T = A+B, where A+ =
(ATA)−1AT is the pseudoinverse of A.

Observe that before solving (13), it is a good practice to nor-
malize the data through the Hartley’s normalization [6] (known
as preconditioning in the numerical literature). This makes the
linear solution more robust to image noise.

Finally, observe that the matrix Q = [c,−s; s, c] may not be
orthonormal because of the method used to compute its coeffi-
cients s and c. However, we can compute an orthonormal matrix
that better approximates Q.

The best rotation matrix R2D to approximate Q in the Frobe-
nius sense is R2D = UVT , where [U,S,V] = SVD(Q) and
SVD(Q) is the singular value decomposition of Q.

Here, “best” is in the sense of the smallest Frobenius norm of
the difference R2D − Q, which solves the problem

min
R2D

‖R2D − Q‖2
F subject to R2D · R2D

T = I. (14)

Finally, from R2D , the rotation angle θ can be computed
easily. At the same time, t1 , t2 can be directly computed from a
and b knowing h.

In the remainder of this paper, we will refer to this last method
as the “Euclidean method.”

In the final implementation of our algorithm, we implemented
both the Triggs algorithm and the Euclidean method. The trigger
condition to use the one or the other is given by the spatial
distributions of the image points. If the image points occupy
both the left and the right half of the omnidirectional image
[like in Fig. 3(a)], then the Triggs algorithm is used. If the
image points are only in one half (i.e., either the left or the right
one) of the image [like in Fig. 3(b)], then the Euclidean method
is used.

E. Maximum Likelihood Estimation

In Section II-D, we have described two different approaches
to recover the translation parameters and the rotation angle of
the vehicle, given a set of image correspondences that are as-
sumed to lie on a plane. However, the solution given by both
approaches is obtained by a linear method that minimizes an al-
gebraic distance that is not meaningful physically. We can refine
it through maximum likelihood inference. The maximum like-
lihood estimate can be obtained by minimizing the following
functional:

min
θ,t1 ,t2

n∑
i=1

‖xi
1 − x̂i

1(θ, t1 , t2)‖2 + ‖x2
i − x̂i

2(θ, t1 , t2)‖2

(15)
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with x̂1 = H−1x2 , x̂2 = Hx1 . If the Triggs algorithm is used,
H is defined as in [26], otherwise it is defined as in (11).

To minimize (15), we used the Levenberg–Marquadt algo-
rithm. This algorithm requires an initial guess for θ, t1 , and t2 .
As an initial guess, we used the linear solutions provided by
(13) and (14).

F. Coplanarity Check

The equations given in the previous sections assume that the
corresponding image pairs x1 and x2 are correctly matched and
that the points lie on the ground plane. Even though in omnidi-
rectional images taken from the roof of the car, the ground plane
is predominant, there are also many feature points that come
from other objects than just the road, like cars, buildings, trees,
guardrails, etc. Furthermore, there are also many unavoidable
false matches that are more numerous than those usually output
by the SIFT on standard perspective images (about 20%–30%
according to [16]) because of the large distortion introduced
by the mirror. To discard the outliers, we used the RANSAC
paradigm [20]. The RANSAC steps in our case are formally the
following.

1) Let A be the set of all image pairs output by SIFT from
two consecutive frames. At each iteration, four putative
corresponding pairs are randomly selected from A and a
homography H is instantiated from these points (four is
the minimum number of point pairs required to compute
an 8-DOF homography).

2) The instantiated H is used to determine the subset S1 of
point pairs in A that are within some error tolerance d.
This subset S1 is called consensus set.

3) If the number of members in S1 is greater than some
threshold t, which is a function of the expected number of
outliers in A, then S1 is used to compute a new H∗.

4) Otherwise, if the number of members in S1 is less than t,
then a new subset S2 is randomly selected and the previous
process is repeated.

If, after some predetermined number of trials, no consensus
set with t or more members is found, then the homography H∗

with the largest consensus set is used. How to the estimate t as
a function of the number of outliers can be found in [20].

As an error measure to determine the subset S1 of pairs that
are within the error tolerance d, we used the symmetric transfer
error

erri = ‖xi
2 − Hxi

1‖2 + ‖xi
1 − H−1xi

2‖2 . (16)

We reject every pair for which erri > d, where d is com-
puted statistically according to the Huber-type skipped means
rule [21], i.e., d = 5.2MAD. MAD stands for median absolute
deviation and is defined as

MAD(err) = mediani{|erri − medianj (errj )|}. (17)

Observe that if a prior estimate of the rotation angle is avail-
able (consider, for example, that coming from the visual com-
pass of Section IV), then this can be used as a prestage in the first
step of RANSAC to constrain the selection of putative matches.
This has the effect of speeding up the search of inliers and re-

ducing the percentage of outliers. In our implementation, we do
this in the following manner: we assume a 3-DOF motion, then
the rotation angle can be computed from at least two putative
point pairs. If this rotation estimate is consistent (within a cer-
tain threshold) with that given by the visual compass, then the
two point pairs are retained.

III. TRIGGS VERSUS EUCLID: A PERFORMANCE EVALUATION

In this section, we evaluate the performance of the Triggs
and the Euclidean methods under the influence of image noise,
point distribution, nonperfectly planar motion, and nonperfectly
vertical camera. The analysis is done on simulated data.

In the simulated environment, we used the same omnidirec-
tional camera model of our experiments. Also, the image size
was assigned as in the real experiments, namely, 640 × 480
pixels. The self-occlusion of the camera was simulated by re-
moving a circular region of radius Rmin from the center of the
omnidirectional image (like in Fig. 11). The length of the camera
displacement was chosen equal to the maximum displacement
of our real vehicle between two consecutive frames, namely
0.6 m. Also, the camera distance h to the ground plane was
assigned as in the real experiments, namely 2 m.

In each simulation trial, we used ten feature points randomly
selected from the ground plane. To randomly select these points,
we used a uniform probability distribution over the interval
[−5, 5] m along both the x- and y-directions. This point interval
is consistent to that observed during the experiments. Once the
features were selected, we projected them onto the image plane
and considered only their pixel coordinates.

Our goal is to characterize the performance of the outputs
of the Triggs and Euclidean methods when the planar motion
constraint and the verticality of the camera are not perfectly
satisfied. The outputs we are interested in are the motion pa-
rameters along the ground plane, i.e., the rotation angle θ (here
called yaw angle) and the translation length along the ground
plane |T| =

√
t21 + t22 , where t1 , t2 are computed as given in

Section II-D. For each simulation experiment, we will give the
plots of the absolute errors of θ and |T|, respectively.

As a first study, we characterize the performance of the two
algorithms with respect to Gaussian image noise. In the first
stage, we consider the ideal case where the camera undergoes
pure planar motion and the camera is perfectly vertical. In this
experiment, the coordinates of all image points were corrupted
by Gaussian noise with mean zero and variance σ. We varied σ
from 0 to 2 pixels, and for each value, we ran 1000 independent
trials where we computed the motion parameters θ and |T|.
The results shown in Fig. 4 are the average of the absolute
error. As observed, the error increases linearly with the noise
variance. Furthermore, the error given by the Euclidean method
is smaller than that given by the Triggs approach. This result
was expected because the Euclidean method provides 3-DOF
motion estimates that are more robust to image noise when the
motion is purely planar and the camera perfectly vertical.

Conversely, when this assumption does not hold, the behavior
of the two algorithms can be much different. As an example,
consider Fig. 5 to see what happens if the camera does not appear
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Fig. 4. Motion estimates versus noise variance [σ (in pixels)]. (a) Yaw angle
(in degrees). (b) Translation length (in meters). The case of pure planar motion
and camera perfectly vertical is considered.

Fig. 5. Motion estimates versus noise variance [σ (in pixels)]. (a) Yaw angle
(in degrees). (b) Translation length (in meters). Camera nonperfectly vertical:
pitch = roll = 1.0◦.

perfectly vertical. To generate this plot, we kept the direction of
motion still parallel to the ground plane but we slightly changed
the orientation (roll and pitch angles) of the camera axis in the
second position; in particular, we set roll = pitch = 1.0◦. As
observed, for small noise values, the Triggs algorithm performs
better than the Euclidean one. Indeed, in the noise-free case, it
can compute the exact orientation of the camera, while the Eu-
clidean method cannot. Thus, for small noise values, it performs
better than the Euclidean approach. Conversely, when the noise
increases, the error on the six motion parameters becomes more
relevant, while the error of the Euclidean method stays constant.
In the next simulations, we will consider a noise variance of
0.3 pixels.

In Section II-D, we mentioned that we switch between the
Triggs and the Euclidean method according to the distribution
of the image points (see Fig. 3). The justification of this choice
will now be given. First of all, consider that if the scene points
are collinear, the homography cannot be computed because the
points are in a degenerate configuration. In practice, however,
the image points are always corrupted by noise or the scene
points are nearly collinear. Thus, in both cases, the homography
can be instantiated but, because the data are badly conditioned,
the result of the homography decomposition by Triggs would
diverge from the correct result. Conversely, the Euclidean trans-
formation is not affected by the collinearity of the scene points.
This brought us to the conclusion that if the scene points are
nearly collinear (and so the image points lie nearly on a conic),
the Euclidean transformation should be used; in all the other

Fig. 6. Motion estimates versus point distribution (Σ (in meters)). Point dis-
tribution is computed as point variance along the y-axis. (a) Yaw angle (in
degrees). (b) Translation length (in meters). The case of pure planar motion and
camera perfectly vertical is considered.

Fig. 7. Motion estimates versus point distribution (Σ (in meters)). Point
distribution is computed as point variance along the y-axis. (a) Yaw angle
(in degrees). (b) Translation length (in meters). Camera nonperfectly vertical:
pitch = roll = 1.0◦

cases, the Triggs algorithm should be adopted. By performing
several simulations, we actually found that it is better to use
the Euclidean algorithm when the image points lie only on one
half of the omnidirectional image (i.e., scene points potentially
collinear).

To demonstrate this, we generated our random features along
a line parallel to the x-axis and distant 1 m from the camera
origin. Then, we perturbed the y-coordinate of the features with
Σ meters Gaussian noise. Finally, we projected the features onto
the image plane and added 0.3 pixel Gaussian noise. We varied
Σ from 0 to 2 m and ran 1000 independent trials. The average
values of the absolute error of the motion estimates are shown
in Fig. 6. As observed, the Euclidean method performs better
than the Triggs for every Σ. However, this experiment was done
by again considering pure planar motion and camera perfectly
vertical; hence, the Euclidean method has to provide the best
result.

Conversely, the effect of a nonperfectly vertical camera
(namely, roll = pitch = 1◦) can be seen in Fig. 7 As ob-
served in these plots, the Euclidean method provides more
accurate motion estimates than the Triggs method only when
Σ < 0.2 m. This means that when Σ = 0.2, most features lie
within 3Σ = 0.6 m distance from the line. By increasing further
on the inclination of the camera (roll, pitch >1 ◦), we found
that this threshold also increases. In practice, the inclination of
the camera changes over the time due to jittery motion. This
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Fig. 8. Sensitivity of motion estimates to nonplanar motion. The sensitivity
is computed as a function of the roll angle of the camera in the second view
(pitch = 0, Tz = 0.1 m). (a) Yaw angle (in degrees). (b) Translation length (in
meters).

Fig. 9. Sensitivity of motion estimates to the camera axis orientation with
respect to the vertical. The sensitivity is computed as a function of the angle
between the camera axis and plane normal. (a) Yaw angle (in degrees). (b)
Translation length (in meters).

phenomenon motivated our decision of switching the two meth-
ods according to the distribution of the image points. Finally, ob-
serve that when Σ approaches 0 (i.e., scene points are collinear),
the motion estimates by Triggs diverges as expected.

Fig. 8 shows the sensitivity of the motion estimates to non-
perfectly planar motion. We added a translation component
Tz = 0.1 m along the z-axis and also varied the relative ori-
entation of the camera in the second position. The sensitivity
of the motion parameters is computed as a function of the roll
angle of the camera in the second position. The roll was varied
from 0◦ to 5◦, and for each value, 1000 trials were run. For
each run, 0.3 pixel noise was added to corrupt the image points.
As observed, the Triggs algorithm always performs better than
the Euclidean method, showing to be able to detect violations
from the planar motion assumption. We also performed the same
experiment by varying the pitch angle and we obtained similar
plots.

Finally, Fig. 9 shows the influence of a nonperfectly vertical
camera axis on the motion estimates. The motion is still assumed
to be parallel to the ground plane. The plot is shown as a function
of the angle between the plane normal and the camera axis. This
angle was varied from 0◦ to 5◦ and for each value, 1000 trials
were run. For each run, 0.3 pixel noise was added to corrupt
the image points. As observed, the Triggs algorithm is able to
detect deviations of the camera from the verticality.

Fig. 10. Two unwrapped omnidirectional images. For reasons of space, here
only one half of the whole 360◦ is shown unwrapped. The central part of the
image corresponds to the front view of the vehicle (see Fig. 11). The two frames
were taken at different times while the car was translating and turning right. The
upper image is taken at time t − 1, the lower image at time t. The red (gray) line
is the horizon line. The white box is the search window used in our experiments.

IV. VISUAL COMPASS

In Section II, we described how to use point features to com-
pute the rotation and translation matrices. Unfortunately, when
using features to estimate the motion, the resulting rotation is
extremely sensitive to systematic errors due to the intrinsic
calibration of the camera or the extrinsic calibration between
the camera and the ground plane (the last case was studied in
Section III). This effect is even more accentuated with omni-
directional cameras due to the large distortion introduced by
the mirror. In addition to this, integrating rotational information
over time has the major drawback of generally becoming less
and less accurate as integration introduces additive errors at each
step. An example of camera trajectory recovered only using the
feature-based approach described in Section II is depicted in
Fig. 13.

To improve the accuracy of the rotation estimation, we used
an appearance-based approach. This approach was inspired by
a recent work on the use of omnidirectional cameras as visual
compass [23]. Directly using the appearance of the world as
opposed to extracting features or structure of the world is attrac-
tive because methods can be devised that do not need precise
calibration steps. Here, we describe how we implemented our
visual compass.

For ease of processing, every omnidirectional image is un-
wrapped into cylindrical panoramas (see Fig. 10). The unwrap-
ping considers only the white region of the omnidirectional
image that is depicted in Fig 11. We call these unwrapped ver-
sions “appearances.” If the camera is perfectly vertical to the
ground, then a pure rotation about its vertical axis will result
in a simple column-wise shift of the appearance in the opposite
direction. The exact rotation angle could then be retrieved by
simply finding the best match between a reference image (before
rotation) and a column-wise shift of the successive image (after
rotation). The best shift is directly related to the rotation angle
undertaken by the camera. In the general motion, translational
information is also present. This general case will be discussed
later.

The input to our rotation estimation scheme is thus made of
appearances that need to be compared. To compare them, we
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Fig. 11. Cylindrical panorama is obtained by unwrapping the white region.
The front view is the view pointing to the heading direction of the vehicle. The
reduced FOV around the front and back of the camera is demarcated by the two
lines.

used different similarity measures. In particular, we have tried
cross-correlation, zero-mean normalized cross-correlation, L1-
norm (Manhattan distance), and an L2-norm (Euclidean dis-
tance). The best results were obtained by using the Euclidean
distance. A performance comparison with the other metrics is
not given in this paper.

The Euclidean distance between two appearances Ii and Ij ,
with Ij being column-wise shifted (with column wrapping) by
α pixels, is

d(Ii, Ij , α) =

√√√√ h∑
k=1

w∑
h=1

c∑
l=1

|Ii(k, h, l) − Ij (k, h − α, l)|2

(18)

where h × w is the image size and c is the number of color
components. In our experiments, we used the red, green, and
blue (RGB) color space, thus having three color components
per pixel.

Defining αm the best shift that minimizes the distance
d(Ii, Ij , αm ) ≤ d(Ii, Ij , α) ∀α ∈ R, then the rotation angle ∆ϑ
(in degrees) between Ii and Ij is

∆ϑ = αm
360
w

. (19)

The width w of the appearance is the width of the omnidirec-
tional image after unwrapping and can be chosen arbitrarily. In
our experiments, we used w =360, which means that the angu-
lar resolution was 1 pixel/◦. To increase the resolution to 0.1◦,
we used cubic spline interpolation with 0.1 pixel precision. We
also tried larger image widths, but we did not get any remark-
able improvement in the final results. Thus, we used w =360
as the unwrapping can be done in a negligible amount of time.
The Euclidean distance between the two images in Fig. 10 as a
function of the column-wise shift of the second image is shown
in Fig. 12.

The distance minimization in (18) makes sense only when
the camera undergoes a pure rotation about its vertical axis, as
a rotation corresponds to a horizontal shift in the appearance. In
the real case, the vehicle is moving and translational component

Fig. 12. Euclidean distance between the two images in Fig. 10 as a function of
the column-wise shift of the second image. The distance is computed according
to (18).

is present. However, the “pure rotation” assumption still holds
if the camera undergoes small displacements or the distance
to the objects (buildings, tree, etc.) is large compared to the
displacement. In the other cases, this assumption does not hold
for the whole image, but an improvement that can be done
over the theoretical method is to only consider parts of the
images, namely the front and back part (see Fig. 11). Indeed, the
contribution to the optic flow by the motion of the camera is not
homogeneous in omnidirectional images; a forward/backward
translation mostly contributes in the regions corresponding to
the sides of the camera and very little in the parts corresponding
to the front and back of the camera, while the rotation contributes
equally everywhere.

Because we are interested in extracting the rotation informa-
tion, only considering the regions of the images corresponding
to the front and back of the camera allows us to reduce most of
the problems introduced by the translation, in particular sudden
changes in appearance (parallax).

According to the last considerations, in our experiments, we
used a reduced FOV around the front and back of the camera
(Fig. 11). The reduction of the FOV was done on both the hor-
izontal and vertical planes. A reduced horizontal FOV of about
30◦ around the front part is shown by the white window in
Fig. 10. Observe that we also reduced the FOV on the vertical
plane, in particular under the horizon line. The reason was to re-
duce the influence of the changes in appearance of the road. The
resulting vertical FOV was 50◦ above and 10◦ below the horizon
line (the horizon line is indicated in red (gray) in Fig. 10).

The fact of reducing the FOV (especially on the horizontal
plane) provided an important improvement over using the whole
FOV in terms of stability and sensitivity to prominent features
at the sides of the camera. The effect of the size of the horizontal
FOV on the estimation of the camera trajectory is depicted in
Fig. 14 and will be discussed in Section VI.

V. MOTION ESTIMATION ALGORITHM

As already mentioned, the appearance-based approach pro-
vides rotation angle estimates that are more reliable and stable
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than those output by the pure feature-based approach. Here,
we describe how we combined the rotation angle estimates of
Section IV with the camera translation estimates of Section II.

In our experiments, the speed of the vehicle ranged between
10 and 20 Km/h, while the images were constantly captured
at 10 Hz. This means that the distance covered between two
consecutive frames ranged between 0.3 and 0.6 m. For this short
distance, the camera configuration (x, y, θ), which contains its
2-D position (x, y) and orientation θ, can be approximated in
this way




xi+1 = xi + δρi cos
(

θi +
δθi

2

)

yi+1 = yi + δρi sin
(

θi +
δθi

2

)

θi+1 = θi + δθi

(20)

where we use δρ = |T|h and δθ = ∆ϑ.
Observe that T is the same translation vector used in

Section II, and thus, |T| =
√

t12 + t22 , where t1 and t2 are
computed as described in Section II-D and E. Parameter h is the
scale factor (i.e., in our case, this is the height of the camera to
the ground plane). The camera rotation angle ∆ϑ is computed
as described in Section IV. Observe that we did not use at all
the rotation estimates provided by the feature-based method of
Section II.

Now, let us resume the steps of our motion estimation scheme,
which have been detailed in Sections II and IV. Our omnidirec-
tional visual odometry operates as follows.

1) Acquire two consecutive frames. Consider only the region
of the omnidirectional image, which is between Rmin and
Rmax (see Fig. 11).

2) Extract and match SIFT features between the two frames.
Use the double consistency check to reduce the number
of outliers. Then, use the calibrated camera model to nor-
malize the feature coordinates by reprojecting them onto
a plane perpendicular to the z-axis and distant 1 from the
origin.

3) Unwrap the two images and compare them using the ap-
pearance method described in Section IV. In particular,
minimize (18), with reduced FOV, to compute the column-
wise shift between the appearances and use (19) to com-
pute the rotation angle ∆ϑ.

4) Use RANSAC to reject points that are not coplanar
(Section II-F); in particular, use the available rotation esti-
mate ∆ϑ from the visual compass to speed up RANSAC,
as explained at the end of Section II-F.

5) Apply the linear algorithm described in Section II-D to
estimate R and T from the remaining inliers. In doing this,
switch between the Triggs algorithm and the Euclidean
method, as described in Section II-D. Then, refine R and
T using maximum likelihood estimation (Section II-E).

6) Use δρ = |T|h and δθ = ∆ϑ and integrate the motion
using (20).

7) Repeat from step 1.

Fig. 13. Comparison between the camera trajectory recovered thorough two
distinct approaches: solid line, the trajectory recovered using the whole al-
gorithm described in this paper (feature and appearance based); dashed line,
the trajectory recovered using only the feature-based approach described in
Section II.

Fig. 14. Comparison of a camera trajectory recovered by using different FOVs.

Fig. 15. Heading direction θ (in degrees) versus the traveled distance (in
meters). The results are shown for different FOVs.
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Fig. 16. Estimated path superimposed onto a Google Earth image of the test environment. The scale is shown at the lower left corner.

Fig. 17. Image mosaicing that shows a textured 2-D reconstruction of the estimated path. The two arrows point out the final error at the loop closure (the two
pedestrian crossings pointed to by the arrows in reality coincide).

VI. RESULTS

The approach proposed in this paper has been successfully
tested on a real vehicle equipped with a central omnidirectional
camera. A picture of our vehicle (a Smart) is shown in Fig. 1.

Our omnidirectional camera, composed of a hyperbolic mir-
ror (KAIDAN 360 One VR) and a digital color camera (SONY
XCD-SX910, image size 640 × 480 pixels), was installed on the
front part of the roof of the vehicle. The frames were grabbed at
10 Hz, and the vehicle speed ranged between 10 and 20 km/h.

The resulting path estimated by our visual odometry algo-
rithm using a 10◦ FOV is shown in Figs. 13, 16, and 17. Our
ground truth is a satellite image of the same test environment
provided by Google Earth (Fig. 16). The units used in the three
figures are meters.

In this experiment, the vehicle was driven along a 400-m-long
loop and returned to its starting position (pointed to by the yellow
(gray) arrow in Fig. 16). The estimated path is indicated with red
(gray) dots in Fig. 16 and is shown superimposed on a satellite
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image for comparison. The final error at the loop closure is
about 6.5 m for the distance and 5◦ for the orientation. This
error is due to the unavoidable visual odometry drift; however,
observe that the trajectory is very well estimated until the third
90◦ turn. After this turn, the estimated path deviates smoothly
from the expected path instead of continuing straight. After
road inspection, we found that this deviation was due to three
0.3-m-tall road humps (indicated by the cyan (gray) circle in
Fig. 16) that violate the planar motion assumption.

The content of Fig. 17 is very important as it allows us to
evaluate the quality of motion estimation. In this figure, we
show a textured top viewed 2-D reconstruction of the whole
path. Observe that this image is not a satellite image but is
an image mosaicing. Every input image of this mosaic was
obtained by an inverse perspective mapping (IPM) of the original
omnidirectional image onto an horizontal plane. This inverse
mapping is always possible for central cameras, i.e., when a
camera has a single effective viewpoint. After being undistorted
through IPM, these images were merged together using the
2-D poses estimated by our visual odometry algorithm. The
estimated trajectory of the camera is shown superimposed with
red (gray) dots. If the reader visually and carefully compares
the mosaic (see Fig. 17) with the corresponding satellite image
(see Fig. 16), he will recognize in the mosaic the same elements
that are present in the satellite image, i.e., trees, white footpaths,
pedestrian crossings, roads’ placement, etc. Furthermore, the
reader can verify that the location of these elements in the mosaic
fits well the location of the same elements in the satellite image.

As mentioned in Section IV, we also evaluated the effect
of the reduced horizontal FOV on the final motion estimation.
Fig. 14 shows the recovered estimated trajectory respectively
using FOV = 10◦, FOV = 20◦, FOV = 30◦, and FOV = 60◦.
Observe that the estimation of the trajectory improves as the
FOV decreases. Indeed, as mentioned already in Section IV,
the fact of reducing the FOV allows us to reduce most of the
problems introduced by the translation, like sudden changes
in parallax. The best performance in terms of closeness to the
ground truth of Fig. 16 is obtained when FOV = 10◦.

In Fig. 15, the effect of the FOV on the estimation of the
heading direction is also shown. Also, the best performance is
when FOV = 10◦. In this case, in fact 90◦ turns are very well
estimated. Furthermore, when FOV = 10◦ the heading direction
stays quite constant after each turn, i.e., when the vehicle covers
a straight path. Note that when the vehicle returns to its start
position, the estimated heading direction is equal to 355◦, which
means that the orientation error at the loop closure is 5◦.

Finally, a comparison of the proposed algorithm with the only
feature based method of Section II is shown in Fig. 13.

VII. CONCLUSION

In this paper, we described a real-time algorithm for com-
puting the ego-motion of a vehicle relative to the road. The
algorithm uses as input only those images provided by a single
omnidirectional camera. The front ends of the system are two
different trackers. The first one is a feature-based tracker that
uses SIFT features and a RANSAC-based outlier removal to

track the key points that most likely belong to the ground plane.
The second one uses an appearance-based approach to give
high-resolution estimates of the rotation angle of the vehicle.
Using the first tracker to compute the vehicle displacement in
the heading direction and the second tracker to compute the vehi-
cle rotation proved to give very good visual odometry estimates
under planar motion assumption. Furthermore, the performance
of the motion estimation given by the proposed method is better
than the pure feature-based approach (see Fig. 13).

The proposed algorithm was successfully applied to videos
from an automotive platform. We gave an example of a camera
trajectory estimated purely from omnidirectional images over
a distance of 400 m. The accumulated error after 400 m (i.e.,
error at the loop closure) was about 6.5 m for the distance and 5◦

for the orientation. For performance evaluation, the estimated
path was superimposed onto a satellite image of the same test
environment and a textured 2-D reconstruction of the path was
built.
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