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Efficient & Effective Prioritized Matching for
Large-Scale Image-Based Localization
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Abstract—Accurately determining the position and orientation from which an image was taken, i.e., computing the camera pose,
is a fundamental step in many Computer Vision applications. The pose can be recovered from 2D-3D matches between 2D
image positions and points in a 3D model of the scene. Recent advances in Structure-from-Motion allow us to reconstruct large
scenes and thus create the need for image-based localization methods that efficiently handle large-scale 3D models while still
being effective, i.e., while localizing as many images as possible. This paper presents an approach for large scale image-based
localization that is both efficient and effective. At the core of our approach is a novel prioritized matching step that enables us
to first consider features more likely to yield 2D-to-3D matches and to terminate the correspondence search as soon as enough
matches have been found. Matches initially lost due to quantization are efficiently recovered by integrating 3D-to-2D search.
We show how visibility information from the reconstruction process can be used to improve the efficiency of our approach. We
evaluate the performance of our method through extensive experiments and demonstrate that it offers the best combination of
efficiency and effectiveness among current state-of-the-art approaches for localization.

Index Terms—Image-based Localization, Location Recognition, Prioritized Feature Matching, Camera Pose Estimation
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1 INTRODUCTION

D ETERMINING the camera pose for a given image,
also known as the image-based localization prob-

lem, is an important step in many Computer Vision
applications such as Structure-from-Motion (SfM) [1],
location recognition [2], Augmented Reality [3], and
visual navigation for autonomous vehicles.

Given a 3D model of the scene, the camera pose can
be estimated from 2D-3D matches relating 2D image
positions and 3D points in the model by applying
an n-point pose solver inside a RANSAC-loop [4].
In the case that the scene model was reconstructed
using SfM, each 3D point was triangulated from mul-
tiple local features and we can associate it with the
corresponding image descriptors. Consequently, we
can establish 2D-3D correspondences through nearest
neighbor search between the descriptors of local fea-
tures found in the query image and the descriptors of
the 3D points. Recent advances in SfM techniques [1],
[5] and the fact that increasingly larger parts of our
world are covered by photos available on websites
such as Flickr, Google Street View, and Mapillary
enable us to efficiently reconstruct 3D structures on
a truly large scale. This in turn creates the need to de-
velop image-based localization methods that are able
to efficiently handle datasets consisting of millions of
3D points. Besides efficiency, we are also interested in
the accuracy of the estimated poses and the effectiveness
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of localization methods, i.e., the ability to localize as
many query images as possible.

In this paper, we propose a novel image-based
localization approach that is efficient, effective, and
accurate. We make three main contributions: First, we
develop a simple but powerful prioritization scheme
that allows us to significantly accelerate 2D-to-3D
matching. The prioritization scheme uses a visual
vocabulary-based quantization of the descriptor space
and is thus prone to quantization artifacts. As the
second contribution, we show that we can recover
matches lost due to quantization through 3D-to-2D
search. We prove that our approach is computation-
ally more efficient that the standard approach of
searching through multiple visual words [6]. As the
third major contribution, we demonstrate how co-
visibility information that is readily available from
the SfM process can be used to make all stages of
our localization pipeline more efficient. Our method
offers the fastest localization times published so far
while achieving an effectiveness similar or superior
to approaches that are orders of magnitude slower.

This paper is based on our previous publications
[7], [8]. Besides a more thorough comparison with
the current state-of-the-art, additional experiments on
more complex datasets, and an updated evaluation of
different n-point-pose solvers, we justify our priori-
tization strategy based on a probabilistic formulation
of 2D-to-3D matching. We also evaluate a more ad-
vanced implementation of our approach1 and analyze
the scalability of our framework.

Related work. Traditionally, image-based localization

1. Source code available at https://github.com/tsattler/vps.
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Fig. 1. Overview over the framework for efficient and effective image-based localization proposed in this paper.

has been cast as a place recognition problem, where
image retrieval techniques [6], [9], [10], [11] are used
to find a set of photos similar to the query in a
database of geo-tagged images [12], [13], [14]. Over
the years, various improvements have been made to
handle confusing [15] and repetitive [16] structures,
scale to larger scenes [14], [17], or use the original
feature descriptors for retrieval [18], [19]. In contrast
to our method, these approaches only approximate
the pose of the query camera [14], [17], [18], [20].

Contrary to purely image-based methods, Irschara
et al. assume that they are given a SfM reconstruction
of the scene [21]. They use retrieval techniques to
determine a set of relevant database images and then
match the query images against the 3D points visible
in the retrieved photos. To increase the robustness
of the retrieval stage to viewpoint changes, they add
synthetic views to the database. These views can be
generated by projecting the 3D points into virtual
cameras placed on the ground plane [21] or by ren-
dering synthetic images and extracting features from
them [22], [23]. Li et al. show that directly comparing
the descriptors of the query features and 3D points is
more effective than using image retrieval [2]. Starting
with a set of seed points, they employ a prioritized
3D-to-2D matching scheme based on the co-visibility
of the scene points to compare 3D points against the
query image. Due to the high false positive matching
rate of 3D-to-2D search, it is more effective to use 2D-
to-3D matching to generate seed points [24]. While
these methods focus on 3D-to-2D matching, we show
that combining 2D-to-3D and 3D-to-2D search leads
to a superior prioritization scheme.

Lowe’s ratio test [25], used to detect ambiguous cor-
respondences, rejects more and more correct matches
for larger models [26]. In order to enable scalable
localization, Li et al. modify RANSAC’s sampling
scheme to handle higher outlier ratios, enabling them
to accept more matches overall, and perform 3D-to-
2D search if the pose cannot be estimated from 2D-
to-3D matches alone. Both Svarm et al. and Zeisl
et al. propose deterministic approaches for camera
pose estimation that are able to handle inlier ratios
of 1% or less by exploiting IMU measurements about
the gravity direction and a rough estimate of the

camera height [27], [28]. Sattler et al. demonstrate that
retrieval-based approaches can achieve state-of-the-art
effectiveness by using a more restrictive voting ap-
proach to avoid incorrect votes for unrelated database
images [29]. Cao & Snavely further improve retrieval-
based methods by dividing the 3D model into distinc-
tive places and learning to distinguish between them
[30]. While the previously discussed approaches rely
on SIFT descriptors for matching, Sattler et al. perform
matching via a fine visual vocabulary of 16M words
[31], enabling scalable localization by reducing the
memory requirements [32]. Inspired by our approach,
they use co-visibility information to select subsets of
matches for pose estimation. While these methods are
mainly concerned with effectiveness, our approach
focusses on efficiency. Still, combining 2D-to-3D and
3D-to-2D search into one prioritization scheme allows
us to achieve a competitive localization effectiveness.

Donoser & Schmalstieg formulate 2D-to-3D match-
ing as a classification problem [33]. While this leads
to significantly reduced memory requirements, they
require a location prior to find good matches. Such
priors can also be used to predict which 3D points are
potentially visible in a query image [34]. In contrast,
our method does not require any pose prior.

Instead of requiring an existing 3D model, Simulta-
neous Mapping and Localization (SLAM) approaches
concurrently build a model of the scene and use it
for localization [35], [36]. Even when run in a sepa-
rate thread [37], mapping the scene quickly becomes
computationally infeasible for larger scenes. Recently,
Middelberg et al. proposed a hybrid approach for
localization on mobile devices [3]. They build a fixed-
size map, used for real-time pose tracking, via SLAM
and utilize an external localization server, which em-
ploys the method presented in this paper, to provide
pose estimates relative to a global 3D model.

2 2D-TO-3D VS. 3D-TO-2D MATCHING

In this paper, we follow a direct matching strategy
and directly compare the descriptors of the 2D query
features and the 3D points in the model. Thus, we can
choose between matching the 2D features against the
3D points (2D-to-3D matching) or the point descrip-
tors against the features (3D-to-2D search). In this sec-
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tion, we compare the advantages and disadvantages
of the two search directions.

Let P be the set of all 3D points in the model
and let F be the set of all features found in the
query image. Using tree-based approximate search
[38], we can match all features against the 3D points
in time O(|F| log |P|). Matching all points against the
query image requires time O(|P| log |F|). For large-
scale scenes, there are orders of magnitude more
points than query features. Thus, 3D-to-2D matching
will only be more efficient than 2D-to-3D search if
only a small fraction of all points is considered. Based
on this insight, Li et al. propose a prioritized point-to-
feature (P2F) matching strategy based on co-visibility
information [2]: Starting with a set of seed points
selected from all parts of the model, they match
points against the query image in order of descending
priorities. Once a new match is found for a point p,
P2F increases the priorities of all other points that are
visible together with p in at least one database image.
The search is stopped once 100 matches are found or
when a fixed number of points has been tried.

Independently of the search direction, Lowe’s ratio
test is used to reject ambiguous matches. After finding
the two nearest neighbors d1, d2 for a query descrip-
tor d, a correspondence between the feature / point
corresponding to d and the point / feature belonging
to d1 is established only if the ratio test

‖d− d1‖2 < τ · ‖d− d2‖2 (1)

is passed [25], where τ is typically from the range
[0.6, 0.8]. Interestingly, the effectiveness of the ratio
test strongly differs for the two search directions: Con-
sider a set of points with similar descriptors, found in
unrelated parts of the model. Since 2D-to-3D search
performs matching on a global level, the second near-
est neighbor is also contained in this set, allowing
the ratio test to discard the match. In contrast, 3D-
to-2D matching is oblivious to this global ambiguity
since it considers each 3D point independently of the
others. Thus, it is likely that the ratio test accepts
matches for all 3D points in the set if one of the points
passes the test, leading to a significantly higher false
positive matching rate. At the same time, 2D-to-3D
search is more likely to reject correct matches due to
such global ambiguities. For larger models, 2D-to-3D
matching might thus reject too many correct matches,
leading to a reduced localization effectiveness.

We experimentally compare the efficiency and ef-
fectiveness of 2D-to-3D and 3D-to-2D matching on
three standard datasets (cf. Sec. 6). We use the FLANN
library [38], configured to visit a fixed number L of
leaf nodes, for kd-tree search and compare it against
the P2F method from [2]. For P2F, we also report
results obtained by [2] on more compact versions of
the datasets, generated by selecting a subset of the
points. Both P2F and the kd-tree approach use the
ratio test threshold τ = 0.7. In case that multiple

matches are found for a single point / feature, only
the match with the smallest SIFT descriptor distance
is kept. The camera pose is estimated by applying
the 6pt DLT solver that computes the projection ma-
trix from 6 matches [39] inside a RANSAC loop [4].
Following [2], [24], [26], a query image is considered
to be successfully localized or registered if the best
pose found by RANSAC has at least 12 inliers. Fig. 2
shows the number of localized query images as well
as the mean times required to localize an image (not
including feature extraction) for the two approaches.
As can be seen, using a more compact representation
boosts the effectiveness of P2F due to finding fewer
false positive matches. Still, there is a significant gap
in the number of localized images compared to the
kd-tree approach, indicating that P2F is prone to
terminate its search too early due to still accepting
too many wrong correspondences. These results show
that 2D-to-3D search achieves a higher localization
effectiveness due to its low false positive matching
rate. In the following, we thus focus on increasing the
efficiency of 2D-to-3D search.

3 VOCABULARY-BASED PRIORITIZATION

As can be seen in Fig. 2, the higher effectiveness of
2D-to-3D matching comes at the prize of a reduced
efficiency. Fortunately, there is considerable potential
to improve the efficiency of 2D-to-3D search without
sacrificing its effectiveness. As illustrated in Fig. 3,
only 10% or less of the features found in most of the
query images from the three datasets have a corre-
sponding 3D point. This implies that we can accelerate
correspondence search by an order of magnitude for
these images if we can determine which features will
yield a match before actually performing descriptor
matching. Since this seems to be impossible, we con-
sider a slightly different problem: Select a subset of
query features that minimizes the search costs under
the constraint that we can expect to find Nt > 0
matches. Nt is a parameter of our approach and
controls the balance between run-time efficiency and
localization effectiveness. This probabilistic scenario
does not require that Nt actual matches are found
but that it is likely to find Nt correspondences for the
selected features. Unfortunately, this problem is NP-
complete. Thus, we first derive an computationally
efficient approach that performs close to optimal. We
then adapt the solution to the original scenario, result-
ing in our novel Vocabulary-based Prioritized Matching
(VPS) scheme.

Probabilistic 2D-to-3D matching. In the considered
probabilistic scenario, a random variable Fi ∈ {0, 1}
is assigned to the ith feature fi ∈ F in the query
image. Fi = 1 denotes the event that a matching 3D
point can be found for fi while Fi = 0 corresponds to
the event that no correspondence can be established.
Let Pi denote the probability of finding a match, i.e.,
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Pr[Fi = 1] = Pi. We express the selection of a subset
F ′ ⊂ F of all query features by introducing indicator
variables Xi ∈ {0, 1}, where Xi = 1 denotes that
the ith feature was selected. The expected number of
matches that can be found for a subset F ′ is given by

E[F ′] =
∑
i

Xi ·(Pi · 1 + (1− Pi) · 0) =
∑
i

Xi ·Pi . (2)

The problem of finding a subset F ′ that minimizes
the overall search cost while resulting in Nt or more
expected matches can be expressed as

min
{Xi}

∑
i

Xi · ci s.t.
∑
i

XiPi ≥ Nt , Xi ∈ {0, 1} . (3)

Both the probabilities pi and search costs ci can
be computed efficiently by quantizing the descriptor
space using a visual vocabulary W obtained through
(approximate) k-means clustering [11]: In an offline
step, we assign each descriptor of a 3D point to its
closest visual word [38]. For each visual word ω ∈ W ,
we store the number nD(ω) of 3D point descriptors
assigned to it. Given a set of training images, we also
assign each image feature to its closest visual word,
again counting the number nA(ω) of image features
assigned to each word. For each feature f with de-
scriptor df assigned to word ω(df ), we find the two
3D points p1, p2, p1 6= p2, belonging to the two nearest
neighboring descriptors dp1 , dp2 of df by exhaustively
searching through all 3D point descriptors assigned to
ω(df ). Applying Lowe’s ratio test with τ = 0.7 then
yields a set of 2D-3D matches for each training image
that can be used for RANSAC-based pose estimation.
For each visual word ω, we count the number nI(ω)
of 2D-3D matches that are inliers to a pose estimated
with RANSAC if the pose has at least 12 inliers. The
probability Pi of the ith image feature fi is then given
as Pi = nI(ω(dfi))/nA(ω(dfi)). Since we compare
the query descriptor dfi against all point descriptors
assigned to ω(dfi), the search cost ci are given by
nD(ω(dfi)). Assuming a vocabulary of constant size,
the probabilities and search costs for all image features
can be computed efficiently in O(|F|).

Unfortunately, solving (3) is NP-complete. Thus, we
propose a simple greedy algorithm: First, determine

the subset F ′′ = {fi ∈ F|Pi > 0} containing all
features that might result in a correct match. Next,
sort the features from F ′′ in ascending order of search
costs, resulting in a permutation σ s.t. cσi

≤ cσj
for

i ≤ j. Finally, select the first m features according to
σ such that

∑m
i=1 Pσi ≥ Nt, i.e., m is chosen such the

number of expected matches is at least Nt.
Let Cgreedy =

∑m
i=1 cσi

be the overall search cost of
the greedy strategy and COPT the search cost of an
optimal solution to (3). Fig. 3 shows the approxima-
tion factor, defined as the ratio Cgreedy/COPT, of greedy
for various values for Nt on the three datasets from
Sec. 2. As can be seen, the greedy strategy performs
close to optimal for the majority of query images,
independently of the choice for Nt.

Vocabulary-based Prioritized Search (VPS). For the
last experiment, we circumvented the problem of find-
ing a suitable training set by using the query images
to also train the probabilities Pi. In general, obtaining
realistic probabilities Pi is a hard problem. However,
we can easily adapt the greedy approach to the case
in which only the search costs ci are given: Instead
of using the probabilities to determine the number
m of features that should be used for matching, we
consider all features in order of ascending search costs
and stop the correspondence search once Nt actual
matches have been found. Again, we use linear search
through all descriptors assigned to the same word to
find the two nearest neighboring points for a given
query feature. Again, we accept a match with the
nearest neighboring point if the ratio test with τ=0.7
is passed2. Once Nt matches have been found, we pro-
ceed with RANSAC-based camera pose estimation.
The resulting 2D-to-3D matching framework, termed
Vocabulary-based Prioritized Search (VPS), is illustrated
in Fig. 1. The results from Fig. 3 indicate that the
strategy of first considering features with cheap search
costs performs close to optimal. Thus, we can expect
our VPS framework to work well in practice.

The impact of Nt. Ideally, the threshold Nt should be

2. Limiting the nearest neighbor search to a word rather than
using a kd-tree leads to different ratio test results as the 2nd nearest
neighbor might fall into a different word. This in turn results in
higher RANSAC times as more wrong matches are accepted.
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Fig. 3. (a) Cumulative histograms showing that only a small fraction of query features matches to 3D points.
(b-d) The approximation factor of the greedy algorithm on the (b) Dubrovnik, (c) Rome, and (d) Vienna
datasets. Though the probabilities were trained on the query images, the greedy solution is close to the optimal
approximation factor of 1 for most queries. Queries for which (3) has no solution were not included in the plots.

chosen as small as possible in order to terminate the
correspondence search as soon as a sufficient number
of matches is found. Yet, there is the inherent risk of
terminating too early: Visual words containing only
few point descriptors usually correspond to sparser
parts of the descriptor space, i.e., parts of the descrip-
tor space where it is more likely that a wrong match
passes the ratio test. Consequently, Nt has to be large
enough to prevent terminating the correspondence
search before enough correct matches are found.

Improving rejection times. If an image cannot be
localized, VPS usually finds fewer than Nt matches.
Since the ratio test also accepts some wrong matches,
RANSAC might require many iterations to determine
that no valid pose can be found. In order to limit this
number of iterations, we simply assume that the inlier
ratio is at least max (R, 12/|M|), where M is the set
of found matches and R ∈ [0, 1] is a parameter of
our method. This enables us to limit the maximum
number kmax of RANSAC iterations to

kmax ≤ log (0.05)/ log (1−max(R, 12/|M|)n) (4)

when using an n-point pose algorithm and requiring
to find the correct model with a probability of at least
95% [4]. R should be chosen as large as possible to
minimize the number of RANSAC iterations while
ensuring that we can still correctly localize query
images with low inlier ratios.

Point representations. So far, we have simply used
all descriptors of each 3D point. While this offers the
most accurate model of the local appearance of a 3D
point, it also induces high memory requirements as
some points might be associated with hundreds of
descriptors. A much more compact representation can
be obtained by storing a single descriptor per point,
using either the mean or the median descriptor for each
point. In order to limit the impact of quantization
artifacts, we assign the mean and median descriptors
to any words activated by all descriptor of a 3D
point. While this representation results in a minimal
memory footprint, it might be a poor approximation
of the variation in local appearance of the points and
thus might negatively impact the effectiveness of VPS.

As a compromise, we propose a mean descriptor per
visual word (mean / vw) representation. For each word
ω activated by a given point p, we represent p by the
mean of all of p’s descriptors assigned to ω. The median
descriptor per word strategy is defined accordingly.

In this paper, we rely on SIFT descriptors [25] and
use a common quantization that stores each descrip-
tor entry using a 1 byte integer value. Using float-
ing point values to represent mean descriptors thus
increases the memory requirements. To reduce the
memory footprint, we obtain integer mean descriptors
by rounding the entries to their closest integer values.

Fig. 2 compares the performance of VPS with the
different point representations without early termi-
nation (Nt = ∞) and R = 0. The best effectiveness
can be obtained using all descriptors, but all strategies
outperform P2F in the number of localized images. We
do not notice any loss in effectiveness when rounding
mean descriptors and the integer mean per visual word
(int. mean / vw) strategy achieves nearly the same
effectiveness as using all descriptors while reducing the
memory requirements for storing the descriptors by
about 1/3. We thus strongly recommend to use either
all descriptors or the int. mean / vw strategy.

4 ACTIVE SEARCH
As can be seen in Fig. 2, VPS does not achieve
the same localization effectiveness as the tree-based
approach. This is due to quantization artifacts as
VPS does not find a match if an image feature and
its corresponding 3D point are assigned to different
words. We could use soft assignments [11] and search
through multiple words to recover such lost matches.
Yet, this also increases the search costs for all other
features. In this section, we propose an Active Search
mechanism that recovers matches through 3D-to-2D
matching and has a lower computational complexity.

Active Search. Each 2D-3D match essentially rep-
resents a hypothesis about which part of the model
is visible in the query image. Consequently, we can
determine a set of points that might be visible in the
query image very efficiently at little additional mem-
ory overhead by using nearest neighbor search in 3D.
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Fig. 4. Once a matching 3D point is found through 2D-to-3D search (red), Active Search finds candidate points for
3D-to-2D search through nearest neighbor search in 3D. The candidates are inserted into a common prioritization
scheme and are later used to recover matches originally lost to due to quantization artifacts (blue).

Instead of waiting until these points are eventually
considered during 2D-to-3D matching, we propose to
actively match them against the query image using 3D-
to-2D search. Obviously, we want to avoid comparing
each candidate point against all features in the query
image. Thus, we again use a visual vocabulary to
accelerate the correspondence search. Since there are
orders of magnitude fewer features in the query image
than there are 3D points in the model, we need to use
a coarser vocabulary for 3D-to-2D matching than the
one already employed by VPS. Such a coarser quan-
tization naturally induces fewer artifacts, allowing us
recover some of the matches lost to VPS.

Fig. 4 illustrates the stages of our Active Search
approach: Starting with a 2D-to-3D match found by
VPS (1-2), Active Search utilizes the matching point’s
3D position (3) and finds the point’s N3D nearest
neighboring points in 3D (4). Each of these points is a
candidate for 3D-to-2D search and all candidates are
inserted into a prioritization scheme shared with VPS
(5). Features and points are represented in Fig. 4 by
stars and circles, respectively. Once the prioritization
scheme considers a 3D point, Active Search matches
the point against the query image. Similar to VPS,
matching is performed by applying nearest neighbor
search inside a visual word (7). We utilize a coarse
vocabulary to reduce quantization artifacts (6). A 3D-
to-2D match (8) is established if the correspondence
passes the ratio test. We obtain the coarse dictionary
by building a vocabulary tree [10] on top of the
fine vocabulary used for VPS. Each level in the tree
defines a coarser dictionary and we can select the level
used for 3D-to-2D matching adaptively to regulate
the search costs for the 3D points. The assignments
to the leaf nodes, computed during VPS, uniquely
define the corresponding words on the lower levels.
The assignments to the coarser vocabularies are thus
obtained at no additional costs.

Fig. 1 shows the integration of Active Search into
VPS. Only 2D-to-3D matches trigger Active Search
to avoid unstable configurations for pose estimation
caused by finding matches only in a small part of
the query image. Correspondence search is terminated
once a total of Nt 2D-3D matches are found.

A common prioritization framework. As with 2D-to-
3D search, we formulate 3D-to-2D matching as find-

ing the nearest neighboring descriptors inside a set
of visual words. Again, we can determine the search
costs for each 3D point before performing matching
by storing the number of features assigned to each
word in the coarse vocabulary. As a result, we can use
the same definition of priorities, i.e., an ordering based
on the required number of descriptor comparisons, for
both search directions. As illustrated in Fig. 4, there
are three possible strategies that combine features and
points into a common prioritization queue.

The direct prioritization strategy, used by [24], first
evaluates all candidates for 3D-to-2D matching before
resuming 2D-to-3D search. As for VPS, we consider
the candidate points in ascending order of search
costs. While the search costs of the query features
increase with the size of the model, the search costs
for a 3D point do not. Thus, the direct strategy can
accelerate our approach for large-scale localization by
finding many 3D-to-2D matches surrounding a 2D-to-
3D match. Yet, this leads to detecting many matches in
small regions of the query image, resulting in unstable
configurations for camera pose estimation. [24] try to
avoid this problem by selecting candidate points that
are as far away as possible from the already matching
points. The N3D nearest neighbors of a matching 3D
point selected by Active Search are by definition close
to each other in 3D. The heuristic from [24] will thus
not be effective in our scenario and is not applied.

The afterwards strategy, used by [26], first evaluates
all query features and only performs 3D-to-2D search
if less than Nt 2D-to-3D matches have been found. We
thus perform the nearest neighbor search in 3D only
after considering all query features. Again, we con-
sider the candidate points in ascending order of search
costs. Compared to the first strategy, the afterwards
scheme usually leads to a better spatial distribution
of the matches in the query image, resulting in a
better pose accuracy. Yet, having to first consider all
query features can negatively impact the efficiency
of our method for larger models, where 2D-to-3D
search is significantly slower than 3D-to-2D matching.
Smaller datasets often exhibit a higher false positive
matching rate for 2D-to-3D search. For such models,
the afterwards strategy might be less effective than
the direct scheme as the correspondence search might
terminate before we attempt 3D-to-2D matching.
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As a compromise between the two strategies, we
propose a combined strategy: Once we have found a
set of candidate points, we insert them into the prior-
itization queue already containing the query features
based on the search costs of the 3D points. As a result,
the combined strategy will always prefer the search
direction that is cheaper to evaluate. We will show in
Sec. 6 that it achieves a localization accuracy similar
to the afterwards strategy in practice. Notice that the
combined strategy will degenerate to the direct strategy
for very large models. This problem could be solved
by using a more compact and thus sparser 3D model
[26], but we do not investigate this approach.

The scalability of Active Search. Active Search not
only allows us to recover correspondences that are
lost to VPS due to quantization artifacts, but also
enables our method to better handle larger datasets.
As we consider larger and larger models, it becomes
more likely to find scene points with very similar
descriptors in unrelated parts of the model. Thus, the
ratio test used during 2D-to-3D matching will reject
more and more correct matches as too ambiguous
since the descriptor space defined by the 3D points
becomes denser [40]. In contrast, the density of the
descriptor space defined by the query features does
not depend on the 3D model and we can thus again
recover such lost matches through 3D-to-2D search.

Computational complexity. In the beginning of this
section, we motivated the use of Active Search by
claiming that it is computationally more efficient than
soft assignments. In the following, we prove this claim.

Let |P| and |F| be the number of 3D points and
query features, respectively. We assume that the fine
vocabulary used by VPS has an arbitrary but constant
size. When using soft assignments, we need to con-
sider c− 1 additional words per feature. On average,
each word contains O(|P|) many 3D points. On aver-
age, the additional costs induced by soft assignments
thus grow linearly in the size of the point cloud.

Every application of Active Search results in N3D
candidates for 3D-to-2D matching and Active Search
is triggered at most Nt times before we terminate
the correspondence search. Since both Nt and N3D
are constants, only a constant number of 3D points
is considered for 3D-to-2D search. When matching a
single point against the image, we need to compare
its descriptors against at most |F| query features.
In practice, |F| will be bounded by some constant
independent of the model complexity |P|, i.e., 3D-to-
2D search requires only constant effort. Following a
similar argument, updating the prioritization scheme
also requires only constant time. As a result, the ad-
ditional effort induced by Active Search is dominated
by finding a constant number of nearest neighbors
in 3D. This can be done in O(log(|P|)) using a kd-
tree. This shows that Active Search is computationally
more efficient that using soft assignments.

Technical details. We build a vocabulary tree with
branching factor 10 on top of the fine vocabulary used
for VPS. We choose the level in the tree for 3D-to-2D
matching based on the number of features found in
the query image. We use level 2 (100 words) if |F| <
5k and level 3 otherwise. In contrast to the query fea-
tures, each 3D point might be represented by multiple
descriptors. We thus might need to search through
multiple words. Let D(p) be the set of descriptors of
the 3D point p and let ωl(D(p)) =

⋃
d∈D(p){ωl(d)} be

the set of corresponding visual words on level l in the
tree. We define the distance between the descriptor df
of a 2D feature f and D(p) as

dist(df , D(p)) = mind∈D(p),ωl(d)=ωl(df )‖df−d‖2 . (5)

During 3D-to-2D matching, we thus search for the two
features f1, f2, f1 6= f2, with minimal distances to
D(p) and accept a 3D-to-2D match between f1 and
p if dist(df1 , D(p)) < 0.6 · dist(df2 , D(p)). If we have
already found a 3D-to-2D match (p′, f1), we replace it
with (p, f1) if dist(df1 , D(p)) < dist(df1 , D(p′)). We do
not replace 2D-to-3D matches with 3D-to-2D matches
as the former are inherently more trustworthy. Since
we use linear search to find the two nearest neighbor-
ing features, the search costs used to prioritize a point
p are given by

∑
d∈D(p) n(ωl(d)), where n(ωl) are the

number of 2D features assigned to word ω on level l.

5 VISIBILITY FILTERING
In Sec. 4, we have made the assumption that 3D points
spatially close to a matching point p are likely to
lead to valid 3D-to-2D correspondences. Yet, spatial
closeness does not necessarily imply the co-visibility
of two 3D points. This is illustrated in Fig. 5(a): The
red 3D point is among the nearest neighbors of the
blue point, yet no image observing the blue point will
ever observe the red point due to the geometry of
the scene (dashed lines). In the following, we show
how to exploit the co-visibility information encoded
in the SfM model of the scene to filter out such neigh-
boring points. In addition, we demonstrate that the
co-visibility information can also be used to remove
wrong matches before applying RANSAC.

The Visibility Graph. We use the co-visibility infor-
mation readily available from the SfM process that is
encoded in the bipartite Visibility Graph [2]

G = (PG ∪ CG , E) . (6)

Each vertex pG ∈ PG corresponds to a 3D point
p ∈ P in the reconstruction while each node cG ∈ CG
represents one camera / database image c ∈ C in the
model. As illustrated in Fig. 5(b), G contains an edge
e = {pG , cG} between a point node pG ∈ PG and a
camera vertex cG ∈ CG iff the corresponding camera c
observes the 3D point p. The set of cameras observing
a point p is thus given as

CG(p) = {cG ∈ CG |{pG , cG} ∈ E} . (7)
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Fig. 5. (a) The red point is amongst the nearest neighbors of the blue point. Yet, there is no database image
observing both points. (b) The bipartite Visibility Graph G defined by the SfM reconstruction. (c) The 3D points
(blue) contained in a set M of 2D-3D matches define a subgraph G(M) of the Visibility Graph. (d) The new
Visibility Graph G′S obtained by clustering the k = 2 nearest cameras and solving the set cover problem.

Two points p and p′ are co-visible iff they are seen
together in a camera c, i.e., iff CG(p) ∩ CG(p′) 6= ∅.
A point filter for unlikely matching candidates. Let
p be the 3D point contained in a 2D-to-3D match and
let PN3D(p) be the set of the N3D nearest neighbors of
p in 3D. As shown in Fig. 5(a), spatial proximity in 3D
does not necessarily imply co-visibility. It is unlikely
to observe a point p′ ∈ PN3D(p) in the query image if
p′ and p are not co-visible. Thus, we only consider co-
visible points from PN3D(p) for 3D-to-2D search. Our
point filter thus removes a point p′ ∈ PN3D(p) from
consideration as a 3D-to-2D matching candidate if

CG(p′) ∩ CG(p) = ∅ . (8)

RANSAC pre-filter. Let M = {(f, p) | f ∈ F , p ∈ P}
be a set of 2D-3D matches and let PG(M) = {pG ∈ PG |
(f, p) ∈M} denote the set of nodes corresponding to
the matching points. PG(M) induces a subgraph

G(M) = (PG(M) ∪
⋃

pG∈PG(M)

CG(p), E(M)) (9)

consisting only of the matching points and their
cameras (cf. Fig. 5(c)). In general, G(M) consists of
multiple connected components. Assuming that the
visibility graph perfectly encodes the co-visibility re-
lations between the 3D points, all correct matches
will be contained in the same connected component.
All other components are induced by wrong cor-
respondences. Instead of applying RANSAC-based
pose estimation on all matches, our RANSAC pre-
filter thus first identifies all connected components
and then filters out all matches not contained in the
largest component in G(M). One potential concern of
this approach is that wrong correspondences might
cluster in the visibility graph and thus form the largest
connected component. In practice, we did not observe
such behavior since the ratio test is very effective in
removing ambiguities caused by repeating structures.
Applying our RANSAC pre-filter thus enables us to re-
move many wrong matches, which in turn accelerates
the RANSAC-based pose estimation stage.

Camera sets. The database images used for SfM
reconstruction represent a discrete approximation to

the set of all possible viewpoints. Thus, the Visibility
Graph only approximates the true co-visibility rela-
tion between the points in the model. As a result,
the two filtering steps proposed above might be too
aggressive and filter out correctly matching points
and correct matches due to weak connections in G.

One reason for the approximate nature of the Visi-
bility Graph is that each database image is often only
matched against a limited number of other images
in order to accelerate SfM [1]. Consequently, spatially
close images with visual overlap might not share
common 3D points (cf. top two cameras in Fig. 5(b)).
In order to mitigate this effect, we propose to cluster
similar cameras together. For each camera c in the
reconstruction, we find the k cameras with closest
camera centers. The set sim(c) then comprises of c
and the subset of nearest neighbors whose viewing
directions, defined as the viewing ray along the prin-
cipal axis of the camera, differs from c’s direction by
at most 60◦. Let S = {sim(c)} be the resulting set of
camera clusters. Using the camera sets instead of the
original images results in a new Visibility Graph

GS = (PG ∪ S, ES) . (10)

ES contains an edge {pG , sim(c)} iff the original graph
G contains an edge between pG and some camera node
c′G ∈ sim(c). Compared to G, GS contains the same
number of vertices but can contain more edges. The
run-time efficiency of the proposed filtering steps di-
rectly depends on the edge degree of the nodes in the
visibility graph. We aim to reduce the run-time cost
of the steps by selecting a minimal subset S ′ ⊆ S such
that every camera in the reconstruction is contained in
at least one camera set sim(c) ∈ S ′. Similar to the point
selection approach from [2], we greedily solve this set
cover problem by iteratively selecting the camera set
sim(c) that contains the largest number of cameras
not included in any of the sets selected so far. The
resulting set S ′ again defines a new Visibility Graph
G′S (cf. Fig. 5(d)). When using camera sets, the filtering
steps are performed using G′S instead of G.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our
proposed method on real-world data. We first eval-
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TABLE 1
The datasets used for evaluation.

# DB # 3D # Des- # Query Mean #
Dataset Imgs. Points criptors Imgs. Query Feat.

Aachen [29] 3,047 1.54M 7.28M 369 8,648.66
Dubrovnik [2] 6,044 1.89M 9.61M 800 9,678.14

Landmarks 1k [26] 204,626 38.19M 177.82M 10k 8,378.7
Rome [2] 15,179 4.07M 21.52M 1k 7,279.91

Vienna [21] 1,324 1.12M 4.85M 266 9,707.29
Vienna (ext.) [21] 2,267 2.15M 9.03M 686 13,539.9

uate the parameters of both VPS and Active Search
to derive a parameter setting that works well over a
large variety of scenes. Next, we compare the resulting
framework to current state-of-the-art methods. We
then evaluate different camera pose solvers with the
matches computed by our method. Finally, we analyze
the scalability of the proposed framework.

Datasets. The Dubrovnik [2], Landmarks 1k [26],
and Rome [2] datasets were reconstructed from pho-
tos obtained from Flickr and depict the old city of
Dubrovnik in Crotia, the 1k most photographed land-
marks found on Flickr, and 69 individual landmarks
in Rome, respectively. For each dataset, query images
were obtained by removing images from the recon-
struction. We use the reconstructed poses as ground
truth to determine the localization accuracy of our
methods on the Dubrovnik dataset, where distances
can be measured in meters. 3D points visible in only
one remaining camera were removed as well to yield
the models used for the experiments [2].

The Vienna dataset depicts three landmark scenes
in the city of Vienna, Austria and was reconstructed
from images taken with a single calibrated camera
at regular intervals [21]. We also use an extended
version of the dataset that contains three additional
landmarks. For both versions, query images were
obtained from Panoramio. Thus, the query images
exhibit a larger difference in viewpoints and illumina-
tion conditions than on the other datasets. The Aachen
dataset depicts the old inner city of Aachen, Germany
and was reconstructed from images taken with a small
set of cameras [29]. Query images were captured with
a mobile phone over a time span of about two years.

All query images have a maximum size of 1600 x
1600 pixels and come with pre-computed SIFT de-
scriptors [25]. Tab. 1 provides details on the datasets.

Experimental setup. We report the localization ef-
ficiency, measured as the mean time required to lo-
calize an image, the localization effectiveness, i.e., the
number of localized images, and the localization accu-
racy, measured as the distance between the estimated
camera center and the ground truth position for the
camera. We follow common practice [2], [24], [26] and
consider a query image as localized or registered if the
best pose estimated by RANSAC has at least 12 inliers.
The timing results do not include feature extraction. If
not specified otherwise, we repeat every experiment

10 times to account for RANSAC’s random nature. We
thus report the mean number of localized images and
localization times. We use the standard 6-point DLT
(p6p) algorithm to compute the projection matrix from
six 2D-3D matches [39] inside a SPRT-RANSAC [41]
loop, followed by linear least squares optimization on
all detected inliers. We use a reprojection error of

√
10

pixels to distinguish between inliers and outliers.
For most experiments, we use a visual vocabulary

containing 100k words trained using approximate k-
means clustering [11]. For Active Search, we build
a vocabulary tree on top of this dictionary using a
modified implementation from the FLANN library
[38] that visits only a single leaf node and does not
perform back-tracking. For VPS, we use a kd-tree
visiting 10 leaves to compute the assignments [7].

The experiments on Landmark 1k were performed
on a PC with an Intel Xeon X5650 CPU with 2.67GHz
and 64 GB RAM. A PC with an Intel i7-920 CPU with
2.79GHz and 12 GB of RAM was used for all other
datasets. A single CPU thread is used.

6.1 Vocabulary-based Prioritized Search
In this part, we evaluate the impact of the parameters
of VPS, namely the minimal assumed inlier ratio R
used to accelerate RANSAC, the threshold Nt used
for early termination of the correspondence search,
and the used visual vocabulary. As detailed in Sec. 3,
we only use the all descriptors and the integer mean per
visual word (int. mean / vw) point representations.

For all experiments, we use the Dubrovnik, Rome,
and Vienna datasets since they form a standard bench-
mark for image-based localization [2], [24], [26], [33].

Faster rejection times. As can be seen in Fig. 6,
the mean time required to decide that an image
cannot be localized is significantly higher than the
mean localization times show in Fig. 2. In order to
limit the number of RANSAC iterations and thus
improve the rejection times, VPS assumes that the
inlier ratio is at least max(R, 12/|M|), where |M| is
the number of found matches. Fig. 6 details the impact
of the parameter R on the mean rejection times and
the number of rejected images for Nt = ∞. We can
safely set R=0.2 without significantly decreasing the
localization effectiveness. We thus fix R = 0.2 for all
further experiments.

Faster localization times. VPS terminates the corre-
spondence search after finding Nt matches in order
to avoid matching all query features. Tab. 2 details
the impact of the parameter Nt on both localization
efficiency and effectiveness. Nt=100 offers the fastest
localization times while still achieving an effectiveness
similar to using all query features (Nt =∞). Notice
the increase in RANSAC run-times from Nt = 50 to
Nt = 100 on the Vienna dataset. Since the Vienna
dataset is the smallest of the three models, its 3D
points induce the sparsest descriptor space, resulting
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Fig. 6. The impact of enforcing a minimal inlier ratio of R on VPS’s rejection times and effectiveness for (a)
Dubrovnik, (b) Rome, and (c) Vienna. We used Nt =∞ and values from {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} for R to
create the curves. R = 0.2 reduces the rejection times considerably with only little impact on the effectiveness.

TABLE 2
Influence of the parameter Nt on the localization performance of VPS. Terminating the search after finding
Nt = 100 matches significantly reduces the search times without sacrificing localization effectiveness.

Dubrovnik Rome Vienna
# reg. reg. times [s] # reg. reg. times [s] # reg. reg. times [s]

Nt images lin. search RANSAC total images lin. search RANSAC total images lin. search RANSAC total

al
l

de
sc

.

50 778.90 0.04 0.05 0.23 972.00 0.06 0.02 0.18 200.40 0.02 0.13 0.28
100 783.90 0.10 0.08 0.31 976.90 0.15 0.05 0.29 207.70 0.06 0.30 0.50
150 783.90 0.16 0.08 0.36 977.80 0.23 0.06 0.39 208.20 0.09 0.30 0.52
200 784.40 0.20 0.08 0.40 979.20 0.30 0.07 0.46 208.80 0.11 0.29 0.54
∞ 784.60 0.47 0.08 0.68 980.10 0.81 0.07 0.98 207.90 0.24 0.27 0.65

in
t.

m
ea

n

50 775.80 0.03 0.05 0.21 971.30 0.05 0.02 0.16 199.10 0.02 0.10 0.26
100 782.00 0.08 0.08 0.28 974.60 0.11 0.05 0.25 206.90 0.05 0.28 0.46
150 781.80 0.12 0.08 0.32 976.50 0.17 0.06 0.33 207.90 0.07 0.29 0.50
200 782.50 0.15 0.08 0.35 976.90 0.22 0.07 0.38 208.20 0.08 0.30 0.52
∞ 782.50 0.34 0.08 0.54 976.90 0.57 0.07 0.74 208.20 0.17 0.28 0.59

in a higher false positive matching rate. Both the all
descriptor and integer mean per word strategies achieve a
very similar effectiveness, while the latter offers faster
localization times and reduced memory requirements.
For all following experiments, we thus only use the
integer mean per word strategy and fix Nt=100.

Impact of the visual vocabulary. So far, we have
always used a generic vocabulary of 100k words
trained on images from the Aachen model and an
unrelated dataset. To determine the impact of the size
of the vocabulary, we trained two new vocabularies
consisting of 10k and 1M words using the same
training images. As can be seen from Tab. 3, using
the smaller vocabulary increases the effectiveness as it
induces fewer quantization artifacts. At the same time,
the search times increase since more points are stored
for each word. The larger vocabulary offers faster
search times but also has a reduced effectiveness due
to producing more quantization artifacts and more
false positive matches. Using 100k words offers the
best compromise between efficiency and effectiveness.

VPS computes the visual word assignments by
visiting at most 10 leaves when searching through
the kd-tree. Since this approach considers less than
0.01% of all 100k words, it is unlikely to actually
find the nearest word for each features. Yet, VPS
still works well as long as enough related features
and points are assigned to the same word. As a
consequence, training a specific vocabulary from the
point descriptors of each dataset has only a slight
impact on the performance of VPS (cf. Tab. 3). We
thus use the same generic vocabulary for all datasets.

TABLE 3
Comparing the use of generic vocabularies (G) of

different sizes and dataset specific vocabularies (S).

VPS, integer mean per word, Nt = 100, R = 0.2
#reg. reg. time [s] rej.

images lin. search RANSAC total time [s]
Dubrovnik (10k) (G) 786.70 0.31 0.05 0.40 1.46

Dubrovnik (100k) (G) 782.00 0.08 0.08 0.28 1.70
Dubrovnik (100k) (S) 781.50 0.06 0.06 0.24 0.93
Dubrovnik (1M) (G) 727.10 0.01 0.80 1.28 6.17

Rome (10k) (G) 976.70 0.47 0.04 0.55 2.64
Rome (100k) (G) 974.60 0.11 0.05 0.25 1.66
Rome (100k) (S) 970.80 0.08 0.05 0.23 1.42
Rome (1M) (G) 963.50 0.01 0.07 0.45 2.39

Vienna (10k) (G) 212.60 0.21 0.14 0.41 1.32
Vienna (100k) (G) 206.90 0.05 0.28 0.46 2.43
Vienna (100k) (S) 210.60 0.04 0.28 0.45 1.60
Vienna (1M) (G) 165.80 < 0.01 1.64 2.11 5.66

6.2 Active Search

VPS does not achieve the same effectiveness as tree-
based search due to the quantization artifacts induced
by using a visual vocabulary. As can be seen in Fig. 7,
using the Active Search mechanism proposed in Sec. 4
enables our framework to close the gap in effective-
ness between VPS and tree-based search, indepen-
dently of the prioritization strategy and the choice
of N3D. While the additional computations required
for Active Search increase the localization times, the
resulting approach is still faster than the kd-tree
method. As can be expected, higher values for N3D
result in a better effectiveness but also increase the
overall run-times. The best effectiveness is obtained
with the direct strategy, which directly evaluates all
3D-to-2D matching candidates before resuming 2D-to-
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the localization errors for the three strategies.

3D search. Unfortunately, this strategy is prone to find
matches in a small part of the query image, resulting
in unstable configurations for pose estimation and
thus a worse localization accuracy. Fig. 8 shows the
localization errors of the three strategies, measured
on the Dubrovnik dataset as the distance between the
average estimated camera position and the ground
truth position. While the localization error increases
with N3D for the direct strategy, it essentially remains
constant for the other two strategies. The combined
scheme achieves a better localization effectiveness
than the afterwards strategy (cf. Fig. 7), since the latter
only applies active search if not enough 2D-to-3D
matches were found. We thus use the combined scheme
for all subsequent experiments as it offers a good
compromise between effectiveness and accuracy.

6.3 Visibility Filtering

As can be seen from Fig. 7, using Active Search in-
creases the localization times. In order to avoid unnec-
essary computations, we proposed two filtering steps
in Sec. 5. The point filter removes 3D points unlikely
to yield matches from the list of candidates for 3D-
to-2D search. The RANSAC pre-filter removes 2D-3D
correspondences likely to be wrong before applying
RANSAC-based camera pose estimation. Fig. 9 details
the impact of both filters on the performance of our
framework. As can be seen, both filtering operations
significantly improve the efficiency of our approach.
The RANSAC pre-filter yields the largest improvement

on the Vienna dataset since this model exhibits the
highest false positive matching rate. Consequently, the
pre-filter has only a small impact on the Rome dataset,
which exhibits a low false positive matching rate due
to its denser descriptor space. Based on Fig. 9, we
choose to use both filtering steps. Furthermore, we
fix N3D=200 to limit the loss in effectiveness.

Using camera sets. The co-visibility information
obtained from the reconstruction process only ap-
proximates the true co-visibility relation between the
points. Thus, applying the filters decreases the lo-
calization effectiveness. In Sec. 5, we proposed to
cluster each camera in a model with its k most similar
database images. Fig. 10 shows the effects of using
such camera sets. As can be seen, the optimal choice of
k is dataset dependent, but setting k=10 offers a good
compromise between localization effectiveness and
efficiency. We thus fix k=10, enabling our approach to
essentially achieve the same effectiveness as without
visibility filtering (black line in Fig. 10).

6.4 Comparison with State-of-the-Art
Tab. 4 compares our method with the current state-of-
the-art for image-based localization. As in Sec. 2, P2F
denotes the point-to-feature matching method from
[2]. P2F+F2P is an extension that performs 2D-to-3D
matching using a kd-tree if P2F fails [2]. Vis. Prob. is
a prioritized 3D-to-2D matching approach based on
co-visibility probabilities that starts from a single 2D-
to-3D match [24]. The Worldwise Pose Estimation (WPE)
method uses a mean descriptor per point and a higher
threshold for the ratio test, handling the resulting
higher outlier ratios by adapting RANSAC’s sampling
scheme [26]. WPE applies P2F if the pose cannot be
estimated from 2D-to-3D matches alone. The discrim-
inative feature-to-point (DF2P) matching method as-
sumes that the position of the query image is roughly
known, e.g., from GPS, and formulates descriptor
matching as a classification problem [33]. The accurate
pose estimation (APE) method uses knowledge about
the gravity direction and the height of the camera to
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compute the pose [27]. Beside these direct matching
techniques, we also compare our approach to three
image retrieval-based methods: The Voc. tree approach
generates synthetic views on a ground plane and uses
the GPU to accelerate both retrieval and descriptor
matching [21]. The Hamming Voting (HV) method uses
compact binary descriptors to avoid casting votes for
unrelated images during retrieval [29]. The Graph-
based Location Recognition (GBLR) method divides the
database images into places and learns classifiers to
distinguish between them [30]. All three methods per-
form descriptor matching followed by pose estimation
for the 10 top-ranked images.

As can be seen from Tab. 4, our approach achieves
the fastest registration times and (with the excep-
tion of the Rome dataset) the fastest rejection times
published so far. Only approaches that are at least
one order of magnitude slower than our method
achieve a better localization effectiveness. Our method
essentially solves the Dubrovnik and Rome datasets
as it fails to localize only 3 and 7 images in any
of the 10 repetitions of the experiment, respectively.
On the Rome and extended Vienna datasets, which
are more challenging than the other datasets, our
approach achieves a better effectiveness than kd-tree
search. Notice that Tab. 4 reports the timings obtained
with an optimized implementation of our method.
This implementation optimizes the cache efficiency of
our method and thus does not affect the validity of
the parameter settings derived above.

6.5 Localization Accuracy

Tab. 5 reports the localization accuracy obtained with
our approach. For each query image, we measure
the localization error as the median of the distance
between estimated and ground truth position over 10
repetitions. Besides the 6-point DLT algorithm (p6p)
used previously, we evaluate different pose estimation
strategies: p3p / p6p uses a 3-point algorithm (p3p) [4]
if the focal length is stored in the EXIF tag of the query
image and the p6p solver otherwise. The p4pfr solver
[42] estimates the pose together with a single focal
length and a radial distortion parameter from four
matches. The p4pfr-p/np method [43] solves the same
problem but handles planar and non-planer config-
urations separately. Since both solvers require 100ms
or more, we only apply them on the inliers detected
using the p6p solver. We denote these strategies as
p6p+p4pfr and p6p+p4pfr-p/np, respectively.

Tab. 5 shows that our approach achieves a higher
localization accuracy than methods relying on 3D-to-
2D matching [2], [24], independent of the pose esti-
mation strategy. This demonstrates that our approach
is not only efficient and effective but also accurate.
The p6p+p4pfr and p6p+p4pfr-p/np strategies provide
more precise position estimates compared to the p6p
method since the latter estimates the full internal
calibration. APE [27] achieves a lower localization
error using a deterministic pose estimation strategy,
which could easily be combined with our matching
approach.



0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2016.2611662, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH YEAR 13

TABLE 4
Compared to the current state-of-the-art, our approach achieves the fastest registration times published so far

while achieving nearly the same efficiency as methods that are more than one order of magnitude slower.

Method Aachen Dubrovnik Rome Vienna Vienna (ext.)
# reg. reg. rej. # reg. reg. rej. # reg. reg. rej. # reg. reg. rej. # reg. reg. rej.
imgs time [s] time [s] imgs time [s] time [s] imgs time [s] time [s] imgs time [s] time [s] imgs time [s] time [s]

Active Search 318.8 0.12 0.11 796.1 0.16 0.24 990.5 0.16 1.41 221.0 0.17 0.29 485.1 0.26 0.39

P2F [2] - - - 753 0.73 2.70 921 0.91 2.93 204 0.55 1.96 - - -
P2F+F2P [2] - - - 753 0.70 3.96 924 0.87 4.67 205 0.54 3.62 - - -

Vis. Prob. [24] - - - 788 0.25 0.51 977 0.27 0.61 219 0.40 0.49 - - -
DF2P [33] - - - 791.8 - - 976.4 - - - - - - - -
kd-tree [7] 317 2.46 1.94 795 3.4 14.45 983 3.97 6.27 220 3.44 2.72 474 4.61 4.33
APE [27] - - - 798 5.06 - - - - - - - - -
WPE [26] - - - 800 ”few seconds” 997 ”few seconds” - - - - - -

Voc. tree [21] - - - - - - - - - 165 ≤ 0.27 - - -
HV [29] 327 ∼ 3 ∼ 3 786 ∼ 3 ∼ 3 984 ∼ 3 ∼ 3 227 ∼ 3 ∼ 3 - - -

GBLR [30] 329 - - 796 - - 997 - - - - - - - -

TABLE 5
Localization error on the Dubrovnik dataset.

total # reg. Mean Quantiles [m]
Solver / Method images [m] 25% 50% 75% 90% 95%

ou
rs

p3p / p6p 795 14.8 0.5 1.5 4.9 20.1 46.4
p6p 797 30.7 0.5 1.3 5.0 19.2 55.3

p6p+p4pfr 790 22.2 0.5 1.4 4.8 16.6 55.5
p4pfr-p/np 792 15.3 0.4 1.1 3.6 15.2 55.3
P2F [2] 753 18.3 7.5 9.3 13.4 ∼ 18.3 -

Vis. Prob. [24] 788 34.79 0.9 3.1 11.8 - -
APE [27] 798 - - 0.6 - - ∼ 18.3

TABLE 6
Results for the Landmarks 1k dataset.

# reg. reg. times [s] total rej.
Method imgs. lin. search total time [s]

Active Search 9534 0.38 0.48 1.15
VPS 8547 0.72 0.89 1.38

WPE (2D-to-3D only) [26] ∼9200 ”few seconds”
WPE [26] 9895 ”few seconds”
HV [29] 8932 ∼ 3

Hyperpoints [32] 9401 ”few seconds”

6.6 The Scalability of Active Search

As can be seen in Fig. 9, our RANSAC pre-filter is less
effective on larger datasets. This is due to the denser
descriptor spaces defined by larger sets of 3D points,
which lead Lowe’s ratio test to reject more wrong
matches. As we consider even larger dataset, we can
expect the ratio test to also reject more and more
correct matches. We verify this assumption experi-
mentally: We split the Landmarks 1k dataset into sub-
models containing a few landmarks each and match
each query image against the sub-model containing
its landmarks. In this case, VPS localizes 91.04% of
the 10k query photos. In contrast, matching the query
images against the full dataset reduces the percentage
of localized image to 85.47%. The results from Tab. 6
show that using Active Search helps us to better han-
dle this problem. The density of the descriptor spaces
defined by the query features does not depend on the
size of the 3D model. Thus, the 3D-to-2D matching
steps performed by our approach enable us to recover
matches that were otherwise rejected by the ratio test.
WPE [26] uses a higher threshold for the ratio test

and thus obtains a better effectiveness, but Active
Search still localizes a comparable number of images.
There are two interesting observations: Without 3D-
to-2D matching, WPE actually performs worse than
Active Search. This again shows the importance of
searching in both directions. Second, even though the
Landmarks 1k dataset contains about one order of
magnitude more points than the Rome dataset, Active
Search is on average only 3 times slower.

Tab. 6 shows that Active Search significantly outper-
forms the image retrieval-based approach from [29] on
the Landmarks 1k dataset. In addition, we compare
against the Hyperpoints method from [32], which
performs 2D-to-3D matching via a fine vocabulary
of 16M words [31] and employs visibility filtering to
select subsets of matches for pose estimation. Again,
our approach localizes more images in less time.

7 CONCLUSION

In this paper, we have proposed a framework for
image-based localization based on prioritized match-
ing that is both efficient and effective while estimating
accurate camera poses. We have shown experimen-
tally that it is crucial to combine 2D-to-3D and 3D-to-
2D search with visibility information available from
every SfM model to obtain state-of-the-art results. Our
approach achieves the fastest run-times published so
far. Interestingly, descriptor extraction (around 0.05-
0.15s using a GPU) is the main bottleneck for many
datasets when using our improved implementation.

ACKNOWLEDGMENTS

The authors thank Noah Snavely for providing
datasets and Tobias Weyand for valuable discussions.

REFERENCES
[1] S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R. Szeliski,

“Building Rome in a Day,” in ICCV, 2009.
[2] Y. Li, N. Snavely, and D. P. Huttenlocher, “Location Recogni-

tion using Prioritized Feature Matching,” in ECCV, 2010.
[3] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt,

“Scalable 6-DOF Localization on Mobile Devices,” in ECCV,
2014.



0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2016.2611662, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH YEAR 14

[4] M. Fischler and R. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Comm. ACM, vol. 24, no. 6, pp.
381–395, 1981.

[5] N. Snavely, S. Seitz, and R. Szeliski, “Photo Tourism: Exploring
Photo Collections in 3D,” in SIGGRAPH, 2006.

[6] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost
in quantization: Improving particular object retrieval in large
scale image databases,” in CVPR, 2008.

[7] T. Sattler, B. Leibe, and L. Kobbelt, “Fast Image-Based Local-
ization using Direct 2D-to-3D Matching,” in ICCV, 2011.

[8] ——, “Improving Image-Based Localization by Active Corre-
spondence Search,” in ECCV, 2012.

[9] J. Sivic and A. Zisserman, “Video Google: A Text Retrieval
Approach to Object Matching in Videos,” in ICCV, 2003.

[10] D. Nister and H. Stewenius, “Scalable recognition with a
vocabulary tree,” in CVPR, 2006.

[11] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman,
“Object Retrieval with Large Vocabularies and Fast Spatial
Matching,” in CVPR, 2007.

[12] J. Hays and A. A. Efros, “im2gps: estimating geographic
information from a single image,” in CVPR, 2008.

[13] D. Robertson and R. Cipolla, “An image-based system for
urban navigation,” in BMVC, 2004.

[14] G. Schindler, M. Brown, and R. Szeliski, “City-Scale Location
Recognition,” in CVPR, 2007.

[15] J. Knopp, J. Sivic, and T. Pajdla, “Avoding Confusing Features
in Place Recognition,” in ECCV, 2010.

[16] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi, “Visual Place
Recognition with Repetitive Structures,” in CVPR, 2013.

[17] D. Chen, G. Baatz, K. Köser, S. Tsai, R. Vedantham,
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