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René Ranftl1, Kristian Bredies2, Thomas Pock1,3

1Institute for Computer Graphics and Vision
Graz University of Technology

2Institute for Mathematics and Scientific Computing
University of Graz

3Safety & Security Department
AIT Austrian Institute of Technology

Abstract. In this paper we introduce a novel higher-order regulariza-
tion term. The proposed regularizer is a non-local extension of the pop-
ular second-order Total Generalized variation, which favors piecewise
affine solutions and allows to incorporate soft-segmentation cues into the
regularization term. These properties make this regularizer especially ap-
pealing for optical flow estimation, where it offers accurately localized
motion boundaries and allows to resolve ambiguities in the matching
term. We additionally propose a novel matching term which is robust
to illumination and scale changes, two major sources of errors in optical
flow estimation algorithms. We extensively evaluate the proposed regu-
larizer and data term on two challenging benchmarks, where we are able
to obtain state of the art results. Our method is currently ranked first
among classical two-frame optical flow methods on the KITTI optical
flow benchmark.

1 Introduction

Higher-order regularization has become increasingly popular for tackling corre-
spondence problems like stereo or optical flow in recent years. This is not surpris-
ing since correspondences in real-world imagery can be modeled very well with
the assumption of piecewise planar structures in the case of stereo estimation
and piecewise affine motion in the case of optical flow.

Total Generalized Variation (TGV) [4], especially its second-order variant,
has shown promising results as a robust regularization term. Consider for exam-
ple the challenging KITTI Benchmark [9], where TGV-based optical flow models
are currently among the top performing optical flow methods [3, 23]. The merits
of this regularization term are given by the fact that it is robust and allows
for piecewise affine solutions. Moreover the regularization term is convex and
a direct extension of the classical Total Variation semi-norm, which allows for
easy integration into existing warping-based models. Note, however, that TGV
suffers from the major drawback that it is local in its nature, i.e. only directly
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(a) TGV (b) NLTGV (c) TGV (d) NLTGV

Fig. 1. Sample optical flow result from the Middlebury benchmark [1] using the pro-
posed NLTGV regularizer compared to TGV. The regularizer is able to provide sharp
and accurate motion boundaries and piecewise affine solutions.

neighboring pixels influence the value of the regularization term, which may re-
sult in bad performance in areas where the data term is ambiguous. Moreover,
purely TGV-based models are not able to accurately locate motion and depth
discontinuities.

We propose a non-trivial non-local extension to the TGV regularization term,
which is designed to remedy these problems. By incorporating larger neighbor-
hoods into the regularizer and providing additional soft-segmentation cues, we
are able to show increased performance in optical flow models. Our non-local
regularizer remains convex and reduces to an anisotropic variant of the classi-
cal TGV regularizer for appropriately chosen neighborhoods, thus it is easy to
integrate into existing frameworks. Figure 1 compares the proposed non-local
Total Generalized Variation (NLTGV) to classical TGV. It can be seen that in
both cases piecewise affine optical flow fields are obtained, but NLTGV results
in significantly better localized motion boundaries.

A second important development, which is mainly driven by the recent avail-
ability of benchmarks featuring realistic data, is a strong interest in robust data
terms. It is evident that in realistic scenarios, good optical flow estimates can
only be obtained by a combination of a good regularization term as well as robust
data terms. Rashwan et al. [20] incorporate dense HOG descriptors directly into
the classical energy minimization framework in order to gain robustness against
illumination changes, whereas [8] propose a simpler patch-based correlation mea-
sure, which is invariant to illumination and morphological changes. We again
refer to the KITTI Benchmark, where many of the top-performing methods rely
on variants of the Census transform for matching correspondences. The Census
transform has shown to be robust to illumination changes both theoretically
and in practice [11], which is especially important in realistic scenarios. Note,
however, that an often overlooked additional source of errors are scale changes
between images, which occur when motion along the optical axis is present in
the scene. Classical patch-based data terms, such as the Census transform, fail in
such scenarios, since the local appearance strongly changes in this case. To this
end we introduce a novel dataterm, which is motivated by the Census transform,
in order to gain robustness to scale changes, while still providing robustness to
challenging illumination conditions. Our experiments show that using the pro-
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posed data term, we are able to obtain increased robustness in image sequences
which feature scaling motions.

Related Work Starting from the seminal work by Horn & Schunk [13], innu-
merable optical flow models have been proposed. An important development was
the introduction of robust regularizers, specifically in the form of Total Variation
regularization, and robust data terms [29]. Much research has been devoted to
different aspects of this model, like edge-preserving regularization terms [26], or
the robustness to large-displacement motions [28].

A non-local variant of Total Variation has been first introduced by Gilboa
and Osher [10] for image and texture restoration problems. Werlberger et al.
successfully showed that a smoothed variant of this regularizer can be used to
incorporate soft-segmentation cues into motion estimation algorithms [25]. Sun
et al. [21] arrived at a similar non-local model by formalizing a median filtering
heuristic that is present in many successful optical flow models. Both models are
computationally demanding if they are defined for large support window sizes,
thus they are often constrained to small support windows. Krähenbühl et al.
[15] showed how to approximately optimize optical flow models that incorporate
non-local Total Variation in the presence of large support windows.

Models which incorporate TGV regularization have seen increasing success
recently. Ranftl et al. [19] introduced a edge-aware TGV-based model with a Cen-
sus data term for the task of stereo estimation. Similar to the popular LDOF [5]
framework, Braux et al. [3] incorporate sparse feature matches into a TGV-
based model in order to handle large displacements. Vogel et al. [23] also use a
TGV-based model and investigate the influence of different robust data terms.
These models currently define the state of the art on the KITTI optical flow
benchmark.

All of these models use variants of the Census transform as data term in
order to be robust against illumination changes, but surprisingly none of them
explicitly consider scale changes. In the context of dense descriptor matching
it was shown that it is possible to derive a “scaleless” version of the popular
SIFT descriptor [12], which were integrated into the discrete SIFT-Flow frame-
work [17]. Xu et al. incorporate scale estimation as an additional latent variable
into a classical continuous optical flow model [27]. Since they model scale selec-
tion as a labeling problem, this model is computationally demanding. Finally,
Kim et al. propose a locally adaptive fusion of different data costs [14], which in
theory could also be used to remedy the negative influence of scale changes.

2 Preliminaries

We denote the optical flow field as v = (v1, v2)T : Ω → R2 and the input images
as I1, I2 : Ω → R. A generic form of an optical flow energy takes the form

min
v
J(v1) + J(v2) + λ

∫
Ω

ρ(x, v(x), I1, I2)dx, (1)
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where J(.) are the regularizers of the individual flow components, ρ(x, v(x), I1, I2)
is a matching term that gives the cost for warping I1 to I2 using the flow v and
λ is a scalar regularization parameter.

In order to cope with the non-convexity of the matching term which arises
from the warping operation and potentially from the function ρ, we follow the
strategy of approximating the data term ρ(x, v(x), I1, I2) using a second-order
Taylor expansion [25] around some initial flow v0(x):

ρ(x, v(x)) ≈ ρ(x, v0(x)) + (v(x)− v0(x))T∇ρ(x, v0(x))

+ 1
2 (v(x)− v0(x))T (∇2ρ(x, v0(x)))(v(x)− v0(x)) = ρ̂(x, v(x)), (2)

where we dropped the explicit dependence on I1 and I2 for notational simplicity.
In contrast to the approach of linearizing the matching image [29], which leads to
the classical optical flow constraint, this strategy allows to incorporate complex
data terms into the model. As suggested in [25] we use a diagonal positive semi-
definite approximation of the Hessian matrix ∇2ρ(x, v0(x)) in order to keep
the approximation convex. The specific form of the regularization term and the
matching term will be the subject of the next sections.

3 Non-Local Total Generalized Variation

For clarity we focus on second-order regularization, since such regularizers have
empirically shown to provide a good tradeoff between computational complexity
and accuracy in correspondence problems.

Let Ω ⊂ R2 denote the image domain and u : Ω → R be a function defined
on this domain (e.g. one component of a flow field). The second-order Total
Generalized Variation [4] of the function u is given by

TGV2(u) = min
w
α1

∫
Ω

|Du− w|+ α0

∫
Ω

|Dw|, (3)

where w : Ω → R2 is an auxiliary vector field, α0, α1 ∈ R+ are weighting
parameters and the operator D denotes the distributional derivative, which is
well-defined for discontinuous functions. An important property of this regular-
izer is that TGV2(u) = 0 if and only if u is a polynomial of order less than
two [4], i.e. if u is affine. This explains the tendency of models, which incorpo-
rate this regularization term, to produce piecewise affine solutions. Note that the
parameter α1 is related to the penalization of jumps in u, whereas the parameter
α0 is related to the penalization of kinks, i.e. second-order discontinuities.

Non-local Total Variation [10] on the other hand can be defined as:

NLTV(u) =

∫
Ω

∫
Ω

α(x, y)|u(x)− u(y)|dydx. (4)

Here, the support weights α(x, y) allow to incorporate additional prior infor-
mation into the regularization term, i.e. α(x, y) can be used to strengthen the
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regularization in large areas, which is especially useful in the presence of am-
biguous data terms. Variants of this regularizer have been successfully applied
to the task of optical flow estimation [25, 15, 21].

Motivated by non-local Total Variation (4), Definition 1 introduces a non-
local extension of the TGV2 regularizer:

Definition 1. Let u : Ω → R, w : Ω → R2 and α0, α1 : Ω × Ω → R+ be sup-
port weights. We define the non-local second-order Total Generalized Variation
regularizer J(u) as

J(u) = min
w

∫
Ω

∫
Ω

α1(x, y)|u(x)− u(y)− 〈w(x), x− y〉 |dydx

+

2∑
i=1

∫
Ω

∫
Ω

α0(x, y)|wi(x)− wi(y)|dydx, (5)

where vector components are denoted by super-scripts, i.e. w(x) = (w1(x), w2(x))T .

The reasoning behind this definition is as follows: Considering a point x ∈ Ω,
the expression u(x)− 〈w(x), x− y〉 defines a plane through the point (x, u(x)),
with normal vector (w(x),−1)T . Consequently the inner integral of the first
expression, ∫

Ω

α1(x, y)|u(x)− u(y)− 〈w(x), x− y〉 |dy, (6)

measures the total deviation of u from the plane at the point x, weighted by
the support function α1. The outer integral evaluates this deviation at every
point in the image. This term can be understood as a linearization of u around
a point x. Note that the linearization is not constant, i.e. as we are interested
in a field w which minimizes the total deviations from the (in the continuous
setting infinitely many) local planes, the normal vector w(x) can vary, although
not arbitrarily as the term

2∑
i=1

∫
Ω

∫
Ω

α0(x, y)|wi(x)− wi(y)|dydx (7)

forces the field w to have low (non-local) total variation itself. Intuitively (5)
assigns low values to functions u which can be well approximated by affine
functions.

We now derive primal-dual and dual representations of (5), which will later
serve as the basis for the optimization of functionals that incorporate this regu-
larizer.
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Proposition 1. The dual of (5) is given by

J(u) = sup
|p(x,y)|≤α1(x,y)

|qi(x,y)|≤α0(x,y)

∫
Ω

(∫
Ω

{p(x, y)− p(y, x)} dy

)
u(x)dx

s.t.

∫
Ω

qi(x, y)− qi(y, x)dy =

∫
Ω

p(x, y)(xi − yi)dy ∀i ∈ {1, 2} (8)

Proof. Dualizing the absolute values in (5) yields

J(u) = min
w

sup
|p(x,y)|≤α1(x,y)

∫
Ω

∫
Ω

(u(x)− u(y)− 〈w(x), x− y〉) · p(x, y)dxdy

+

2∑
i=1

sup
|qi(x,y)|≤α0(x,y)

∫
Ω

∫
Ω

(wi(x)− wi(y)) · qi(x, y)dxdy

= min
w

sup
|p(x,y)|≤α1(x,y)

|qi(x,y)|≤α0(x,y)

∫
Ω

(∫
Ω

{p(x, y)− p(y, x)} dy

)
u(x)dx

+

2∑
i=1

∫
Ω

(∫
Ω

{
qi(x, y)− qi(y, x) + p(x, y)(yi − xi)

}
dy

)
wi(x)dx. (9)

By taking the minimum with respect to w we arrive at the dual form. ut

We will now show two basic properties of non-local Total Generalized Vari-
ation:

Proposition 2. The following statements hold:

1. J(u) is a semi-norm.
2. J(u) = 0 if and only if u is affine.

Proof. To show the first statement, consider that the supremum in (8) is taken
over linear functions with additional linear constraints on p and q. It is well-
known that the supremum over linear functions is convex [2] . Since the con-
straints on p and q form a linear and thus convex set, J(u) is convex. Moreover
it is easy to see from (8) that J(u) is positive one-homogeneous. As a consequence
the triangle inequality holds, which establishes the semi-norm property.

In order to show the second statement, assume that u is affine, i.e. u(x) =
〈a, x〉 + b, a ∈ R2. By plugging into (5) it is easy to see that the minimum is
attained at w(x) = a. As a consequence we have J(u) = 0. Conversely assume
that J(u) = 0. In any case this requires that

2∑
i=1

∫
Ω

∫
Ω

α0(x, y)|wi(x)− wi(y)|dydx = 0, (10)
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which implies that w(x) = c ∈ R2, ∀x ∈ Ω. Consequently

min
c

∫
Ω

∫
Ω

α1(x, y)|u(x)− u(y)− 〈c, x− y〉 |dydx = 0, (11)

if and only if u(x) is of the form u(x) = 〈a, x〉+ b and hence affine. ut

Since the properties in Proposition 2 are shared by TGV and the non-local
TGV regularizer (NLTGV), it can be expected that both behave qualitatively
similar when used in an energy minimization framework. The main advantage of
NLTGV is the larger support size and the possibility to enforce additional prior
knowledge using the support weights α1 and α0. This is especially advantageous
for optical flow estimation, where support weights can be readily computed from
a reference image, in order to allow better localization of motion boundaries and
resolve ambiguities. Akin to [25] the support weights α1 and α0 can be used to
incorporate soft-segmentation cues into the regularizer, e.g. in the case of optical
flow estimation it is possible to locally define regions which are forced to have
similar motion based on the reference image.

Figure 2 shows a synthetic experiment which demonstrates the qualitative
behavior of NLTGV. We denoise a piecewise linear function using a quadratic
data term with TGV and NLTGV, respectively. We assume prior knowledge of
jumps in order to compute the support weights and set α1(x, y) = 1 if there is
no discontinuity between x and y and α1(x, y) = 0.1 otherwise. Support weights
outside of a 5×5 window were set to zero. While prior knowledge of jumps is not

(a) Groundtruth (b) NLTGV (RMSE = 1.17)

(c) Noisy (d) TGV (RMSE = 5.59)

Fig. 2. Comparison of NLTGV and TGV for denoising a synthetic image. NLTGV is
able to perfectly reconstruct the groundtruth image. TGV tends to oversmooth jumps.
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available in real denoising problems, similar support weights can be easily derived
in optical flow estimation from the input images. It can be seen that NLTGV
nearly perfectly reconstructs the original image, while TGV has problems with
accurate localization of the discontinuities.

4 Scale-Robust Census Matching

The Census transform is a popular approach to gain robustness against illumina-
tion changes in optical flow. The principal idea is to generate a binary or ternary
representation, called Census signature, of an image patch and measures patch
similarity using the Hamming distance between Census signatures.

Let us define the per-pixel Census assignment function for an image I : Ω → R:

Cε(I, x, y) = sgn(I(x)− I(y))1|I(x)−I(y)|>ε, (12)

which assigns to the pixel at location y one of the values {−1, 0, 1} based on the
value of the pixel x. Given two images I1, I2 and a flow field v : Ω → R2, the
Census matching cost of the flow v is defined via the Hamming distance of the
two strings as

ρc(x, v(x), I1, I2) =

∫
Ω

1Cε(I1,x,y)6=Cε(I2,x+v(x),y+v(x))B(x− y)dy, (13)

where B denotes a box filter, which defines the size of the matching window.
Note that classical patch-based matching approaches are problematic when

scale changes between two images occur, since the patch in the first image will
capture different features than the patch in the second image. If one knew the
amount of scale change, a simple remedy to this problem would be to appro-
priately rescale the patch, such that the local appearance is again the same.
Unfortunately the scale change in optical flow estimation is unknown a-priori.

To this end we draw ideas from SIFT descriptor matching under scale changes
in order to alleviate these problems: Consider SIFT descriptors h1 and h2 com-
puted from two images I1 and I2 at points p1 and p2 respectively. Hassner et
al. [12] showed that if descriptors are sampled at different scales si and the
“min-dist” measure, which is defined as

min
i,j

dist(h1si , h
2
sj ), (14)

is used as matching score, it is possible to obtain accurate matches even under
scale changes. Since SIFT descriptors are based on distributions of image gra-
dients and [11] has shown a strong relationship of the Census transform to an
anisotropic gradient constancy assumptions, it is reasonable to assume that a
similar strategy might be applicable to Census transform matching.

We define a variant of the Census transform, which is easily amenable for
multi-scale resampling, by using radial sampling instead of a window-based sam-
pling strategy. An example of this sampling strategy is shown in Figure 3. We
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s

(a) SCensus (b) Census

Fig. 3. Example of the proposed sampling strategy analogous to a 5x5 census trans-
form. The center value is computed by averaging the sampling positions on the inner
most ring (red). A ternary string of length 24 is generated from the sampling positions
on the outer rings (green). (Best viewed in color)

sample radially around the center point. Samples from the inner ring are av-
eraged and serve as the basis value for generating the Census string, i.e. the
average takes the role of the center pixel when compared to the standard Census
transform. In order to generate the Census string, the gray values of samples
on the outer ring are compared to the average value. All samples are extracted
using bilinear interpolation, whenever a sampling point is not in the center of a
pixel. This strategy allows simple rescaling of the descriptor, which is important
for an efficient implementation. Note that this radial sampling shares similarities
to Local Binary Patterns [18]. Formally, we fix some radial discretization step
θ = 2π

K and a radius r and introduce scale depended coordinates x̂ = (x̂1, x̂2)T

x̂1(k, s, r) = x1 + rs cos(kθ), x̂2(k, s, r) = x2 + rs sin(kθ) (15)

We define the difference between the average value of the inner ring ri = s
4 and

the l-th sample from an outer ring r as

f(I, x, l, s, r) = 1
K

K∑
k=1

(Gs ∗ I)(x̂(k, s, s4 ))− (Gs ∗ I)(x̂(l, s, r)), (16)

where Gs denotes a Gaussian kernel with variance s. Analogous to the Cen-
sus assignment function (12) we define the scale-dependent Census assignment
function as

Csε (I, x, l, r) = sgn(f(I, x, l, s, r))1|f(I,x,l,s,r)|>ε, (17)

This definition allows to compare descriptors at different scales s1 and s2 using
the Hamming distance:

ρs1s2(x, v(x), I1, I2) =

L∑
l=1

R∑
r=1

1C
s1
ε (I1,x,l,r)6=C

s2
ε (I2,x+v(x),l,r)

. (18)
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(a) I2 (b) Census - Flow (c) Census - Error

(d) I1 (e) SCensus - Flow (f) SCensus - Error

(g) Selected Scale

Fig. 4. Example behaviour of the Census dataterm and the scale-robust Census
dataterm. The wall to the right undergoes a strong scale change. (b)-(c): Census fails
in these areas. (e)-(f): Using scale-robust Census we are able to find a correct flow field.
(g) shows the scale that was locally selected by the data term. (Best viewed in color)

By introducing the “min-dist” measure we finally arrive at the scale-robust Cen-
sus data term:

ρ(x, v(x), I1, I2) = min
s1,s2

ρs1s2(x, v(x), I1, I2). (19)

While this data term is highly non-linear and non-convex, it can still be easily
integrated into our continuous model using the convex quadratic approxima-
tion (2).

In practice we fix the scale in the first first image to the original scale and
compute ρ1s2 for a number of scales s2. Note that this definition is slightly biased
toward forward motion, but is also able to handle moderate scale changes in the
other direction.

Figure 4 shows the qualitative behavior of the proposed data term in areas
that undergo a strong scale change. It can be seen that the proposed data term
is able to successfully choose the correct scale on many points, which allows the
global model to achieve accurate results.

5 Discretization and Minimization

For minimization we use the preconditioned primal-dual scheme [7]. We discretize
(1) on the regular rectangular pixel grid of size M × N and use the index 1 ≤
i ≤MN to refer to individual pixels in this grid. Let vi ∈ R2 denote the flow at
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the i-th pixel, which is at the location li = (x1(i), x2(i))T . In order to allow for
a simpler notation, we introduce a signed distance matrix

Dij =

(
d1ij d

2
ij 0 0

0 0 d1ij d
2
ij

)
∈ R2×4,

with dij = (d1ij , d
2
ij)

T = lj − li. Let pij ∈ R2 and qij ∈ R4 be the dual variable
associated to the connection of pixels i and j. The discretized model can be
written in its primal-dual formulation as

min
v,w

max
‖pij‖∞≤αij

1

‖qij‖∞≤αij
0

∑
i

∑
j>i

[
(vi − vj +Dijw

i) · pij + (wi − wj) · qij
]

+ λ
∑
i

ρ̂(i, vi).

(20)

Remark 1. In order to prevent double counting of edges we set the support
weights in (20) to zero for all y1(i) ≤ x1(i) or (y2(i) ≤ x2(i)) ∧ (y1(i) ≤ x1(i)).

Using (9) we can derive the optimization scheme:

pijn+1 = max(−αij1 ,min(αij1 , p
ij
n + σp(v̄

i
n − v̄jn +Dijw̄

i
n)

qijn+1 = max(−αij0 ,min(αij0 , q
ij
n + σq(w̄

i
n − w̄jn)))

vin+1 = proxτvλρ̂(v
i
n − τv

∑
j>i(p

ij
n+1 − p

ji
n+1))

win+1 = win − τw
∑
j>i(q

ij
n+1 − q

ji
n+1 +DT

ijp
ij
n+1)

v̄in+1 = 2vin+1 − vin
w̄in+1 = 2win+1 − win

where minima and maxima are taken componentwise. The proximal operator
proxtρ̂(û) with respect to the quadratic approximation of the data term is given
by

proxtρ̂(v̂
i) = (∇2ρ(vi0) + 1

t I)−1( 1
t v̂
i −∇ρ(vi0) +∇2ρ(vi0)v0). (21)

We compute support weights based on color similarities and spatial proxim-
ity:

αij1 =
1

Zi
exp(−‖I

i
1−I

j
1‖

wc
) exp(−‖lj−li‖wp

), αij0 = cαij1 , (22)

where wc and wp are user-chosen parameters that allow to weight the influence
of the individual terms and Zi ensures that the support weights sum to one.
Note that in practice we constrain the influence of the non-locality in a window
of size 2wp + 1 in order to keep optimization tractable (e.g. weights outside the
window are set to zero, which allows to drop corresponding dual variables from
the optimization problem). Figure 5 shows the influence of the parameters wp
and and wc on the average endpoint error (EPE), evaluated on the Middlebury
training set [1]. It can be seen that larger spatial influence results in lower EPE,
whereas a too large color similarity parameter results in oversmoothing and
consequently yields higher EPE.

As is common, the optimization is embedded into a coarse-to-fine warping
framework in order to cope with large motions.
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Fig. 5. Influence of the spatial proximity parameter wp an the color proximity param-
eter wc on EPE evaluated on the Middlebury training set.

6 Experiments

In this section we evaluate the performance of the proposed model on two chal-
lenging data sets. The model was implemented using CUDA; all experiments
were conducted on a Geforce 780Ti GPU. We use a scale factor of 0.8 for the
coarse-to-fine pyramid and 15 warps per pyramid level. For the scale-robust data
term we evenly sample 7 scales between 0.5 and 2 in both image. We fix wp = 2,
which gives a good trade-off between accuracy and computational complexity.
The remaining parameters were adapted for each benchmark individually.

KITTI Benchmark The KITTI Benchmark [9] is composed of real-world im-
ages taken from an automotive platform. The data set is split into a training set
and a test set of 194 images each. We use the training set, where groundtruth
optical flow is available, to show the influence of non-local TGV as well as the
scale-robust data term. As a baseline model we use standard TGV with the Cen-
sus term (TGV-C), as it has been shown that this combination already works
well on this dataset. We compare different combinations of regularizers and data
terms: Standard TGV, non-local TV, as defined in (4), and NLTGV. The suffixes
-C and -SC denote Census and scale-robust Census, respectively.

We use a small subset of the training set (20% of the images) to find optimal
parameters for each method using grid-search. The Census and NLTGV window
sizes were set to 5× 5. Since the groundtruth flow fields in this data set are not

TGV-C NLTV-C NLTGV-C TGV-SC NLTV-SC NLTGV-SC

2px 12.86 12.38 7.58 11.73 11.29 7.35
3px 10.38 9.59 5.74 9.19 8.57 5.50
4px 8.99 8.27 4.90 7.87 7.30 4.59
5px 8.03 7.48 4.34 6.97 6.53 4.00

Table 1. Average error in % for different models and different error thresholds on the
KITTI NOC-training set.
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(a) Groundtruth (b) NLTGV (c) TGV

Fig. 6. Comparison between NLTGV and TGV on the Sintel Benchmark.

pixel-accurate, we follow the officially suggested methodology of evaluating the
percentage of pixels, which have endpoint error above some threshold [9].

Table 1 shows a comparison of TGV and NLTV to NLTGV, as well as the
influence of the scale-robust Census data term. TGV and NLTV perform simi-
lar, which is in accordance to the results of similar NLTV-based models on this
dataset (cf. [22]). NLTGV gives a significantly lower error with both data terms.
This can be attributed to more accurate motion boundaries and a better be-
haviour in occluded and ambiguous areas. Using the scale-robust Census data
term additionally lowers the error for both models, with NLTGV-SC giving the
lowest overall error. Table 2 shows results on the test set of this benchmark,
where our method is currently ranked first among two-frame optical flow meth-
ods.

Out-Noc [%] Out-All [%] Avg-Noc [px] Avg-All [px] Runtime [s]

3px 2px 3px 2px

NLTGV-SC 5.93 7.64 11.96 14.55 1.6 3.8 16
DDR-DF 6.03 8.23 13.08 16.01 1.6 2.7 60
TGV2ADCS [3] 6.20 8.04 15.15 17.87 1.5 4.5 12
DataFlow [23] 7.11 9.16 14.57 17.41 1.9 5.5 180
EpicFlow 7.19 9.53 16.15 19.47 1.4 3.7 15
DeepFlow [24] 7.22 9.31 17.79 20.44 1.5 5.8 17

Table 2. Average error on the KITTI test set for error thresholds 3px and 2px. Suffixes
“Noc” and “All” refer to errors evaluated in non-occluded and all regions, respectively.
Methods “DDR-DF” and “EpicFlow” were unpublished at the time of writing. We
show the six best-performing two-frame optical flow methods.
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Rank Method EPE all s0-10 s10-40 s40+

1 EpicFlow 6.469 1.180 4.000 38.687
4 DeepFlow [24] 7.212 1.284 4.107 44.118
21 NLTGV-SC 8.746 1.587 4.780 53.860
23 DataFlow [23] 8.868 1.794 5.294 52.636
28 NLTV-SC 9.855 1.202 4.757 64.834

Table 3. Average EPE for a selection of different models on the Sintel test set. The
columns “sA-B” refer to EPE over regions with velocities between A and B.

Sintel Benchmark The synthetic Sintel Benchmark [6] features large motion,
challenging illumination conditions and specular reflections. In our evaluation
we use the “final” sequence, which additionally contains motion blur and atmo-
spheric effects. We use two image pairs from each subsequence of the training set
to set the parameters and report the average endpoint error as error measure.

Table 3 show results on the Sintel test set. We see an improvement over the
TGV-based model [23] and an NLTV-based model (NLTV-SC). The most criti-
cal regions for the overall error are high-velocity regions, which are problematic
in purely coarse-to-fine-based methods. Hence, it is not surprising that methods
which integrate some form of sparse prior matching [24, 16] fair better than clas-
sical coarse-to-fine-based approaches on this dataset. Note that a-priori matches
could be easily integrated into our model [3]. We leave such an extension for
future work. Finally, Figure 6 shows a qualitative comparison between TGV and
NLTGV on this benchmark.

7 Conclusion

In this paper we have introduced a novel higher-order regularization term for
variational models, called non-local Total Generalized Variation. The principal
idea of this regularizer is to measure deviations of a function from local lin-
ear approximations, where an additional spatial smoothness assumption is im-
posed onto the linear approximations. The proposed regularization term allows
for piecewise affine solutions and is able to incorporate soft-segmentation cues,
which is especially appealing for tasks like optical flow estimation and stereo.
Additionally, we introduced a novel data term for optical flow estimation, which
is robust to scale and illumination changes, as they frequently occur in optical
flow imagery. Our experiments show that an optical flow model composed of
non-local Total Generalized Variation together with the proposed scale robust
data term is able to significantly improve optical flow accuracy.

René Ranftl and Thomas Pock acknowledge support from the Austrian Science Fund
(FWF) under the projects No. I1148 and Y729. Kristian Bredies acknowledges sup-
port by the Austrian Science Fund special research grant SFB F32 “Mathematical
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18. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on featured distributions. Pattern Recognition 29(1), 51–
59 (1996)



16 Ranftl, Bredies, Pock

19. Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the Limits of Stereo Using
Variational Stereo Estimation. In: Intelligent Vehicles Symposium (2012)
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