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Abstract. We introduce a method to approximately minimize varia-
tional models with Total Generalized Variation regularization (TGV)
and non-convex data terms. Our approach is based on a decomposition
of the functional into two subproblems, which can be both solved globally
optimal. Based on this decomposition we derive an iterative algorithm
for the approximate minimization of the original non-convex problem.
We apply the proposed algorithm to a state-of-the-art stereo model that
was previously solved using coarse-to-fine warping, where we are able to
show significant improvements in terms of accuracy.
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1 Introduction

Total Generalized Variation (TGV) [1], a generalization of the Total Varia-
tion (TV) regularization, has recently been successfully applied to a number
of problems, like Optical Flow [2], Stereo [3] and Image Fusion [4]. Especially
for Stereo and Optical Flow, TGV is arguably a better prior than the classical
TV prior. For example in the second-order case, TGV does not penalize piece-
wise affine solutions. Such assumptions on planarity of the scene are frequently
made in stereo matching (e.g. [5–7]) and also find application in optical flow
estimation (e.g. [2, 8]).

However, TGV regularization currently is restricted to convex functionals
(i.e. convex data terms). If the functional is non-convex, as it is the case in stereo
matching, one has to rely on convex approximations to the non-convex problem,
which often decreases the performance of the model. This is not the case for TV,
where global solutions can be computed even in the presence of non-convex data
terms, provided that the continuous label-space is discretized and some natural
ordering can be imposed onto the resulting discrete label space [9]. The idea of
this approach is to lift the functional to a higher dimensional space, where the
resulting functional is convex. Similar results were shown by Ishikawa [10] for
discrete first-order Markov Random Fields (MRF). The lifting approach [9] was
later extended to a broader class of convex first-order priors such as Quadratic
and Huber regularization [11].
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(a) Venus (b) Groundtruth (c) Proposed

Fig. 1. Example from the Middlebury stereo dataset.

Previous work on Stereo and Optical Flow that used TGV regularization [2,
3] relied on the classical coarse-to-fine warping scheme [12] to approximately
solve the original non-convex problem. The basic idea of this approach is to
solve a series of convex models that arise from linearizations of the non-convex
data term. In order to capture large motion or disparity ranges, respectively, this
procedure has to be embedded into a coarse-to-fine framework, which is known
to suffer from loss of fine details.

In the context of discrete MRFs, planarity assumptions can be enforced using
a second-order prior. The resulting models can be approximately solved using a
move-making strategy: The multi-label problem is reduced to a series of binary
subproblems (each deciding if a node retains its label or switches to a proposed
label), where each subproblem can be solved partially optimal [5]. The outcome
of this approach crucially depends on the quality of the proposals in each move.
Moreover, each of the subproblems is only solved partially optimal, which means
that some nodes in the MRF may remain unlabeled.

Contribution. In this work we show how approximate solutions to non-convex
functionals with TGV regularization can be computed. Our approach does not
suffer from loss of fine details like the coarse-to-fine approaches do. The frame-
work builds on the observation that functionals with TGV regularization and
non-convex data terms can be split in two subproblems, where one is convex and
the other, although non-convex, falls into the class of functionals covered by the
lifting procedure described in [11] and can therefore be solved globally optimal.

In contrast to [5], where in each iteration a binary labeling problem, defined
on a second-order energy, is solved, our approach solves a first-order multi-label
problem in each iteration, in order to minimize the full second-order energy.
This frees us from the need to specify proposals and also guarantees a complete
labeling. Our splitting approach is similar to Alternating Convex Search [13],
which itself falls under the broader class of Block-Relaxation methods [14].

We apply the proposed algorithm to a variational stereo model [3], which was
solved using a coarse-to-fine strategy in the original formulation. By switching
the optimization strategy to the herein proposed method, we are able to show
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significant improvements in terms of accuracy. An exemplary result of the pro-
posed method is shown in Figure 1. This is an example where the scene consists
only of planes, which is perfectly modelled by the prior. Consequently we are
able to recover high-quality disparity maps. Our evaluation shows that we obtain
state-of-the-art results on the challenging KITTI stereo benchmark [15] as well
as the Middlebury high-resolution benchmark [16].

2 Alternating Optimization

We focus on models with second-order TGV regularization, as this is the most
widely used and also the simplest instance of TGV (besides TV), i.e. we consider
functionals of the form

min
u,w

E1(w|u)︷ ︸︸ ︷
α

∫
Ω

|Dw|Γ +

∫
Ω

|Du− w|Σ + λ

∫
Ω

ρ(u)︸ ︷︷ ︸
E2(u|w)

, (1)

where u : Ω → R and w : Ω → R2, D is the distributional derivative, which
is also well defined for discontinuous functionals, and the norms are defined as

|x|M = 〈x,Mx〉
1
2 , M symmetric and positive definite. The introduction of the

operator M will later allow us to easily incorporate anisotropic edge-weighted
diffusion into the model. Note that for Γ = I and Σ = I, the definition reduces to
the standard definition of second-order TGV [1]. We will assume throughout the
rest of this paper that the data term ρ(u) is non-convex. Note that an extension
of this basic formulation to higher-order instances of TGV is straight-forward,
as it only involves a modified version of subproblem E1(w|u).

Our main observation is as follows: It is possible to decompose problem (1)
into the two subproblems E1(w|u) and E2(u|w). Let the pair (u∗, w∗) be a global
minimizer of (1), then it is obvious that the relation

u∗ = arg min
u
E2(u|w∗) (S1)

w∗ = arg min
w
E1(w|u∗) (S2)

holds, i.e. given w∗ it is possible to deduce u∗ by solving a possibly simpler
subproblem and vice versa. Note that (S1) is a non-convex problem, while (S2)
is a convex problem, which is equivalent to a generalized vectorial TV-L1 de-
noising problem [17]. This observation points to an iterative scheme for finding
approximate solutions to (1):

un+1 = arg min
u
E2(u|wn)

wn+1 = arg min
w
E1(w|un+1). (A1)

Note that by definition we have E(un, wn) ≥ E(un+1, wn) ≥ E(un+1, wn+1)
and 0 ≤ E(u,w) < ∞, ∀(u,w), therefore the procedure will converge in the
functional value, although not necessarily to a global optimum.
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The update steps in (A1) already constitute the basic iterations of the pro-
posed algorithm for optimizing (1). It remains to show how to solve the individual
subproblems in each step.

2.1 Minimizing E2(u|w)

The subproblem E2(u|w) is a non-convex variational problem with a non-convex
data term and a convex regularization term. It was shown by Pock et al. [11]
that problems with this special structure can be solved globally optimal using
the framework of calibrations. The basic idea is to lift the problem to a higher-
dimensional space, where a globally optimal solution to the original problem can
be computed.

Let us first introduce the general framework: In order to find a minimizer u∗

of functionals of the form

min
u

∫
Ω

f(x, u(x), Du), (2)

we can solve the auxiliary problem

min
v∈C

sup
φ∈K

∫
Ω×R

φ ·Dv, (3)

where the convex sets C and K are given by

C =

{
v ∈ BV (Ω × R; [0, 1]) : lim

t→−∞
v(x, t) = 1, lim

t→∞
v(x, t) = 0

}
and

K = {φ = (φx, φt) ∈ C0(Ω × R;Rd × R) :

φt(x, t) ≥ f∗(x, t, φx(x, t)),∀x, t ∈ Ω × R} . (4)

Here f∗ denotes the convex conjugate of the function f . Note that the sets C and
K are defined point-wise. The intuition behind this formulation is, that instead of
minimizing u directly, one represents the energy in terms of characteristic func-
tions of its upper level-sets v. Given a minimizer v∗ the corresponding minimizer
u∗ can be recovered by u∗(x) =

∫
R v
∗(x, t)dt.

This formulation is very general, the specific form of the convex regular-
ization term only influences the set K. Pock et al. [11] derived the set K for
Quadratic, TV, Huber and Lipschitz regularization terms. In problem E2(u|w),
the regularization term is similar to TV regularization, with the difference that
a constant vector is subtracted from the gradient, before the absolute value is
measured. We identify f(x, t, p) = |p(x)− wn(x)|Σ + λρ(x, t), and consequently
its convex conjugate with respect to p is

f∗(x, t, φ) =

{
〈φx(x, t), wn(x)〉 − λρ(x, t), if |φx(x, t)|Σ ≤ 1

∞, else.
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(a) TV (b) TGV

Fig. 2. The feasible set K for (a) TV and (b) TGV.

The resulting set K is illustrated in Figure 2(b). The feasible set for TV
regularization is shown in Figure 2(a). It can be seen that for problem E2(u|w)
the feasible set is slightly more complicated than in the TV case. While for TV
the set is given by the interior of a cylinder with radius 1, which is bounded from
below by a vertical plane centered at (0, 0,−λρ(x, t))T , the set in the TGV case
is bounded from below by plane that includes the point (0, 0,−λρ(x, t))T but can
be arbitrarily oriented (in fact the normal of this plane is given by [wn,−1]T ).
This makes projection onto this set slightly harder, as a closed-form solution is
no longer available.

Discretization and Optimization. In order to solve (3) it is necessary to
discretize the domain Ω × R of the continuous functions v and ρ. For the sake
of simplicity let us only consider the case Ω ⊂ R× R, higher-dimensional cases
can be derived analogously.

We discretize on a three-dimensional grid of size Nx × Ny × Nt with dis-
cretization steps ∆x, ∆y and ∆t:

G∆ = {(i∆x, j∆y, k∆t) : (0, 0, 0) ≤ (i, j, k) < (Nx, Ny, Nt)} . (5)

Here the triple (i, j, k) denotes the location in the grid.
For numerical reasons we replace the vector field φx, with a rotated version

Σ
1
2φx, which leads to a simplification of the convex set K∆, without changing

the formulation.
The feasible sets for the discrete version of (3) are then given by

C∆ =
{
v∆ ∈ [0, 1]NxNyNt : v∆i,j,0 = 1, v∆i,j,Nt−1 = 0

}
(6)

and

K∆ =
{
φ∆ = (φ∆x , φ

∆
y , φ

∆
t ) ∈ R3NxNyNt :

(φ∆t )i,j,k + λ(ρ)i,j,k ≥
〈

(φ∆x , φ
∆
y )Ti,j,k, Σ

1
2wi,j

〉
,

|(φ∆x , φ∆y )Ti,j,k|2 ≤ 1, ∀(i, j, k) ∈ G∆
}
. (7)
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In order to discretize the differential operator D, we use forward differences
with Neumann boundary conditions. Furthermore we allow Σ to vary locally,
which allows us to incorporate image-driven TGV regularization similar to [3]
into the framework, i.e. we define a linear operator ∇Σ : RNxNyNt → R3NxNyNt ,
with

(∇Σv∆)i,j,k =

Σ
1
2
i,j

0
0

0 0 1

 (δxv
∆)i,j,k

(δyv
∆)i,j,k

(δtv
∆)i,j,k

 (8)

and

(δxv
∆)i,j,k =

{
(v∆i+1,j,k − v∆i,j,k)/∆x if i < Nx − 1

0 else
(9)

(δyv
∆)i,j,k =

{
(v∆i,j+1,k − v∆i,j,k)/∆y if i < Ny − 1

0 else
(10)

(δtv
∆)i,j,k =

{
(v∆i,j,k+1 − v∆i,j,k)/∆t if i < Nt − 1

0 else.
(11)

Note that (8) reduces to the standard discretization of a gradient operator, if

Σ
1
2
i,j is set to identity everywhere. On the other hand, it is possible to incorporate

image-driven diffusion into the model by setting the matrix appropriately. We
will later discuss the specific choice of this matrix.

The discrete version of (3) is now given by

min
v∆∈C∆

max
φ∆∈K∆

〈
∇Σv∆, φ∆

〉
(12)

For optimization of the convex-concave saddle-point problem (12) we use
the primal-dual algorithm [18]. The iterations of this algorithm are shown in
Algorithm 1.

A crucial part of this algorithm are the pointwise projections ProjK∆(.) and
ProjC∆(.) respectively. The projection of the primal variables is simple and can
be carried out in closed-form:

(ProjC∆(v̂))i,j,k =

{
max{0,min{1, v̂i,j,k}} if k > 1

1 else.

Algorithm 1. Primal-dual algorithm for solving (12)

1. Initialize
Set (v∆)0 ∈ C∆, (φ∆)0 ∈ K∆, (v̄)0 = (v∆)0, n = 0
Choose time-steps τ, σ > 0, τσ < 1

‖∇Σ‖2

2. Iterate
(φ∆)n+1 ← ProjK∆((φ∆)n + σ(∇Σ v̄n))

(v∆)n+1 ← ProjC∆((v∆)n − τ(∇TΣ(φ∆)n+1))

v̄n+1 ← 2(v∆)n+1 − (v∆)n
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The projections for the dual variables ProjK∆(.), although also point-wise, are
more complicated. The feasible set K∆ is defined point-wise via the intersection
of two convex sets. We experimented with different variants to incorporate these
constraints: Lagrange multipliers, solving the projection problem in each itera-
tion of the primal-dual algorithm using FISTA [19] (including a preconditioned
variant) and finally Dykstra‘s Projection algorithm [20]. Our experiments show
that Dykstra‘s algorithm provides the best performance for this type of problem
and is very light-weight, we therefore resort to this variant to incorporate the
dual constraints. The iterations of Dykstra‘s algorithm are shown in Algorithm 2,
where we set n = [wni,j,k,−1]T and c = λρi,j,k. In practice we run the algorithm

until the distances to both convex sets (|xn − yn|2 and |yn − xn+1|2) are below
a tolerance of 10−3 (which is typically achieved in under 10 iterations).

Algorithm 2. Algorithm for projecting onto the set K

1. Initialize
Set n = 0, x0 = φi,j,k, p0 = 0, q0 = 0

2. Iterate

yn ← (xn+pn)
max{1,|xn+pn|2}

pn+1 ← pn + xn − yn

xn+1 ←

{
yn + qn if 〈yn + qn, n〉 ≤ c
yn + qn − 〈y

n+qn,n〉−c
〈n,n〉 n else

qn+1 ← qn + yn − xn+1

2.2 Minimizing E1(w|u)
The subproblem E1(w|u) is a non-smooth convex optimization problem, which
can be solved using standard techniques. We will show how to cast this problem
in a saddle-point formulation and again apply the primal-dual algorithm [18].

The optimization problem reads

min
w

∫
Ω

|Dun+1 − w|Σ + α

∫
Ω

|Dw|Γ , (13)

where un+1 is given by the last solution of problem E2(u|w). Note that this
problem corresponds to denoising the gradients of un+1.

Using the definition divM z = div(M
1
2 z), the equivalent saddle-point formu-

lation is given by:

min
w

sup
‖p‖∞≤1
‖q‖∞≤1

−
∫
Ω

un+1 divΣ p dx−
∫
Ω

〈
w,Σ

1
2 p+ α divΓ q

〉
dx. (14)

Discretization of (14) follows analogously to the lifted problem: The two-
dimensional grid is given by

Ĝ∆ = {(i∆x, j∆y) : (0, 0) ≤ (i, j) < (Nx, Ny)} , (15)
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Algorithm 3. Primal-dual algorithm for solving (17)

1. Initialize
Set (u∆)0 = un+1, (w∆)0 = ∇Σun+1, (ū)0 = (u∆)0, (w̄)0 = (w∆)0

Set ((p∆)0)i,j = (0, 0)T , (q∆)i,j =

(
0 0
0 0

)
, n = 0

Choose time-steps τ, σ > 0, τσ < 1
‖A‖2 , where A =

(
∇Σ −I
0 DΓ

)
2. Iterate

(p∆)n+1 ← Proj‖p‖∞≤1((p∆)n + σ(∇Σ ūn − diag(Σ
1
2
i,j)w̄

n))

(q∆)n+1 ← Proj‖q‖∞≤1((q∆)n + σ(DΓ w̄n))

(u∆)n+1 ← ProjB((u∆)n − τ∇TΣ(p∆)n+1)

(w∆)n+1 ← (w∆)n − τ(DTΓ (q∆)n+1 − diag(Σ
1
2
i,j)(p

∆)n+1)

ūn+1 ← 2(u∆)n+1 − (u∆)n, w̄n+1 ← 2(w∆)n+1 − (w∆)n

where the tuple (i, j) again denotes a location in the grid, which also coincides
with the spatial coordinates of the lifted problem. The discrete saddle-point
problem can be written as

min
w∆

max
‖p∆‖∞≤1
‖q∆‖∞≤1

〈
∇Σun+1, p∆

〉
−
〈

diag(Σ
1
2 )w∆, p∆

〉
+ α

〈
DΓw∆, q∆

〉
, (16)

where the discrete differential operators ∇Σ and DΓ are again based on forward
differences with Neumann boundary conditions, i.e. we have

(∇Σu∆)i,j = Σ
1
2
i,j

(
(δxu

∆)i,j
(δyu

∆)i,j

)
(DΓw∆)i,j = Γ

1
2
i,j

(
(δxw

∆
1 )i,j (δyw

∆
2 )i,j

(δyw
∆
1 )i,j (δxw

∆
2 )i,j

)
.

In practice direct usage of (13) for the estimation of the second-order part
w may be problematic if the discretization step ∆t for the solution of the lifted
problem was chosen too coarsely. In this case discretization artifacts are prop-
agated from the lifted problem to problem (13), which may deteriorate the es-
timation of the second-order part, since in the context of this subproblem such
artifacts are merely additional edges.

To cope with this problem, we modify (16) to allow un+1 to slightly vary in
a neighborhood of half the discretization step ∆t of the lifted problem:

min
w∆,u∆∈B

max
‖p∆‖∞≤1
‖q∆‖∞≤1

〈
∇Σu∆ − diag(Σ

1
2
i,j)w

∆, p∆
〉

+ α
〈
DΓw∆, q∆

〉
, (17)

where B =
{
u∆ ∈ RNxNy : |(u∆)i,j − (un+1)i,j | ≤ ∆t/2

}
.

The iterations for optimizing (17) are shown in Algorithm 3. As before, we
again have to perform projections onto convex sets in each iteration of the algo-
rithm. The projections of the dual variables are given by (Proj‖r‖∞≤1(r))i,j =

ri,j
max{1,|ri,j |2} . For the primal variables u, the projection onto B can be computed

by clamping (u)i,j in the interval [(un+1)i,j − ∆t
2 , (u

n+1)i,j + ∆t
2 ].
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(a) Reference image

(b) Disparity - ITGV [3] (c) Disparity - Proposed

(d) Error - ITGV [3] (e) Error - Proposed

Fig. 3. Example from the KITTI benchmark for (b) ITGV [3] and (c) the proposed
algorithm. The corresponding error maps are shown in (d) and (e). Occluded pixels
are marked red in the error maps.

3 Application to Stereo

We show the effectiveness of our optimization approach on the application of
stereo matching. We use the variational model that was proposed in [3] as basis
for our experiments. This model introduced an image-driven TGV regularizer
and based the matching term on the Census Transform. The original formulation
used a warping procedure together with a coarse-to-fine scheme for the optimiza-
tion. Such approaches are commonly used in variational stereo and optical flow,
but are known to suffer from loss of detail due to the downsampling procedure.

Let us briefly explain, how the model [3] is realized in our framework: The
matching term is based on the ternary Census transform [21]. We denote the
ternary Census transform of the image I by C(I) . Then the matching cost for
disparity t is given by the Hamming distance [22] between the ternary Census
transforms of the warped matching image IL and the reference image IR, i.e.:

ρ̂(x, t) = ∆(C(IL(x+ [t, 0]T )), C(IR(x))), ∆(p, q) =
∑
pi 6=qi

1. (18)

In order to cope with small calibration errors and to improve robustness
with respect to the discretization, we employ a similar strategy to the Birchfeld-
Tomasi dissimilarity measure [23], i.e. we sample the cost in a neighborhood of
x and assign the minimum value as the final data term:

ρ(x, t) = min{(ρ̂(x, t), ρ̂(x+ a, t), ρ̂(x− a, t), ρ̂(x+ b, t), ρ̂(x− b, t)}, (19)
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where the offset vectors a and b are given by a = [∆x2 , 0]T and b = [0, ∆y2 ]T .

Image-driven regularization can be realized by setting Γ
1
2
i,j = I and Σ

1
2
i,j =

exp(−γ|∇IL|βi,j)nnT + n⊥n⊥
T

, where n = ( ∇IL|∇IL| )i,j and γ, β > 0.

Evaluation. We focus the evaluation on qualitative results on the task of stereo
estimation, instead of direct comparisons of final energies. A meaningful and fair
comparison in terms of final energies between our approach and the baseline [3] is
hardly possible, since the results of the baseline heavily depend on the parameters
of the coarse-to-fine strategy.

We first compare the proposed approach to the baseline algorithm using the
KITTI stereo benchmark [15]. This benchmark consists of 195 test images and
194 training images captured from an automotive platform. Groundtruth data
is given in the form of semi-dense disparity maps that were captured using a
laser sensor. We used the groundtruth that is provided with the training images
to tune the parameters of the model. For all experiments the discretization of
the disparity range was fixed to ∆t = 1px and Algorithm (A1) was run for 10
iterations. The optimization of each subproblem was run for 2000 iterations.

Figure 3 shows an example from the test set and compares the proposed
approach (Figure 3 (c)) to the baseline approach (Figure 3 (b)). We observe
that the proposed approach preserves more fine details and is better at handling
large disparities than the coarse-to-fine approach. This higher accuracy is also
reflected in the average number of bad pixels on the test set (Table 1), where the
proposed approach currently ranks second, while the baseline is ranked on the
7th place. Note, that the method shows a slightly worse inpainting capability,
when compared to the baseline, in areas, where there is no overlap between
the input images, which results in a slightly higher error if those regions are
considered in the evaluation (Avg-All in Table 1).

Our second evaluation uses a subset of 9 images from the Middlebury high-
resolution benchmark [16] (Teddy, Cones, Lamp2, Cloth3, Aloe, Art, Dolls, Baby3,
Rocks2 ). Exemplary results for this benchmark are shown in Figure 4. The av-
erage scores for different error thresholds and a comparison to state-of-the-art
methods is shown in Table 2. We again observe that the proposed method is
competitive to the other methods.

Table 1. Results on the KITTI-Benchmark. Columns Out-Noc and Out-All show the
average percentage of pixels with an error larger than 3px in non-occluded and all
regions, respectively. Columns Avg-Noc and Avg-All show the mean absolute errors.

Rank Method Out-Noc Out-All Avg-Noc Avg-All Runtime

1 PCBP [7] 4.13 % 5.45 % 0.9 px 1.2 px 5 min

2 Proposed 5.05 % 6.91 % 1.0 px 1.6 px 6 min

3 iSGM [24] 5.16 % 7.19 % 1.2 px 2.1 px 8s

7 ITGV [3] 6.31 % 7.40 % 1.3 px 1.5 px 7s
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Table 2. Error on the Middlebury high-resolution benchmark.

Method > 2 pixels > 3 pixels > 4 pixels > 5 pixels

PCBP [7] 2.8 % 2.4 % 2.1 % 2.0 %

Proposed 4.4 % 3.1 % 2.5 % 2.2 %

ELAS [25] 4.7 % 3.9 % 3.5 % 3.2 %

OCV-SGBM [26] 5.9 % 5.5 % 5.3 % 5.2 %

4 Conclusion

We presented an approach to approximately solve variational models with Total
Generalized Variation regularization and non-convex data terms. Our approach
alternates between solving a non-convex subproblem that can be solved globally
optimal using functional lifting, and solving a convex subproblem.

We demonstrated the benefit of our approach on a variational stereo model
that was previously solved using coarse-to-fine warping. Experiments on the
challenging KITTI stereo benchmark show that this alternating minimization
algorithm is able to significantly increase the performance of the model and
consequently provides state-of-the-art results.

For future work, we plan to extend our approach to non-convex variants of
TGV (i.e. truncated potentials). While we expect such regularization terms to be
stronger priors and a splitting is in principle still possible, the problem is much
harder to solve, because both of the resulting subproblems are non-convex.
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