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Abstract. In this paper a novel approach for estimating the three di-
mensional motion field of the visible world from stereo image sequences is
proposed. This approach combines dense variational optical flow estima-
tion, including spatial regularization, with Kalman filtering for temporal
smoothness and robustness. The result is a dense, robust, and accurate
reconstruction of the three-dimensional motion field of the current scene
that is computed in real-time. Parallel implementation on a GPU and
an FPGA yields a vision-system which is directly applicable in real-
world scenarios, like automotive driver assistance systems or in the field
of surveillance. Within this paper we systematically show that the pro-
posed algorithm is physically motivated and that it outperforms existing
approaches with respect to computation time and accuracy.

1 Introduction

Estimating the three-dimensional motion vector field from stereo image sequences
remains as one of the fundamental computational challenges and is a key task
in computer vision. Different variants of this problem arise in the estimation of
ego motion [1], object motion [2], human motion [3], and motion segmentation
[4]. Knowledge of the surrounding motion field is the basis for a wide range
of technical applications, e.g. in automotive driver assistance systems or in the
field of surveillance. Therefore, and especially in safety relevant applications,
robustness, density of information, accuracy as well as real-time capability are
of utmost importance.

Some approaches known from literature use sparse feature-based tracking
methods and increase the robustness by temporal integration using filters. Others
apply space-related regularizers for a dense computation from only two consec-
utive frames. In this paper, we combine such a dense variational approach on
the image domain with Kalman filters at every single pixel to establish temporal
smoothness of the dense three-dimensional motion field.

In this paper, we present a new algorithm called Dense6D, that estimates the
motion field by fusing dense stereo and optical flow information. A real world
example of such an estimate is shown in Fig. 1. An improvement in accuracy
and robustness with respect to standard approaches known from literature is
also achieved with Variational6D, which replaces the optical flow component
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Fig. 1. left: typical traffic scene. right: motion field, estimated by the Dense6D algo-
rithm proposed in this paper. The color encodes the velocity (from green to red) of the
observed points.

of Dense6D by a variational scene flow method. Throughout the paper, the
term scene flow will denote the three-dimensional motion field consisting of the
optical flow and the disparity change along the optical flow vectors between two
consecutive frames.

1.1 Related Work

Due to the importance of the problem, a lot of different approaches to image
based motion field estimation have been proposed in the last three decades. Most
of them can be classified into the following main strategies:

– model based approaches
– sparse feature tracking methods using multiple image frames
– dense scene flow computation from two consecutive frames

The estimation of motion vectors involves the reconstruction of the three dimen-
sional scene via stereo matching and the estimation of point correspondences
between two or more consecutive images. Both problems are classical ill-posed
problems in the sense that merely matching of similar intensities will typically
not give rise to a unique solution. The three mentioned strategies choose different
ways to overcome the ill-posedness.

The model based approaches, like in [3] or [2] use physically constrained object
or human models to make the problem well-posed; however, the need of a model
disqualifies the model based approaches in a large variety of situations.

The feature tracking and scene flow appraoches use regularization to make
the problem well-posed. This regularization is either formulated in the time
domain for the tracking of features in [5] or [6] or in the spatial domain, imposing
smoothness of the motion field between two consecutive frames like in [7] or [8].
In this paper we revisit both, feature tracking and dense scene flow computation,



584 C. Rabe et al.

and suggest the use of Kalman filters for every image pixel to reconstruct a dense
and robust three-dimensional motion field of the depicted scene.

Scene flow computation methods are mainly based on the classic optical flow
algorithm by Horn and Schunck in [9], where the flow field is computed as the
minimizer of an energy functional that assumes constant image intensities and
a smooth flow field. This framework has been improved in [10] to cope with
flow discontinuities and outliers and in [11] to cope with large flow vectors. In
recent years, several real-time optical flow methods have been proposed, e.g. in
[12],[13].

Joint motion and disparity estimation for the scene flow computation was in-
troduced in [14]. In [8] the motion and disparity estimation steps were decoupled
in order to achieve real-time capability without loosing accuracy.

On the other hand, the application of Kalman filters [15] in real-time motion
field estimation was proposed in [16] and later as 6D-Vision in [17], using the well-
known KLT-tracker [5] and a dense stereo disparity field as input. However, this
method only yields sparse information. To build a vision system which provides
a dense, robust and accurate motion field in real-time, we suggest to replace the
tracker by a dense variational optical or scene flow algorithm. Despite the compu-
tational complexity and the large volume of data, special computation schemes for
the filtering process, implemented onmodern graphicprocessingunits (GPUs), are
used to ensure real-time capability (25 Hz in our implementation).

1.2 Outline

In Chapter 2 we will shortly revisit some approaches to optical flow and scene
flow computation, which are then used as input for the filtering process. In Chap-
ter 3 we will introduce the concept of Kalman filters for motion estimation and
the novel dense filtered motion estimation approaches based on stereo, optical
flow and scene flow. Chapter 4 will experimentally demonstrate the new ap-
proaches and systematically evaluate the gain in robustness and accuracy over
existing methods. Chapter 5 concludes this contribution with a summary and
an outlook on future work.

2 Two-Frame Motion Field Estimation

2.1 Combination of Optical Flow and Stereo

For the estimation of the motion field of the environment, we consider the two
stereo image pairs I

{L,R}
{1,2} : Ω → R on the image domain Ω = {x} ⊂ R

2.
Throughout this paper, we will assume that the camera system is calibrated,
and the taken images are preprocessed by a rectification module that performs
a lens-correction and establishes a standard stereo configuration.

Having determined the optical flow u : Ω → R
2, an inverse transformation

together with known depth at both time instants can yield the three-dimensional
motion field information of actual interest.
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When searching the whole consecutives image for corresponding single gray
values, so that (with u ≡ u (x))

ρ(x, u) = I2 (x + u) − I1 (x) = 0 , (1)

this obviously leads to an ill-posed problem. In [9] Horn and Schunck proposed
to overcome this by minimizing a global energy functional on the whole image
domain, consisting of a data consistency term and a regularization term,

E [u] =
∫

Ω

⎧⎨
⎩λ |ρ (x, u (x))|n +

∑
i=x,y

|∇ui (x)|n
⎫⎬
⎭ dx (2)

with n = 2. The parameter λ ∈ R
+ weights between the data and the reg-

ularization. This method leads to dense, accurate results and yields real-time
performance on modern hardware.

The case n = 2 is quite simple to compute, but suffers from blurring effects
around flow edges and over-weights outliers. Therefore, we use the computation
method proposed by Wedel et al. in [18] based on [13], where n = 1 leads to
improved results. This method solves the two terms in Eq. (2) by introducing
an additional coupling term and an iterative solution scheme on a coarse-to-fine
grid. The data term part is solved directly point-wise by a thresholding step,
while the regularizing smoothness term is solved by a dual approach, proposed
by Chambolle in [19].

In our work, the dense semi-global-matching (SGM) method by Hirschmüller
[20] is used for the estimation of the disparity images d{1,2} : Ω → R

+ (see
Fig. 2). The algorithm is available on dedicated parallel hardware (FPGA).
Therefore, the disparity computation does not effect the real-time performance
of our motion field estimation in a negative way.

With the knowledge of the optical flow field u (x) between two consecutive
frames and both depth images Z{1,2} (x) ∼ 1/d{1,2} (x), the three-dimensional

Fig. 2. left: traffic scene with SGM stereo computation. The color encodes the distance
from near (red) to far (green). right: three-dimensional visualization of the correspond-
ing scene.
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motion field can be determined. However, this straight-forward differential ap-
proach usually leads to insufficient results, due to noisy depth measurements.

2.2 Variational Scene Flow

Noisy depth measurements lead to a noisy motion field estimation along the
optical rays. To reduce this noise, we use a global variational approach where
the disparity change is regularized together with the optical flow [8]. A decoupled
depth measurement is used for the first frame and yields the disparity field d1 (x),
related to the left image, while the disparity change ḋ : Ω → R is estimated via
a global optimization scheme together with the optical flow u. The functional
to minimize is defined as

E
[
u, ḋ

]
=

∫
Ω

⎧⎨
⎩R

(
u (x) , ḋ (x)

)
+

∑
i=x,y

|∇ui (x)| +
∣∣∣∇ḋ (x)

∣∣∣
⎫⎬
⎭dx (3)

with the data term

R
(
u, ḋ

)
= λL |ρL (u)| + λR

∣∣∣ρR

(
u, ḋ

)∣∣∣ + λ2

∣∣∣ρ2

(
u, ḋ

)∣∣∣ (4)

and the residuals (with d1 ≡ d1 (x) and the unity vector in x direction ex)

ρL (u) = IL
2 (x + u) − IL

1 (x) (5)

ρR

(
u, ḋ

)
= IR

2

(
x + u −

(
d1 + ḋ

)
ex

)
− IR

1 (x − d1ex) (6)

ρ2

(
u, ḋ

)
= IR

2

(
x + u −

(
d1 + ḋ

)
ex

)
− IL

2 (x + u) . (7)

For the numerical computation, the data term and the regularizations are cou-
pled by an additional term to establish an iterative solution scheme with a
coarse-to-fine approach. The data term can then be solved point-wise by imple-
menting |x| ≈ √

x2 + ε, ε 	 1, linearizing the residuals in Eqs. (5) - (7) and
performing gradient descend steps. The regularization terms in the optical flow
u as well as in the disparity change ḋ are solved by the former mentioned dual
approach. This method provides better results, compared to the approach with
optical flow and stereo, but demands higher computational costs.

3 Temporal Integration of the Motion Field

To increase the robustness and accuracy of the estimated motion field, we sug-
gest a temporal integration using Kalman filters. In this section, the underlying
Kalman filter model is explained in detail for the proposed Dense6D and Varia-
tional6D algorithms.
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3.1 Model

In our pinhole stereo camera system, the 3d structure of the observed scene is
immediately reconstructed by a stereo algorithm. In this configuration, the left
image point x = (x, y)� is the projection of a world point X̃ = (X, Y, Z, 1)�.
Expressed in homogeneous coordinates, this relation is given by

(
x y d 1

)� � Π · X̃ (8)

with the positive disparity d ≡ d (x). The extended projection matrix Π is given
as

Π =

⎛
⎜⎜⎝

fx 0 x0 0
0 fy y0 0
0 0 0 b · fx

0 0 1 0

⎞
⎟⎟⎠ ·

(
Rc tc
0� 1

)
(9)

with fx and fy as the focal lengths in pixel, (x0, y0)
� as the principal point

in pixel and b as the base width of the stereo camera system. The rotation
matrix Rc and the translation vector tc describe the extrinsic orientation of
the camera system to the world coordinate system. To determine the three-
dimensional world position for an observed image point x with known disparity
d, Eq. (8) has to be inverted.

Having established a correspondence over time for an observed image point by
an optical flow or feature tracking algorithm, the 3d motion can be calculated
directly from the reconstructed 3d points. However, such an approach suffers
heavily from the immanent measurement noise and thus does not yield robust
results. Therefore, we present here a method to estimate the 3d position and
3d motion of a point using a Kalman filter [15]. Due to the recursive nature of
the Kalman filter, the estimation is improved continuously with each measure-
ment, by updating the state vector and its associated covariance matrix. This
eliminates the need to save a history of measurements and is computationally

Fig. 3. left: Dense optical flow error distribution, right: SGM stereo error distribution,
both related to ground truth data from synthetic sequences
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highly efficient. Additionally, Kalman filters provide measurement uncertainties
which can be regarded when the motion field is evaluated for further applica-
tions. Looking at the error distributions of the input data shown in Fig. 3, the
application of the Kalman filter is justified.

The state vector of the Kalman filter is defined as ξ =
(
X, Y, Z, Ẋ, Ẏ , Ż

)�
,

the combination of the 3d position and the 3d velocity vector. The system model
describes the propagation of the state vector ξt of the previous time step t−1 to
the current one t and assumes a linear motion. It is given by the linear equation
system

ξ̃t =
(

Re Δt · Re

0 Re

)
ξt−1 +

(
te
0

)
(10)

with Re and te as the rotation and the translation components of the inverse
motion of the observer, and Δt as the time between both frames.

The measurement model of the Kalman filter describes the relation between
the measurement vector z = (x, y, d)� and the state vector ξ. Here, only the
position components of the state vector are directly measured, and the relation
between the measured projection z and the reconstructed 3d point is given by
Eq. (8). Since the measurement model must be formulated in the euclidean space
rather than the projective space, the measurement model is non-linear:

z̃ = w · (x y d 1
)� = Π · (X Y Z 1

)� (11)

z =
1
w

⎛
⎝1 0 0 0

0 1 0 0
0 0 1 0

⎞
⎠ · z̃ (12)

Therefore, extended Kalman filters have to be applied.

3.2 Filtered Tracks and Stereo: 6D-Vision

In [6], 2000 Kanade-Lucas-Tomasi (KLT) features are used to generate mea-
surements which are temporally integrated by Kalman filters with the model
equations mentioned previously. The current measurement vector zt is deter-
mined by

zt =
(

xt

dt (xt)

)
, xt = xt−1 + u (xt−1) (13)

with u (xt−1) as the optical flow related to the previous position xt−1 of the
feature, computed for example by the Lucas-Kanade method [5], and the corre-
sponding disparity dt(xt) at the new image position xt.

Note that xt−1 in Eq. (13) depicts the old measured image position at the
previous frame, not the projection of the filtered state ξt−1. That means the
image position of the features is only determined by the feature tracker, while
the filtering only influences the velocity and the disparity estimation. This way,
undesired low pass filtering effects of the Kalman filter are avoided. Together
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with a multiple-filter approach, that reduces the settling time of a filter by
running multiple differently initialized filters in parallel, the 6D-Vision motion
field estimation method provides robust results in real-time, even in real world
scenarios.

3.3 Filtered Dense Optical Flow and Stereo: Dense6D

The information provided by the 6D-Vision approach is only sparse. However,
to utilize as much information as possible from a stereo image sequence, we
replace the feature tracker in the measurement step by a dense optical flow algo-
rithm (Dense6D). Modern parallel hardware, an NVIDIA graphics adapter with
CUDA capability in our implementation, together with sophisticated numerical
computation schemes at the filtering process, enables us to assign Kalman filters
to every single pixel of the input image sequence (of the size 640 px × 480 px)
and to apply them in real-time (at 25 Hz). For numerical stability, the imple-
mentation is based on the well-known U-D factorization proposed by Bierman
et al. [21]. A code generator takes advantage of the sparse measurement matrix
and produces the actual CUDA implementation.

At the beginning of the computation step from image It−1 to It, every pixel
xt−1 on the discrete pixel grid is associated with one Kalman filter Kt−1 (xt−1)
and one sub-pixel component st−1 (xt−1)) After having determined the dense
optical flow field from It−1 to It, and after having updated the filters during
the filtering step, Kt−1 (xt−1) → Kt (xt−1), the updated Kalman filter field
Kt (xt−1) must be warped along the sub-pixel accurate optical flow u (xt−1), to
receive the filter field Kt (xt) on the new discrete pixel positions xt. The updates
of the positions and the sub-pixel components are given by

xt = 
xt−1 + st−1 (xt−1) + u (xt−1) + 0.5 px� (14)
st (xt) = [st−1 (xt−1) + u (xt−1) + 0.5 px] mod 1 px − 0.5 px (15)

At every time step the sub-pixel component is updated due to the sub-pixel
accurate optical flow, which is always taken from the discrete position of the
pixel grid, since exact optical flow information is only available at these points.

During the resampling step it is possible that not every pixel xt of the current
image is referred by a flow vector u (xt−1). In this case a new filter has to
be created with predefined initial values and associated with the empty pixel.
Another option is to initialize the filter based on the states and the covariances
of the surrounding filters.

On the other hand, if one pixel xt of the current image is referred by more
than one flow vectors u (xt−1), one either has to decide which one of the filters
will be used with the corresponding pixel for the next frame, or has to combine
them to a new one. In this case, the covariances of the concurring filters can
weight between them. It is also reasonable to use the depth information, so that
the filter with the smallest Z value in the filter state can survive, while the other
ones are deleted.

For performance reasons, our implementation does not perform such an ex-
tended analysis, but generates the target image on a first-come first-serve basis.
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3.4 Filtered Variational Scene Flow

If the dense optical flow method is replaced by a variational scene flow scheme
as proposed in Sec. 2.2, the estimation of the disparity change ḋ (x) from Eq.
(3) can be used as an additional measurement. In this case, the measurement
vector for the Kalman filter is

zt =

⎛
⎝ xt

dt (xt)
dt−1 (xt−1) + ḋ (xt−1)

⎞
⎠ , (16)

while the new matrix

H =

⎛
⎜⎜⎜⎜⎝

fx 0 x0 0
0 fy y0 0
0 0 0 b · fx

0 0 0 b · fx

0 0 1 0

⎞
⎟⎟⎟⎟⎠ ·

(
Rc tc

0� 1

)
(17)

replaces the extended projection matrix Π in Eq. (11). The Kalman filter weights
between the two disparity measurements regarding the measurement covariance
matrix.

4 Evaluation

In our experiments, we compare the following motion field estimation techniques
described in this paper:

1. Differential motion field estimation from optical flow and stereo (Sec. 2.1)
2. Variational scene flow from two frames (Sec. 2.2)
3. the Kalman filtered method, using dense optical flow and stereo (Dense6D,

introduced in Sec. 3.3)
4. the filtered variational scene flow approach (Variational6D, introduced in

Sec. 3.4).

4.1 Evaluation with Ground Truth Information

In the first experimental part, we analyze our vision system on a synthetic stereo
image sequence rendered with Povray [22]. The experiments are conducted on a
sequence with an image resolution of 640 px× 480 px× 12 bit and 150 frames.

The evaluation platform consists of an Intel Quad-Core 3 GHz processor and
an NVIDIA GeForce 285 GTX graphics adapter. On this configuration, the dense
optical flow calculation is performed in 24 ms, whereas the dense scene flow
computation takes 65 ms. The 640× 480 Kalman filters are processed in 12 ms.
This enables us to achieve a framerate of 25 Hz for the Dense6D algorithm and
about 10 Hz for the Variational6D approach.

In our exemplary sequence, the camera moves through an artificial traffic scene
containing crossing and turning vehicles. Fig. 4 shows the motion vector fields for
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(a) Ground truth

(b) Direct combination of optical flow and stereo

(c) Scene flow

(d) Dense6D

(e) Variational6D

Fig. 4. Estimated motion field of the described methods. The color encodes the ve-
locity: green encodes 0.0 m/s, red encodes 8.0 m/s. The vectors show the predicted 3d
position in 0.250 s (Figures (a), (d), (e)) resp. 0.050 s (Figures (b), (c)).



592 C. Rabe et al.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Fr
eq

ue
nc

y 
[1

/m
]

Endpoint Error [m]

Direct

Scene Flow

Dense6D

Variational6D

(a) Position component Z

0

0.005

0.01

0.015

0.02

0.025

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fr
eq

ue
nc

y 
[1

/(m
/s

)]

Endpoint Error [m/s]

Direct

Scene Flow

Dense6D

Variational6D

(b) Velocity component Ẋ
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Fig. 5. Error distributions of the Z position and the velocity components calculated
from the direct combination of optical flow and stereo (gray), the scene flow (black),
the Dense6D method (red), and the Variational6D method (blue)

Table 1. Median error (ME) and root mean square error (RMS) of the Z position and
velocity components of the four evaluated methods

Z [m] Ẋ [m/s] Ẏ [m/s] Ż [m/s]

Method ME RMS ME RMS ME RMS ME RMS

Direct 0.0010 2.749 0.0462 42.0093 0.0004 15.370 0.4374 141.442

Scene Flow 0.0080 2.807 0.0179 22.7186 0.0172 11.470 -0.1173 67.520

Dense6D 0.0104 1.068 -0.0065 0.3623 -0.0044 0.339 0.0107 2.538

Variational6D 0.0085 1.282 -0.0007 0.3712 -0.0040 0.319 -0.0044 2.537

one frame of the sequence. The left vehicle performs a turning maneuver, while
the remaining two cars are moving linearly. The vehicle in the middle moves at
a constant speed, whereas the car coming from the right performs a constant
deceleration. Obviously, the Dense6D and Variational6D algorithms outperform
the differential approaches.
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Since the three-dimensional ground truth position and motion fields are avail-
able, the error distributions for Z, Ẋ, Ẏ and Ż can be determined. Accumulated
over the whole image Ω and the whole sequence [0, T ], the error distributions are
shown in Fig. 5. In addition, the median (ME) of the error distribution and the
root mean squared (RMS) error is computed for the quantities Z, Ẋ, Ẏ and Ż.

One can clearly see from Fig. 5 and Tab. 1 that the proposed Dense6D algo-
rithm outperformes the scene flow computation method with respect to accuracy
and robustness.

Overall, we are not able to detect significant advantages regarding the accu-
racy of one of the new proposed algorithms against the other one in this paper.
Therefore, due to the less complex computation scheme of the Dense6D algo-
rithm against Variational6D, we suggest to use the first one in future motion
field estimation tasks.

However, as one can see from the results presented in this chapter, both new
approaches outperform dense real-time methods known from literature by far.

Fig. 6. left: typical traffic scene. right: corresponding 3d motion field, estimated by the
Dense6D algorithm proposed in this paper. The color encodes the velocity (from green
to red) of the observed points.

4.2 Real World Results

The two proposed new estimation methods are directly applicable in real-world
scenarios, being able to build the basis for robust reliable object detection and
segmentation. Fig. 6 shows the estimated motion vector field of a turning vehicle
at a distance of about 30 m. Here, the observer was moving at a speed of about
3 m/s. In Fig. 7, the motion field of multiple pedestrians is shown. Here, the
observer was also moving at about 1 m/s, including a strong turning maneuver.
For visualization purposes, the motion of the camera was compensated using
inertial sensor data. Dense6D is currently implemented in our research car and
can become a key element in future safety driver assistance systems.
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Fig. 7. left: typical traffic scene. right: corresponding 3d motion field, estimated by the
Dense6D algorithm proposed in this paper. The color encodes the velocity (from green
to red) of the observed points.

5 Conclusions

In this paper, we have proposed two approaches to dense, robust, and accurate
motion field estimation in real-time. We have combined dense variational optical
or scene flow estimation techniques with Kalman filters, assuming a linear motion
model. Evaluation of the relevant error quantities compared to synthetic ground
truth data show that these approaches lead to far better results in real-time than
known by literature so far. This is apparently similar in real world scenarios.

The next future work will include a multi-filter implementation on the GPU
and the consideration of flow uncertainties in the filtering process.
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