
High-Performance Long Range Obstacle Detection Using Stereo Vision

Peter Pinggera1,2, Uwe Franke1, Rudolf Mester2,3

Abstract— Reliable detection of obstacles at long range is
crucial for the timely response to hazards by fast-moving
safety-critical platforms like autonomous cars. We present a
novel method for the joint detection and localization of distant
obstacles using a stereo vision system on a moving platform. The
approach is applicable to both static and moving obstacles and
pushes the limits of detection performance as well as localization
accuracy.

The proposed detection algorithm is based on sound statisti-
cal tests using local geometric criteria which implicitly consider
non-flat ground surfaces. To achieve maximum performance, it
operates directly on image data instead of precomputed stereo
disparity maps.

A careful experimental evaluation on several datasets shows
excellent detection performance and localization accuracy up
to very large distances, even for small obstacles.

We demonstrate a parallel implementation of the proposed
system on a GPU that executes at real-time speeds.

I. INTRODUCTION

Obstacle detection represents a fundamental problem in
the areas of mobile robotics and autonomous vehicles and
has been in the focus of active research for decades. It
forms the basis of many kinds of high-level tasks such as
situation analysis, collision avoidance and path planning.
Various sensor types can be applied to the problem, from
passive ones like cameras to active ones such as radar
or lidar sensors. While active range sensors offer supreme
accuracy in terms of point-wise distance and velocity mea-
surement, they usually suffer from low resolution and high
cost. Cameras, on the other hand, provide very high spatial
resolution at relatively low cost. Stereo or multi-camera
setups allow for the computation of dense range maps of
the observed environment, making them increasingly popular
for application in mobile robots and autonomous vehicles.
Unfortunately, an inherent drawback of stereo vision systems
is the comparatively low accuracy of distance measurements,
especially at long ranges. However, specifically this accuracy
at maximum range is crucial for timely obstacle detection
and response on fast-moving and safety-critical platforms,
e.g. autonomous cars.

In this work, we present an approach that pushes the limits
of both detection performance and longitudinal localization
accuracy of distant generic obstacles using stereo vision.
Our system performs a patch-wise binary classification into
either free-space or obstacle image points and simultaneously
yields a corresponding estimate of each obstacle position.

1Environment Perception, Daimler R&D, Sindelfingen, Germany
{peter.pinggera,uwe.franke}@daimler.com

2VSI Lab, Computer Science Dept., Goethe Univ., Frankfurt, Germany
mester@vsi.cs.uni-frankfurt.de

3Computer Vision Laboratory, E.E. Dept., Linköping University, Sweden

Fig. 1. Example of obstacles detected by the proposed system at distances
between 50 and 200 m (top, red), close-up of the resulting distance estimates
(red: close, green: far) and corresponding bird’s eye view (right)

Only reliable obstacle detections representing a certain con-
fidence remain in the system output. Fig. 1 shows an example
of a highway driving scene featuring relevant objects up to
a distance of 200 m, all of which are successfully detected
and located by our system.

The proposed method employs statistical hypothesis tests
based on local plane models which implicitly allow for non-
flat ground surfaces. Due to the generic geometric formu-
lation it does not suffer from restrictions such as a limited
set of previously learned obstacle classes. Furthermore, de-
tection performance and localization accuracy are optimized
by operating directly on the input image data instead of
precomputed stereo disparity maps. Independent processing
of individual image patches enables massive parallelization
and we demonstrate real-time execution using a GPU imple-
mentation. Finally, the approach is not restricted to stereo
but is readily extendable to calibrated multi-camera setups.

The remainder of this paper is structured as follows: We
discuss related work in Sect. II, followed by a description of
the proposed approach in Sect. III. A detailed evaluation of
the system is presented in Sect. IV, including a quantitative
analysis of detection performance, accuracy of longitudinal
localization and runtime as well as various qualitative results
from challenging autonomous driving scenarios.

II. RELATED WORK

The amount of literature on obstacle detection is vast
and spans multiple application areas. We focus on camera-
based methods for the detection and localization of generic
obstacles in 3D space, in particular by using stereo setups
on autonomous ground vehicles.

Many obstacle detection approaches are based on a so-
called flat-world-assumption, modeling free-space or ground
as a single planar surface and characterizing obstacles by



their height-over-ground [1], [2], [3]. Geometric deviations
from the reference plane can be estimated either from a
precomputed point cloud or directly from image data [4].
However, the resulting detection performance strongly de-
pends on the accuracy of the ground plane parameters as well
as the validity of such a simple model. Consequently, more
sophisticated ground profile models have been introduced,
from piece-wise planar longitudinal profiles [5] to clothoids
[6] and splines [7].

The recent survey in [8] presents an overview of several
stereo-based obstacle detection approaches that have proven
to perform very well in practice. The methods are grouped
into different obstacle representation categories and include
Stixels [9], [10], Digital Elevation Maps (DEM) [11] and ge-
ometric point clusters [12], [13]. Notably, all of the methods
rely on precomputed stereo disparity maps.

The Stixel algorithm distinguishes between a global
ground surface model and a set of vertical obstacle segments
of varying height. In this way a dense, compact and robust
representation of the 3D scene is provided. The approach of
[11] also produces a dense scene representation, but uses a
DEM in combination with a quadratic ground model to detect
and represent different types of obstacles. In [12] the geo-
metric relation between pairs of 3D points is used to detect
and cluster obstacle points. This point-wise representation is
most similar to the one presented in this paper.

The above methods are designed for robust generic obsta-
cle detection based on geometric criteria and work best in
close- to medium range applications. Detection performance
and localization accuracy drop quickly with increasing dis-
tance. In contrast, dedicated appearance-based detectors for
specific object classes, e.g. vehicles, perform well even at
large distances [14], [15]. Object stereo measurements of
the detected objects can then be optimized by appropriate
algorithms [16].

The recent work of [17] combines the generic Stixel rep-
resentation with dedicated object detectors, thereby boosting
the detection range for known object classes compared to the
traditional Stixel algorithm. We select this method to serve
as a baseline during our experimental evaluation.

Finally, impressive performance can be achieved using
custom sensor configurations, such as the trinocular large-
baseline tele-stereo setup shown in [18]. In contrast, the sys-
tem presented here uses general-purpose stereo cameras only.
A corresponding increase in performance can be expected by
the straightforward extension to a trinocular setup.

III. APPROACH

We formulate the obstacle detection task as a statistical
hypothesis testing problem. Independent tests are performed
on small local patches distributed across the input images.
Free-space is represented by the null hypothesis Hf , while
obstacles correspond to the alternative hypothesis Ho. The
hypotheses are characterized by constraints on the orienta-
tions of local 3D plane models. Each plane is defined by
a parameter vector ~θ holding the normal vector ~n and the
normal distance d from the origin: ~θ = (nX , nY , nZ , d)
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Fig. 2. The cones defined by ϕ̃f and ϕ̃o constrain the permitted plane
normal orientations of the free-space and obstacle hypothesis models. The
Z axis represents the optical axis of the left camera

In contrast to common global ground or obstacle models,
the parameters of each individual local plane are allowed
to vary within certain ranges around a hypothesis reference
model. Accordingly, the parameter spaces of Hf and Ho
are constrained by the angles ϕ̃f and ϕ̃o, which define the
maximum allowed deviation of the respective plane normals
from their reference orientations. We set the reference values
to be the Y and Z axes of the camera coordinate system, cor-
responding to a simple flat-ground / fronto-parallel obstacle
reference model (see Fig. 2). The angles ϕ̃f and ϕ̃o can be
set according to the expected shape of traversable surfaces
and obstacles, respectively.

A. Generalized Likelihood Ratio Test

In order to avoid a loss in performance by intermediate
processing steps, we define a test statistic based directly on
a statistical model of the input image data. Unfortunately, the
design of a likelihood ratio test yielding a provably optimal
detector would require knowledge of the full PDFs of the
data model under Hf and Ho [19].

Instead we make use of the Generalized Likelihood Ratio
Test (GLRT), which offers no general optimality guarantees
but has been shown to perform well in practice [20].

For each hypothesis Hi = H{f,o} the GLRT replaces
the unknown parameters ~θi by their Maximum Likelihood
Estimates (MLEs) ~̂θi, assuming the respective hypothesis to
be true. We then decide for Ho if

L(~I) =
p(~I; ~̂θo,Ho)

p(~I; ~̂θf ,Hf )
> γ, (1)

or equivalently if

ln
(
p(~I; ~̂θo,Ho)

)
− ln

(
p(~I; ~̂θf ,Hf )

)
> ln (γ) , (2)

where the likelihood ratio L(~I) represents the test statistic
and ~I is the grey-scale data vector of the stereo image pair.

Note that for patches classified as obstacle, the MLE ~̂θo
implicitly provides an optimized estimate of the obstacle
position in 3D space.

For nested parameter models it is possible to determine
the decision threshold γ and the corresponding detection
performance immediately, as L(~I) can be shown to be
asymptotically χ2 distributed [20]. However, the parameter



spaces of our models are disjoint by design and we determine
the optimal value of γ from an empirical analysis of the
detection performance on relevant data (see Sect. IV-B).

B. Data Model

We formulate a statistical image formation model to define
the likelihood terms in (1). The discrete left and right image
patch values Il(~x) and Ir(~x) are considered as noisy samples
of the observed continuous image signal f at position ~x. The
terms αl(~x) and αr(~x) model a potential local intensity bias
and η(~x) represents samples from a noise distribution with
zero mean and an assumed variance σ2:

Il(~x) = f(~x) + αl(~x) + η(~x) (3)

Ir

(
W (~x, ~θ)

)
= f(~x) + αr(~x) + η(~x). (4)

The warp W transforms the image coordinates ~x from the
left to the right image, according to the plane model of the
true hypothesis and the camera parameters P = K [R |~t ].
For the used models the warp represents a multiplication by
the plane-induced homography

H = K

(
R− 1

d
~t~nT

)
K−1. (5)

First, to compensate for a potential local bias, the mean
intensity for each considered patch is removed. Treating all
pixels in the patch area Ω as i.i.d. samples, we get from (4):

ln
(
p(~I; ~θi,Hi)

)
=
∑
~x∈Ω

C1 − C2 · ρ
(
Ir

(
W (~x, ~θi)

)
− f(~x)

)
,

(6)

where C1 and C2 are constants and ρ represents the char-
acteristic loss function of the assumed noise model, e.g.
quadratic for a Gaussian or the L1 norm for a Laplacian
distribution.

Finding the MLE of the parameter values then corresponds
to the bound-constrained non-linear optimization problem

~̂θi ← arg min
~θi

(
− ln

(
p(~I; ~θi,Hi)

))
s.t. |ϕi| ≤ ϕ̃i. (7)

C. Parameter Optimization

We approach the bound-constrained non-linear parameter
optimization problem of (7) using a modified trust region
algorithm [21]. To enforce the constraints during the iterative
optimization procedure, a basic trial step method is em-
ployed. Parameter steps resulting in infeasible configurations
are rejected and the step size adapted appropriately for the
subsequent iteration. In our experiments this simple method
showed similar performance but faster execution than a
variant of the more involved optimization approach of [22].

The target function derivatives necessary for optimization
can be determined analytically, but results are omitted for
lack of space. Similar formulations can be found in [23].

Since finding the global optimum of the parameter values
cannot be guaranteed, suitable initialization is necessary. We
initialize the free-space models from a coarse global ground

plane estimate and obstacles from fronto-parallel plane mod-
els at a certain distance. The required inital distance values
can be extracted e.g. from a coarse disparity map.

D. Joint Signal Estimation

Due to the symmetric formulation of the data model,
optimizing (7) involves the unknown signal f . We apply an
approach as in [16] to optimize the parameter vector and
estimate f at the same time. The unknown signal is simply
computed as the mean of the correspondingly aligned input
images after each update of ~̂θi.

E. Verification

After the hypothesis test has been completed successfully,
the pixel-wise residuals for the winning hypothesis are
checked for consistency with the assumed image formation
model. To this end, the sample mean and variance as well
as the number of outlier pixels are analyzed.

Additionally, patches where the parameter constraints re-
sult in invalid solutions are discarded. This can occur due
to our initialization method, e.g. for points high above the
horizon that cannot be reached by the free-space model.

F. Patch Prefiltering

To ensure reliable results and well-conditioned systems
as well as to avoid unnecessary computations, the initial
set of patches is filtered prior to testing. Homogeneous
image patches, i.e. patches with insufficient image texture
are removed using a basic interest operator based on the
horizontal image gradient.

G. Parallel Implementation

Since all tested image patches are processed indepen-
dently, the described approach lends itself to massive paral-
lelization. Thus, we implement our bound-constrained non-
linear optimization algorithm on a GPU using the NVIDIA
CUDA framework, enabling real-time execution.

IV. RESULTS AND ANALYSIS

A. Experimental Setup and Data

First, in Sect. IV-B we perform a quantitative evaluation
of detection performance on the dataset of [17]. The dataset
consists of 2,000 frames of manually labeled stereo images,
taken from a test car in a highway scenario. Relevant
obstacles are represented by other traffic participants. Non-
occluded vehicles up to distances of more than 300 m are
labeled with pixel-accuracy in every frame, every 10th frame
also includes a pixel-wise free-space labeling. For evaluation,
we directly analyze the patch-wise coverage of ground truth
objects, i.e. the number of correct patch responses per object.

Furthermore, we use the dataset and evaluation framework
of [16] to analyze the accuracy of estimated longitudinal
obstacle positions in Sect. IV-C. The data consist of ap-
proximately 70,000 frames of stereo images, also taken in
a highway setting. In the existing framework, individual
vehicles at distances between 50 and 160 m are detected



and tracked based on appearance cues and stereo measure-
ments. For each vehicle, we compute an associated distance
measurement using a robust mean of the center positions of
all corresponding obstacle patch detections. A long range
radar sensor serves as ground truth for the resulting object
distances.

Both datasets use a stereo setup with a baseline of
38 cm and a focal length of 1240 pixels, with spatial and
radiometric resolutions of 1024×440 pixels and 12 bits.
Distance estimates for initialization are computed using the
approach of [24].

Finally, in Sect. IV-D we qualitatively evaluate the
detection performance of our approach on a set of
particularly challenging obstacles. Detecting even smallest
objects turns out to be critical to fully autonomous driving
functionality. Here we use a camera system with a resolution
of 2048×1024 pixels, a focal length of 2270 pixels and a
baseline of 21 cm.

Note that for many practical obstacle detection scenarios
it might be unnecessary to optimize the full parameter vector
~θ. For our experiments, we reduce the number of free
parameters by setting nX = 0, which preserves sufficient
flexibility for the considered scenarios. Only for extreme
vehicle roll angles or off-road terrain it might be necessary
to optimize the full parameter vector.

The exact values of the maximum angles defining the
hypothesis parameter spaces turn out not to be too critical in
practice. We set ϕ̃f = ϕ̃o = 30◦ (cf. Fig. 2).

To formulate the data model (Sect. III-B), we use a
robustified Gaussian noise model by defining ρ as the Huber
norm with an outlier threshold of 3σ. The variance σ2

is estimated on test data from samples of correct hypotheses.

In our experiments we also consider different subsampling
factors k. At k = 1, the overlapping patches are placed at
every image pixel, while k = 2 uses only every second
image line and column, etc. Naturally, this reduces the
absolute number of possible patch detections but improves
computational efficiency.

B. Detection Performance

1) Patch-Based Performance: In the first step, we deter-
mine a suitable operating point regarding the GLRT threshold
γ as well as the used patch size. To this end, we analyze the
Receiver Operating Characteristics (ROC) of three different
patch sizes over multiple values of γ (see Fig. 3). We set
k = 2 and consider all patches beyond a distance of 30 m.

As can be seen in Fig. 3, using too small patches causes a
significant increase in the number of false positives. Too large
patches, on the other hand, limit the achievable true positive
rate irrespective of γ, since they tend to include an excess
of background pixels around small objects and thus fail the
verification step. Overall, the patch size should be chosen
based on expected obstacle sizes and could further be scaled
adaptively according to an estimate of the scene layout. As
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Fig. 3. ROC curve of patch detections for different patch sizes. The selected
operating point is marked by a black circle

a suitable trade-off in the following experiments, we select
a constant size of 15×11 pixels at a false positive rate of
1.5·10-3/patch. While the true positive rate of 0.6 at this point
might appear relatively low, note that this represents only
the detection rate for single patches beyond 30 m and also
considers patches which were rejected during the verification
step, representing neither Hf nor Ho.

Above the selected γ, most remaining false positives
represent border artifacts around true obstacles, due to the
necessary patch size, or objects like roadside tufts of grass.

Fig. 1 and Fig. 6 show sample images of the test dataset,
evaluated at k = 2 with patch detections overlayed in red
and distance estimates color coded from red (close) to dark
green (far). The corresponding bird’s eye views illustrate
the obtained localization accuracy up to large distances.

2) Object-Based Performance: Using the selected
operating point, detection performance on an object level
can be analyzed. Fig. 4 displays the overall object detection
rate depending on a given threshold, i.e. on the number
of correct patch detections per ground truth object. As a
state-of-the-art baseline we use the upper limits of the results
from [17], including the traditional Stixel algorithm [10]
and Stixels enhanced by appearance-based vehicle detector
responses [17]. Notably, our generic approach outperforms
even the combined Stixel and detector approach up to a
threshold of 20 detections per object for low subsampling
factors, and up to a threshold of 5 detections for higher k.

Additionally, we analyze the average number of patch
detections depending on the absolute object distance (see
Fig. 5). Since the ground truth does not include distance
measurements, we use distances estimated directly from the
corresponding patch detections. It can be seen that even
for k = 3 and k = 4 we achieve an average of more
than 10 patch detections per object up to a distance of 250
m. However, for such large distances the analysis actually
benefits from several trucks occuring in the dataset, which
are detected at much larger distances than cars.

C. Accuracy of Obstacle Position Estimates
To assess the accuracy of the estimated longitudinal ob-

stacle positions, we follow [16] and consider the absolute
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Fig. 5. Average number of patch detections per detected object, depending
on its estimated absolute distance

stereo disparity error εd and its variation over time ∇εd.
The estimator Sn [25] provides robust estimates of the
corresponding standard deviations. By transforming the 3D
patch center positions into respective disparity values and
computing the interquartile mean over all detections per
object, we achieve disparity error and temporal variation
scales of 1/10 and 1/20 pixel, respectively (see Table I).
Notably, this is on par with the limits presented in [16].

D. Detection of Small Generic Obstacles

For the last set of experiments on small generic obstacles,
the patch size and subsampling rate are adapted to the
modified camera setup, using a size of 21×17 pixels and
k = 4. Fig. 7 shows example results for the considered
obstacles, including a child-sized dummy, a bicycle lying on
its side, and a dirt bucket. Our system is able to consistently
detect and locate the bicycle and the bucket at a distance of
100 m, followed by the dummy at approximately 70 m.

TABLE I
SCALE ESTIMATES OF THE ACHIEVED OBJECT STEREO DISPARITY

ERROR εd AND THE TEMPORAL DISPARITY ERROR VARIATION ∇εd

Sn(εd) [px] Sn(∇εd) [px]

0.096 0.056

TABLE II
AVERAGE NUMBER OF OPTIMIZED MODELS AND CORRESPONDING

RUNTIMES PER FRAME (PATCH SIZE 15×11)

Subsampling k 1 2 3 4

Number of Models 100,000 25,000 12,000 6,000
Runtime tavg [ms] 400 100 60 40

E. Runtimes

The optimization of the hypothesis model parameters for
each patch (see Sect. III-C) is the computationally most
expensive step and is performed on a NVIDIA GeForce
GTX TITAN GPU. Consequently, depending on the chosen
subsampling factor k and patch size, rates of up to 20 frames
per second are obtained. Approximate overall runtimes per
full image of the used highway data are shown in Table II.

V. CONCLUSIONS

In this work, we present a novel method for the joint
detection and localization of distant obstacles using a stereo
vision system on a moving platform. The proposed algorithm
is based on statistical hypothesis tests using local geometric
criteria and can implicitly handle non-flat ground surfaces.
It operates directly on image data, leading to excellent
detection performance and localization accuracy up to large
distances. Careful experimental evaluation shows consistent
detections, even of smallest obstacles. Our generic approach
even manages to outperform systems that leverage dedicated
appearance-based detectors of known object classes. Real-
time execution is obtained by massive parallelization on a
GPU. Future work includes integration into a higher-level
object reasoning framework.
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