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Abstract

Dense 3D data as delivered by stereo vision systems, modern laser scanners or time-
of-flight cameras such as PMD is a key element for 3D scene understanding. Real-time
high-level vision systems require a compact and explicit representation of that data which
allows for efficient attention control, object detection, and reasoning.

Because man-made environments are dominated by planar horizontal and vertical
surfaces we approximate the three dimensional scenery by using sets of thin planar rect-
angles called Stixels. This medium level representation serves as input for further pro-
cessing steps and applications. Using this novel representation those are not required to
process the large amounts of raw 3D data individually.

This reconstruction is addressed by means of a unified probabilistic approach. Dy-
namic programming allows to incorporate real-world constraints such as perspective or-
dering and delivers an optimal segmentation with respect to freespace and obstacle in-
formation. We present results for both stereo vision data and laser data. The real-time
capable approach can also be used to fuse the information of multiple data sources.

1 Introduction
Recent progress in stereo vision allows for energy-efficient FPGA and ASIC hardware so-
lutions that compute high-quality dense stereo depth maps in real-time. This raises general
demands for new processing schemes, since applications originating from GIS, robotics, or
driver assistance often can not afford to evaluate every single depth measurement individu-
ally. They ask for a medium level representation that allows structured access to the scene
data independent of the particular application without neither being too specific nor too gen-
eralizing.

The geometry in man-made environments is dominated by two basic types: Horizontal
and vertical planar surfaces, a characteristic increasingly exploited for 3D reconstruction and
object modeling. While horizontal surfaces generally correspond to the ground, i.e. roads,
sidewalks, or soil, the vertical ones relate to objects, such as solid infrastructure, pedestrians,
or cars. Due to their inherent orthogonality, these two models render as very distinctive.

Recently, we have presented a medium level representation called the “Stixel World”
with the objective to efficiently model urban environments with respect to freespace and ob-
stacle information [2]. The proposed Stixel computation scheme is a bottom-up approach
that cascades multiple independent steps until the final Stixel representation is extracted.
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Figure 1: The multi-layer Stixel World result as output of the optimization. The captured scene is
segmented into planar Stixel segments that correspond to either ground or object. The color represents
the distance to the obstacle with red being close and green far away. Grey pixels belong to the ground
surface.

Even though these individual steps use global optimization, the assembled result is not opti-
mal. Thus, we extend that idea to a probabilistic approach that permits the extraction of the
Stixel representation by means of a unified global optimal scheme.

In contrast our previous work, objects are allowed to be located at multiple depths in
a column. Additionally, distinctive prior knowledge is incorporated into the reconstruction
process in order to be able to extract even more detailed information, such as exemplified in
Figure 1.

The remainder of this paper is structured as follows: Section 2 briefly points out related
work. The Stixel World model is discussed and extended accordingly in Section 3 for which
Section 4 offers a Bayesian formulation of the optimal Stixel generation task. Experimental
results are presented in Section 5, while Section 6 concludes this contribution.

2 Related Work
Mapping depth information to local 2D or 3D occupancy grids [5, 18, 24] or digital elevation
maps [14] is common practice in order to model the likelihood of the environment to be
occupied. Such information is utilized further, i.e. for extracting scene attributes such as
freespace [1, 12] and obstacle information [20], the location of curbs and sidewalks [19, 22]
and various other scene and application relevant features.

A recurring and central key aspect is to explicitly use a priori scene knowledge for 3D
reconstruction. The majority of structures in man-made environments consist of piecewise
smooth and planar surfaces that have either horizontal or vertical orientation. Such prior
knowledge should be incorporated early within the reconstruction process, e.g. as done
with semi-global matching (SGM) stereo in [10]. SGM works in a dynamic program-
ming [3] (DP) fashion, where slight disparity changes are penalized with rather small and
constant costs to prefer the reconstruction of slanted surfaces. A stereo scheme that mas-
sively leverages three-dimensional surface planarity is plane sweeping stereo [4]. An exten-
sion for that approach has been presented by Gallup et al. [7]. The authors incorporate prior
knowledge about the location and orientation of planes into the reconstruction process.

Yet exploiting environmental regularities does not end with the plain depth map re-
sult. Micusik et al. [17] presented a bottom-up approach for extracting 3D structures from
panoramic images taken in urban environments. They make extensive use of piecewise pla-
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Figure 2: The Stixel World as published by Badino et al. An urban scenario is shown with Stixel
approximating cars and infrastructure on the left. The right example shows a rural road scenario.

narity and “L-shape” priors at multiple points in their reconstruction process.
With the objective to efficiently model urban traffic scenarios, we presented a medium

level representation called the “Stixel World” that unifies freespace and obstacle information
in a single and compact scene representation [2]. That representation provides the basis for
our work and is discussed separately in Section 3 of this paper.

A similar approach has been published by Gallup et al. [8] with the objective to create
3D volumetric object models. Multiple depth maps from different views are accumulated
in a single Cartesian histogram-based elevation map. Thereafter, each cell is split into alter-
nating empty and occupied box volumes. By relying on DP, the authors achieve an optimal
segmentation for every cell of the grid.

In [6], Felzenszwalb et al. present a probabilistic image segmentation approach that uses
appearance to assign semantic information to certain regions of an image. The image is
segmented using a continuous upper and lower bound. The resulting upper part is called
background, the middle region is assigned to object and the bottom region to floor. The
authors rely on DP. However, their approach is limited to one object per column only.

Further, Liu et al. [16] use appearance cues to assign semantics to an image using a five
parts model (top, left, right, bottom, and center). Their used model constraints are quite strict
and thus inflexible while their graph-cut based approach only approximates a 2D optimum.

In [11], Hoiem et al. present a scheme to assign the labels of type sky, vertical (object)
and planar (ground) to super-pixels. Therefore, the authors rely on a greedy algorithm while
exploiting pairwise patch affinities. They use an appearance-based boosted decision-tree
classifier on a trained data set to infer the probabilities for the class affiliation.

3 The Stixel Model
With the goal to efficiently model the content of 3D urban traffic environments [2], Badino
et al. defined a medium level representation called the “Stixel World”. The Stixel represen-
tation is characterized to be compact, robust to outliers and easy to access.

The space in front of the car is split into two adjacent regions: Horizontal freespace up to
the base point of the first obstacles and a set of Stixels approximating the obstacle. A single
Stixel is defined as a thin earthbound rectangle with a fixed pixel width and vertical pose. It is
described by just two parameters: A distance and a height value. This representation achieves
an enormous reduction of the input data volume of half a million disparity measurements to
a few hundred Stixels only, while encoding freespace and obstacle information for the whole
scenario. An exemplary result for an urban scenario is depicted in Figure 2.

According to that approach, the Stixel World is constructed in a cascade of multiple
steps: Mapping disparities to occupancy grids, freespace computation, height segmenta-
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tion, and a final Stixel extraction. Such a cascade is prone to errors, e.g. missed objects in
the freespace computation can not be corrected in subsequent steps. Further, the proposed
scheme contains multiple thresholds and nonlinearities (e.g. a height constraint when creat-
ing the depth map). Only taking into account the first obstacle along every viewing angle
can cause to miss relevant objects (e.g. a pedestrian standing behind an engine hood).

3.1 Extension of the Stixel World
Hence, our contribution is a probabilistic approach to compute the Stixel World for a stereo
image pair in a single global optimization step. In addition, we lift the constraint of the Stixel
to touch the ground surface and allow for multiple Stixels along every column of the image,
altering the problem of Stixel generation into a segmentation problem related to the work
of Felzenszwalb et al. [6] or Gallup et al. [8]. An example for our method is depicted in
Figure 1.

Given the left camera image I of a stereo image pair and the corresponding disparity
image D (all of size w× h ∈ N2), a multi-layered Stixel World corresponds to a column-
wise segmentation L ∈ L of I into the classes C = {o,g} (object and ground /road) of the
following form

L = {Lu} , with 0≤ u < w

Lu = {sn} , with 1≤ n≤ Nu ≤ h

sn =
{

vb
n,v

t
n,cn, fn(v)

}
, with 0≤ vb

n ≤ vt
n < h , cn ∈ C (1)

The total number of segments for each column u is given by Nu. In this notation, the image
row coordinates vb

n (base point) and vt
n (top point) mark the beginning and end of each seg-

ment sn. Further, fn(v) is an arbitrary function that computes the disparity (or depth) of that
segment at row v (with vb

n ≤ v≤ vt
n). All segments sn−1 and sn are adjacent such that for each

segmentation Lu ∈ L ∈ L of column u the following ordering applies

0 = vb
1 ≤ vt

1 < .. . < vb
Nu ≤ vt

Nu = h−1, with vt
n−1 +1 = vb

n, 1 < n≤ Nu (2)

Since every segmentation L ∈ L conforms to (2) it is implicitly guaranteed that every image
point is assigned to exactly one label.

3.2 The Data Model
In order to solve the segmentation task efficiently, we decide to work in image coordinates
by using the v-disparity space [15, 21]. This is advantageous for a couple of reasons. Firstly,
no extra computation time is required for triangulation or projection. Secondly that coordi-
nate space has inherently finite boundaries, which is beneficial when working with proba-
bility densities. Besides that, we do not have to deal with additional quantization artifacts,
a common problem of mapping measurements to grids or voxel spaces. Also, the noise
characteristic of the depth measuring sensor is preserved and can be considered directly.

For the labeling we decide for each possible segment to be either object or ground.
All segments are modeled as piecewise planar surfaces. Consequently, the choice for the
function fn is reduced to the set of linear functions. Given that the world geometry in man-
made environments mainly consists of either vertical or horizontal surfaces, this function set
is reduced even further. Therefore, object segments are assumed to have a constant disparity,
such that the corresponding function is given as f o

n (v) = µn, where µn is the average disparity
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Figure 3: Data model visualization. The blue line across the image marks an exemplary column.
Red and green denote the ideal data and segmentation into object and ground. The dashed line is the
expected ground profile. The real disparity measurement vector for the particular scenario is marked
purple.

within sn. The expected ground surface for every ground labeled segment is modeled as
f g
n (v) = α · (vhor− v), where α is the expected ground disparity gradient and vhor is the row

coordinate of the horizon. Both parameters are extracted from the known camera geometry.
The idea of using these linear functions is illustrated in Figure 3.

4 Stixel Computation as a Probabilistic Approach
The Stixel result does not solely depend on the measured input data but is regularized by a
certain set of physically motivated world assumptions. This includes the following:

• Bayesian information criterion [8]: The number of objects captured along every col-
umn is small. Dispensable cuts should be avoided.

• Gravity constraint: Flying objects are unlikely. The ground adjacent object segment
should stand on the ground surface.

• Ordering constraint: The upper of two staggered object segments is expected to have
a greater depth than the lower one. Reconstructing otherwise (e.g. for traffic lights,
signs or trees) is still possible if sufficiently supported by the input data.

Searching for the Stixel representation that matches best with the above criteria emerges as
a typical MAP estimation problem. Therefore, we search the most probable labeling L∗:

L∗ = argmax
L∈L

P(L | D) (3)

Applying the Bayes’ theorem allows to write the posterior probability P(L | D) as

P(L | D)∼ P(D | L) ·P(L) , (4)

the product of the conditional probability of D given L and the prior probability P(L) of L.
The neglected normalization factor P(D) is irrelevant when seeking the maximum of the
posterior probability. P(D | L) rates the possibility of the input D given a certain labeling L
and thus represents the data term for the optimization. The second term P(L) embodies the
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overall probability for each individual labeling L and is the lever to model such regularization
as listed above.

In order to achieve real-time capability, neighboring columns are considered as indepen-
dent. Hence, L is reduced to the column labeling Lu. Further, we consider the individual
measurements du,v ∈ D as mutually independent and thus also generalize the disparity in-
put to the vertical disparity vector Du ∈ D. Additionally, the data within Du is assumed as
independent from all labels Lû with u 6= û. As a result we obtain

P(L | D)∼
w−1

∏
u=0

P(Du | Lu) ·P(Lu) . (5)

4.1 The Conditional Probability Density
The conditional probability density P(Du | Lu) has the objective to rate the likelihood of the
input data given a labeling Lu. It is constructed as follows:

P(Du | Lu) =
Nu

∏
n=1

vt
n

∏
v=vb

n

PD (dv | sn,v)

P(dv | sn,v) =

{
PD (dv | sn,v) · (1− pcn

@ ) , if ∃(v) = 1
pcn

@ otherwise
(6)

The data term PD (dv | sn,v) denotes the probability for a disparity measurement dv ∈ Du at
column v given the segment sn. For that purpose, one has to be aware of two facts: Not
every pixel has a valid disparity measurement and if it does, it might be an outlier. In order
to consider such sensor characteristics, an outlier rate pout is considered that models the
probability to encounter an outlier. Also, a mapping ∃(v) and a probability po

@ is defined.
∃(v) equals ’1’ if the disparity dv at v is valid (i.e. 0 ≤ dv < 128) and ’0’ otherwise. po

@ is
the probability to observe an object given that dv is invalid. With that in mind, the data term
PD (dv | sn,v) is defined as a mixture model that consists of a uniform distribution to model
the chance to encounter outliers and a Gaussian distribution to rate the affinity of dv to sn by

PD (dv | sn,v) =
pout

dmax−dmin
+
¬pout

Anorm
· 1

σ cn(dv,v) ·
√

2π
· e−

1
2

(
dv− fn(v)
σcn ( fn ,v)

)2

(7)

The Gaussian parameter σ cn (dv,v) incorporates the noise model for the disparity mea-
surement. It depends on the segment type cn, the expected disparity noise, the camera geom-
etry and tilt angle accuracy. It also considers by what degree objects are allowed to violate
the constant disparity assumption. Anorm is a normalization term computed with the integral

Anorm = 0.5 ·
(

erf
(

dmax− fn(v)√
2 ·σ cn( fn,v)

)
− erf

(
dmin− fn(v)√
2 ·σ cn( fn,v)

))
. (8)

4.2 Modeling A Priori Knowledge
The second term P(Lu) of equation (5) models our world model expectation and a-priori
knowledge. In contrast to the conditional probability density P(Du|Lu) it does not contain
any dependencies to the input data. Instead that term considers semantic aspects as listed
above. For this purpose, pairwise mutual dependencies are modeled between all adjacent
segments sn−1 and sn. P(Lu) is derived by
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P(Lu) = P(s1, . . . ,sNu) = P(s1) ·
Nu

∏
n=2

P(sn | sn−1) , (9)

where the former term P(s1) states the probability of a particular occurrence of the first
segment s1 = {vb

1,v
t
1,c1, f1(v)}. The second part incorporates semantic aspects between

adjacent segments, such as ordering or gravity regularization. P(s1) separates as follows:

P(s1) = P
(

vb
1,v

t
1,c1, f1(v)

)
= P

(
vb

1

)
·P
(
vt

1
)
·P
(
c1 | vt

1
)
·P( f1(v) | c1) (10)

Hereby P
(
vb

1
)

is straightforward to compute: According to equation (2), vb
1 must equal to 0.

Further, we obtain:

P
(

vb
1

)
=

{
1 ,vb

1 = 0
0 otherwise

P
(
c1 | vt

1
)

=


1 ,vt

1 > vhor, c1 = o
0 ,vt

1 > vhor, c1 = g
0.5 otherwise

P
(
vt

1
)

=1/h−1 P( f1(v) | c1) =


1 ,c1 = o, f1(v) = µ1

1 ,c1 = g, f1(v) = α · (vhor− v)
0 otherwise

(11)

The conditional density term P(sn | sn−1) is determined by separating P(sn | sn−1) =
P
(
vb

n,v
t
n,cn, fn(v) | vb

n−1,v
t
n−1,cn−1, fn−1(v)

)
. This appears sophisticated, but is simplified to

a few factors:

P(sn | sn−1) = P
(

vb
n | vt

n−1

)
·P
(
vt

n | vt
n−1
)
·P
(
cn | vt

n−1,cn−1
)

· P
(

fn(v) | cn,vt
n−1,cn−1, fn−1(v)

)
(12)

In contrast to the last two terms, the conditional probabilities P
(
vb

n | vt
n−1
)

and P
(
vt

n | vt
n−1
)

lack a deeper meaning and plainly express that the value range for vb
n and vt

n is limited by
vt

n−1. They are determined by

P
(

vb
n | vt

n−1

)
=

{
1 , vb

n = vt
n−1 +1

0 otherwise
, and P

(
vt

n | vt
n−1
)

=

{
1/h−vt

n−1−2 , vt
n > vt

n−1

0 otherwise
(13)

Just like P(c1 | vt
1), the term P

(
cn | vt

n−1,cn−1
)

expresses not to expect street occurrence
above the horizon. It also models the expectation of adjacent segments to occur in a certain
order. For instance, it is rather unlikely to observe ground occurrence behind an object.
P
(
cn | vt

n−1,cn−1
)

is modeled using a look-up-table that is omitted due to lack of space.
The last term P

(
fn(v) | cn,vt

n−1,cn−1, fn−1(v)
)

models two more aspects: The probabil-
ity for floating objects (ordering constraint and gravity constraint) and the probability to have
objects below the ground surface. It is defined by Table 1. pord corresponds to the ordering
regularization and models the probability of two staggered objects to violate the ordering
assumption, such that sn has a larger disparity and thus is closer than sn−1. The second vari-
able pgrav models the probability of ground adjacent objects to hover and hence not to touch
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cn cn−1 condition P
o o µn > µn−1 +∆d(µn−1,∆Z) pord/µn−1−∆d

o o µn ≤ µn−1−∆d(µn−1,∆Z) 1−pord/dmax−µn−1−∆d

o o |µn−µn−1|< 2 ·∆d(µn−1,∆Z) 0
o g µn > fn−1(vt

n−1)+ ε pgrav/dmax− fn−1(vt
n−1)−ε

o g µn < fn−1(vt
n−1)− ε pblg/fn−1(vt

n−1)−ε

o g |µn− fn−1(vt
n−1)|< 2 · ε 1−pgrav−pblg/2·ε

g o∨g fn(v) = α · (v− vhor) 1, otherwise 0

Table 1: Look-up table for P( fn(v)|cn,vt
n−1,cn−1, fn−1(v)) that models the probability for function

fn(v) given a configuration cn, cn−1, dn−1 and vt
n−1. µn is the mean disparity of segment sn with

cn = object.

the ground surface. Object segments sn and sm are not allowed to coexist within a certain
distance ±∆Z . That range is mapped to disparities by ∆d (µ,∆Z).

The third and last variable pblg denotes the probability for objects to have a base point
below the ground. In this notation, fn−1

(
vt

n−1
)

with cn−1 = g is the end disparity of the
ground segment. For our results we choose pord = pgrav = 0.1 and pblg = 0.001, which
renders especially the last configuration as very unlikely. The parameter ε denotes the range
in which violations of the gravity and ground assumption are tolerated. These parameters
are chosen as ∆Z = 1.5m and ε = 1.5px disparities.

4.3 Solving for L∗ with Dynamic Programming
Dynamic Programming (DP) [3] has been successfully applied as a solving scheme for a vast
number of optimization problems. It has the major benefit of yielding the global optimum of
a discrete problem that exhibits optimal substructure non-iteratively in polynomial time.

Relying on DP is what makes solving for L∗ computable in real-time. We seek a labeling
for a stereo image pair (each of size w× h) and allow for a label to be set individually at
every pixel of every column. Modeling mutual dependencies for adjacent labels results in a
computational complexity of O

(
n3
)

= w× h2/2×|C| using the Landau notation [23].
All data terms (see section 4.1) required within the solving step can be precomputed

using the log-likelihood [13] of their probabilities and thus do not impact the run-time per-
formance of the optimizer. The a-priori terms (see section 4.2) are also either precomputed
or are evaluated in place during the optimization.

5 Experimental Results
For our experiments we focus on a stereo vision based evaluation of traffic scenarios. The
stereo camera system has a resolution of 1024px× 440px, a focal length of 1250px and a
base length of 22cm. It is mounted behind the windshield at a height of hcam = 1.17m and
with a downwards tilted angle αcam = 0.063rad.

The used implementation for SGM stereo runs on FPGA hardware at a rate of 25Hz with
a valid disparity range of dmin = 0 to dmax = 127 and an assumed uncertainty of σd = 0.4px.
For the disparity outlier rate we assume pout = 0.1.

All further processing is done on the CPU (Core-i7 980X, 6× 3.4Ghz, 6GB of RAM).
Thereby, all precomputation for a stereo image pair and a Stixel width of 5px is done in
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Figure 4: Several pedestrians are crossing our path. Note how accurate their outlines are segmented
by the presented approach. Overhanging parts from signs, traffic lights and pedestrians partially violate
the ordering and gravity assumption.

Figure 5: Scenario within a highway construction site containing multiple staggered ground and
object segments at different depths. In addition, this scene features a quite far view. The leading car is
observed at a distance of 75m.

5ms. The solving step via dynamic programming runs within 60ms. Due to the smoothing
characteristic of SGM scaling down the image by a factor of two comes without noteworthy
impact to the quality of the scene reconstruction. However, this reduces the computation time
significantly, such that solving is done in real-time within 15ms. Yet the precomputation
remains unchanged, because all look-up tables are still computed at full resolution in order
to minimize the potential loss of accuracy as a result from scaling.

The depicted scenarios feature various types of objects and different scene constellations.
An exemplary urban scenario with pylons, cars and solid infrastructure is given in Figure 1.
Figure 4 shows an multiple pedestrians and objects that partially violate the ordering and
gravity assumptions. Figure 5 illustrates a highway scenario with guardian rails, an opposing

Figure 6: This scene was captured in a highway tunnel and features three leading cars ahead of us.
Poor lighting conditions, strong light reflectance on the road surfaces. Altogether, this scenario is
considered quite challenging.
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Figure 7: The Stixel World created from sparse 3D point cloud measurements obtained with a Velo-
dyne HDL-64E. The upper part shows the LIDAR points, the lower part shows the Stixel result.

lane and quite far sight. Figure 6 shows a tunnel scenario that is quite challenging for reasons
of poor lighting and a reflecting road surface. All results have been computed with identical
parametrization of the algorithm.

The approach is not limited to processing stereo vision data. Therefore, our last example
shows Stixels created from the 3D data delivered by a Velodyne HDL-64E S2 [9] LIDAR.
Figure 7 shows the sparse LIDAR points and the resulting Stixel representation that has been
projected into the image of a camera that has been calibrated relatively to the LIDAR.

6 Conclusions and Outlook

This paper proposes to model real-world scenes by means of a multi-layer Stixel World. We
tackle the inherent segmentation task as a MAP-problem. This task has been formulated
such that the optimization can be solved efficiently by means of DP.

Seeking the most probable interpretation results in a highly robust approach as shown
by our examples. The overall algorithm has proven as quite parameter-insensitive. Thus,
scenario dependent fine tuning is only required for extreme weather conditions, when sensor
characteristics change drastically.

The presented approach is applicable to process 3D data from other sensors as well. Ex-
emplary results for a modern laser scanner have been presented. Consequently, the proposed
approach can also act as a fusion scheme for multiple data sources.

An aspect we did not target was to consider horizontal smoothness, such as Felzen-
szwalb [6] or Badino [2] did within their DP steps. Yet we argue that this property is par-
tially realized by the smoothing characteristic of SGM. By looking at the results we do not
make out a real benefit by enforcing that additionally. Besides that, doing so would turn this
segmentation task into a two-dimensional NP-hard labeling problem.

Moreover, appearance cues or temporal coherence such as optical flow or tracking was
not used. Without doubt, such information carries the potential to improve the system per-
formance even further if incorporated appropriately. For our purpose, we will focus on an
extension of supported classes and will pay dedicated attention to a more diligent treatment
of missing or faulty disparities especially in sky and ground regions with low textural infor-
mation.
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