
Robotics and Autonomous Systems ( ) –

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Incremental scenario representations for autonomous driving using
geometric polygonal primitives
Miguel Oliveira a,b,∗, Vitor Santos b, Angel D. Sappa c,d, Paulo Dias b, A. Paulo Moreira a,e

a INESC TEC - INESC Technology and Science, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
b IEETA - Institute of Electronics and Informatics Engineering of Aveiro, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro,
Portugal
c Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 vía Perimetral,
P.O. Box 09-01-5863, Guayaquil, Ecuador
d Computer Vision Center, Campus UAB, 08193 Bellaterra, Barcelona, Spain
e FEUP - Faculty of Engineering, University of Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Incremental scene reconstruction
Point clouds
Autonomous vehicles
Polygonal primitives

a b s t r a c t

When an autonomous vehicle is traveling through some scenario it receives a continuous streamof sensor
data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant
information. Thus, it is not trivial how a representation of the environment observed by the vehicle can
be created and updated over time. This paper presents a novel methodology to compute an incremental
3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal
primitives to model the scenario. This means that the representation of the scene is given as a list of
large scale polygons that describe the geometric structure of the environment. Furthermore, we propose
mechanisms designed to update the geometric polygonal primitives over timewhenever fresh sensor data
is collected. Results show that the approach is capable of producing accurate descriptions of the scene,
and that it is computationally very efficient when compared to other reconstruction techniques.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent research in the fields of pattern recognition suggest that
the usage of 3D sensors improves the effectiveness of perception,
‘‘since it supports good situation awareness for motion level tele-
operation as well as higher level intelligent autonomous func-
tions’’ [1]. Nowadays, autonomous robotic systems have at their
disposal a new generation of 3D sensors, which provide 3D data
of unprecedented quality [2]. In robotic systems, 3D data is used
to compute some form of internal representation of the environ-
ment. In this paper, we refer to this as 3D scene representation or
simply 3D representation. The improvement of 3D data available
to robotic systems should pave the road for more comprehensive
3D representations. In turn, advanced 3D representations of the
scenes are expected to play a major role in future robotic appli-
cations since they support a wide variety of tasks, including navi-
gation, localization, and perception [3].

∗ Corresponding author at: INESC TEC - INESC Technology and Science, R. Dr.
Roberto Frias s/n, 4200-465 Porto, Portugal.

E-mail addresses:m.riem.oliveira@gmail.com (M. Oliveira), vitor@ua.pt
(V. Santos), asappa@cvc.uab.es (A.D. Sappa), paulo.dias@ua.pt (P. Dias),
amoreira@fe.up.pt (A.P. Moreira).

In summary, the improvement in the quality of 3D data
clearly opens the possibility of building more complex scene
representations. In turn,more advanced scene representationswill
surely have a positive impact on the overall performance of robotic
systems. Despite this, complex scene representations have not yet
been substantiated into robotic applications. The problem is how
to process the large amounts of 3D data. In this context, classical
computer graphics algorithms are not optimized to operate in
real time, which is a non-negotiable requirement of the majority
of robotic applications. Unless novel and efficient methodologies
that produce compact, yet elaborate scene representations, are
introducedby the research community, robotic systems are limited
tomapping the scenes in classical 2D or 2.5D representations or are
restricted to off-line applications.

Very frequently, the scenarios where autonomous systems
operate are urban locations or buildings. Such scenes are often
characterized for having a large number of well defined geometric
structures. In outdoor scenarios, these geometric structures could
be road surfaces or buildings, while in indoor scenarios they may
be furniture, walls, stairs, etc. We refer to the scale of these
structures as a macro scale, meaning that 3D sensor may collect
thousands of measurements of those structures in a single scan.
A scene representation is defined by the surface primitive that

http://dx.doi.org/10.1016/j.robot.2016.05.011
0921-8890/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.robot.2016.05.011
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:m.riem.oliveira@gmail.com
mailto:vitor@ua.pt
mailto:asappa@cvc.uab.es
mailto:paulo.dias@ua.pt
mailto:amoreira@fe.up.pt
http://dx.doi.org/10.1016/j.robot.2016.05.011


2 M. Oliveira et al. / Robotics and Autonomous Systems ( ) –

Table 1
LIDAR sensor systems mounted on some autonomous vehicle systems of recent years.

Institution Vehicle Ref. 3D sensor type Totala

2D laser 3D laser

Stanford U. Stanleyb [11] 5× Sick LMS 291 – 67.5
CMU Sandstormb [12] 3× Sick LMS 291 – 50.5

Highlanderb Riegl Q140i –
CMU Bossb [13] 6× Sick LMS 291 Vel. HDL-64 2305.0

2× Continental ISF 172 –
2× IBEO Alasca XT –

Stanford U. Juniorc [14] 4× SICK LMS 291 Vel. HDL-64 2278.0
2× IBEO Alasca XT –

Virginia Tech Odinc [15] 4× Sick LMS 291 – 90.0
2× IBEO Alasca XT –
IBEO Alasca AO –

MIT Talosc [6] 12× Sick LMS 291 Vel. HDL-64 2361.2
U. Munich MuCar-3d [16] – Vel. HDL-64 2200.0
Google Driverless Car [17] – Vel. HDL-64 2200.0
a Estimation of total 3D data throughput of all LIDAR sensors mounted on the vehicle, given as points×103/s.
b These vehicles participated in the Defense Advanced Research Projects Agency (DARPA) Grand Challenge 2006.
c These vehicles participated in the DARPA Urban Challenge 2007.
d This vehicle participated in the Civilian European Land Robot Trial (ELROB) Trial 2009.

is employed. For example, triangulation approaches make use
of triangle primitives, while other approaches such as Poisson
surface reconstruction resort to implicit surfaces. Triangulation
approaches generate surface primitives that are considered to have
amicro scale, since a geometric structure of the scene could contain
hundreds or thousands of triangles. Micro scale primitives are
inadequate tomodel large scale environments because they are not
compact enough.

In this paper, we present a novel methodology to compute a
3D scene representation. The algorithmusesmacro scale polygonal
primitives to model the scene. This means that the representation
of the scene is given as a list of large scale polygons that
describe the geometric structure of the environment. The proposed
representation addresses the problems that were raised in the
previous lines: the representation is compact and can be computed
much faster than most others, while at the same time providing a
sufficiently accurate geometric representation of the scene from
the point of view of the tasks required by an autonomous system.

The second problem addressed in this paper is the reconstruc-
tion of large scale scenarios from a continuous throughput of mas-
sive amounts of 3D data. We will use the distinction between the
terms scene and scenario. Let scenario refer to a particular loca-
tion that should be reconstructed, e.g., a city, a road or a building.
By scene, we refer to the portion of the scenario that is viewed by
the vehicle at a particular time. Thus, the scenario is an integration
of scenes over time. In the case of large scale scenarios, the com-
pactness of a given scene representation is even more important.
In this paper, we focus also on how the representation may evolve
by integrating 3D data from multiple measurements over time.

This is an extended version of [4]. The new material covers
mostly the incremental part of the geometric reconstruction. There
is also the possibility of adding texture to the geometric scene
description. For further details on this see [5].

For testing and evaluation purposes, we use a data-set from
the Massachusetts Institute of Technology (MIT) Team, taken from
their participation in the DARPA Urban Challenge [6]. From this
data-set we have extracted a 40 s sequence which will be used to
assess the proposed algorithms. For the remainder of the paper,
this sequence is referred to as MIT sequence. Using this data-set,
we aim at reconstructing large portions of the urban environment
in which the competition took place.

The remainder of this paper is organized as follows: Section 2
reviews the state of the art, Section 3 presents the proposed
approach. Results are given in Section 4 and conclusions in
Section 5.

2. Related work

At first glance, it would seem plain to translate the improve-
ment on the quality of the 3D data into an enhancement of the
3D representations. However, the fact is that the majority of the
robotic systems, namely autonomous vehicles, continue to rely on
classic 2D or 2.5D scene representations [7], such as occupancy
grids [8] or elevation maps [9], or use discretized grid-like ap-
proaches as in octrees [10]. The reason for that is that autonomous
vehicles commonly require a large array of sensors installed on-
board and, as a consequence, collect large amounts of range mea-
surements every second. Table 1 shows an estimate of the amount
of 3D data (measured by LIDAR systems alone) generated by sev-
eral autonomous vehicles. Simplified 2D or 2.5D representations
are used so that they can be computed in real time using large
amounts of data. More advanced 3D representations have not been
introduced in robotics because they fail to abide to the require-
ments of real time processing using the 3D data produced by new
generation LIDAR sensors. One example of this is the method-
ologies used in the computer graphics research field: traditional
algorithms such as building of triangular meshes are unable to op-
erate in real time with the throughput of data provided by new
generation 3D sensors. Some authors have tried to optimize tri-
angulation algorithms (e.g., [2,7]), and they report near real time
performances. Note that these results were obtained using point
clouds from aMicrosoft Kinect 3D camera.1 On the other hand, the
results provided towards the end of this paper are obtained using
point clouds fromaVelodyneHDL-64E Lidar,2 and therefore results
are not directly comparable.

Scene reconstruction is defined as the computation of a geomet-
ric 3D model from multiple measurements. These measurements
could be obtained from stereo systems, range sensors, etc. Scene
reconstruction may also include the texturing of the generated 3D
model. Scene reconstruction methodologies are grouped into two
different approaches: surface based representations or volumetric
occupancy representations. In the first, the underlying surfaces of
the scene that generated the range measurements are estimated,
while in the second, the rangemeasurements are grouped into cells
of a grid, and are then labeled free or occupied. Traditional surface
based representations include several 3D triangulations method-
ologies, such as 3D Delaunay triangulation [18], or Ball Pivoting

1 http://en.wikipedia.org/wiki/Kinect.
2 http://velodynelidar.com/lidar/lidar.aspx.

http://en.wikipedia.org/wiki/Kinect
http://velodynelidar.com/lidar/lidar.aspx


M. Oliveira et al. / Robotics and Autonomous Systems ( ) – 3

Algorithm (BPA) [19]. There are also some alternative higher or-
der surface representationmethods such as Poisson surface recon-
struction [20], Orientation Inference Framework [21] or learning
approaches [22]. However, most of these methods do not tackle
well noisy range measurements and, above all, since these meth-
ods involve a large number of nearest neighbor queries, they are
very slow to compute. One attempt to accelerate the triangulation
of point clouds was done in [7], but authors report they have only
achieved near real time. Volumetric occupancy representations in-
clude occupancy grids [8], elevation maps [9], multi-level surface
maps [23] or octrees [10]. While these representations are easier
to compute, they do not provide accurate information about the
geometry of the scene.

The BPA triangulation was proposed in [24]. The BPA computes
a triangle mesh interpolating a given point cloud. The principle of
the BPA is very simple: Three points form a triangle if a ball of a
user-specified radius touches them without containing any other
point. Starting with a seed triangle, the ball pivots around an edge
(i.e., it revolves around the edge while keeping in contact with the
edge’s endpoints) until it touches another point, forming another
triangle. The process continues until all reachable edges have been
tried, and then starts from another seed triangle, until all points
have been considered. Although all range points are considered
in the computation of the mesh, which accounts for the accuracy
of the methodology, this fact also hampers the computational
performance of the algorithm.

The Greedy Triangulation (GT) is an approach designed for
fast surface reconstruction from large noisy data sets [7]. Given
an unorganized 3D point cloud, the algorithm recreates the
underlying surface’s geometrical properties using data resampling
and a robust triangulation algorithm, the authors claim to achieve
near real time. For resulting smooth surfaces, the data is resampled
with variable densities according to previously estimated surface
curvatures. One of the advantages of this method is that, since a
greedy search is executed, it is expected to be faster than other
standard triangulation approaches.

Poisson surface reconstruction was initially proposed in [25].
In this approach, surface reconstruction of a point cloud with
estimated normals is viewed as a spatial Poisson problem. The
Poisson formulation considers all the points at once, without
resorting to heuristic spatial partitioning or blending, and is
therefore highly resilient to data noise. Unlike radial basis
function schemes, a Poisson approach allows a hierarchy of locally
supported basis functions, and therefore the solution reduces to a
well conditioned sparse linear system.

The work from [26] proposes an expectation maximization
based method for producing a scene representation based on
planes, rather than polygons. Also, this method is not intended
for real time applications, since creating a scene representation
may take up to twenty minutes. Finally, this work does not discuss
how new sensor measurements could be integrated in the existing
representation, therefore not focusing on the incremental part of
scenario reconstruction.

3. Proposed approach

In this sectionwewill explain in detail themethodologies of our
approach. First, we describe the scene reconstruction algorithm
(see Section 3.1) and then, in Section 3.2, we describe how a sce-
nario is created over time froma continuous throughput of 3Ddata.

3.1. One-shot scene reconstruction

This work proposes to explore the usage of Geometric Polygonal
Primitives (GPP) to perform scene reconstruction. In other words,

Algorithm 1 Cascade detection of geometric polygonal primitives
Require: P it=0 , the input point cloud at iteration 0
Ensure: A list of geometric polygonal primitives G = {G0, G1, ..., Gn

}

Initialize number of primitives, k← 0
Initialize number of iterations, it ← 0
Initialize primitives list, G← {}
Initialize cycle break flag, cycle_break← false
while cycle_break = false do

RANSAC search over P k , returns estimated plane ˆGk
p (first guess) and inliers Ik

if RANSAC found a candidate then
Cluster inliers point cloud Ik to cluster list C={C0, C1, ..., Cn}
Find largest cluster, max_cluster = argmaxi(size(C i))
Set the primitive support points Sk to the largest cluster, Sk

= Cmax_cluster

Compute accurate plane coefficients from support points, Gk
p ← PCA over Sk

Compute bounding polygon Pk , its area A(Pk) and solidity S(Pk)
if A(Pk) > At and S(Pk) > St then

Add to primitive list, G← {G, Gk
}

increment number of primitives, k← k+ 1
end if
Remove support points Sk from P it , compute P it+1

else
Finish search for primitives, cycle_break = true

end if
increment number of iterations, it ← it + 1

end while

the idea is to describe a scene by a list of macro scale polygons.
The detection of geometric polygonal primitives is simple when
compared to the detection of other more complex primitives. Fur-
thermore, given that road environments are often geometrically
structured, it seems feasible to represent the 3D structure with a
set of planar polygons. In addition to that, polygons are compact
representations: geometric polygonal primitives are described by
a support plane and a bounding polygon. Let Gi represent the ith
polygonal geometric primitive of a given scene, with the support
plane Hessian coefficients denoted by Gi

p =

ai bi c i di


. The

search for the support plane is done on a given input point cloudP
using a Random Sample Consensus (RANSAC) procedure [27]. Note
that there are other algorithms which are more efficient for de-
tecting planes in 3D data [28]. However, an analysis of the impact
of these alternative approaches is out of the scope of the current
paper. RANSAC is an iterative method to estimate parameters of
a mathematical model from a set of observed data points. The as-
sumption is that data consists of inliers, i.e., datawhose distribution
can be explained by some set of model parameters, and outliers,
data that does not fit themodel. The input to the RANSAC algorithm
is a set of observed data values, a parameterizedmodelwhich is fit-
ted to the observations, and the output are the model parameters,
i.e., in the case of detecting the support plane of polygonal primi-
tives, the Hessian coefficients.

Fig. 1(a) shows in different colors the inlier points of the five
best candidates of a RANSAC search. Wall like structures are
correctly detected. Fig. 1(c) shows the inliers (signaled in green) of
a RANSAC plane detection. In this case, range measurements from
two separate walls have been signaled as inliers of a single support
plane. To address this issue, the set of inliers of each support plane
hypothesis is used as input to a clustering procedure. By using
the proposed clustering algorithm, it is possible to separate the
two walls into separate polygons, as shown in Fig. 1(d). Polygons
are computed using a 2D convex hull operation on the (clustered)
RANSAC inliers. In this work, the implementation provided in [29]
is used to compute the 2D convex hull, based on a non recursive
version of [30,31].

To increase the efficiency of the algorithm, we propose to
conduct the detection of polygonal primitives in a cascade like
processing configuration. This should be more efficient and fast
to process. The input point cloud contains a large amount of 3D
points: we assume each 3D point can only belong to a single
polygonal primitive. Let Sk be the point cloud containing the
support points of primitive k, and P k be the input point cloud in
which the primitive was searched. The input point cloud for the



4 M. Oliveira et al. / Robotics and Autonomous Systems ( ) –

Fig. 1. Plane detection examples using RANSAC: (a) five best RANSAC candidates for the input point cloud in grey; (b) a detail of (a); (c) without using clustering; (d) using
clustering. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

search of the next primitive, P k+1, is obtained by removing the
support points of primitive k:

P k+1
=


� ∈ P k

| � ∉ Sk

. (1)

Since every iteration of primitive detection will conduct a
search on a smaller point cloud, it is expected that the cascade con-
figuration is capable of reducing the processing time. Algorithm 1
details the complete procedure for the detection of a set of polyg-
onal primitives given a point cloud.

3.2. Incremental scenario reconstruction

We use the term scenario reconstruction to designate an
incremental process of reconstruction of scenes from a continuous
stream of sensor data. At first sight, there are three alternatives
for performing scenario refinement: (1) store raw measurements
and, in the end, reconstruct using the entire data; (2) reconstruct
periodically and fuse partial scene reconstructions; (3) reconstruct
with the first input data then make the representation evolve as
new data arrives.

Approach (1) is the most immediate, since there are well
known surface reconstruction algorithms which reconstruct a
surface from a single point cloud. This approach merely merges
all input point clouds into a single point cloud, the accumulated
point cloud, and then, standard surface reconstruction algorithms
may be applied using the accumulated point cloud as input. One
downside of this method is that the process of reconstruction can
only begin after all point clouds have been collected. This is not
suited for usage in real time applications. Furthermore, the amount
of data that results from the accumulation of point clouds should be
very large, which in turn might cause problems for reconstruction
algorithms. Fig. 2 shows an example of a scenario reconstruction
(with BPA) using as input the accumulated point clouds of three
scenes. This reconstruction took over 2 h to complete.

Alternative (2) proposes a fusion of (partially) reconstructed
scenes for each of the locations. Taking the example of Fig. 2:
if the three scenes are reconstructed independently using BPA,
the overall process takes 488.2 + 480.4 + 558.8 = 1487.4 s
(this is without considering the overhead attached to the
process of fusion). Fig. 3 shows the reconstructed scenarios
obtained using this alternative. The downsides of this alternative
are the need to define a strategy to fuse the reconstructed
scenes in order to obtain a global scenario representation. In
addition to this, note that the reconstructed scenes overlap. In
overlapping regions, reconstruction is carried out multiple times
without originating an improved description, therefore waisting
computational resources.

Fig. 2. Scenario reconstruction approach (1): BPA surface reconstruction over the
accumulated point cloud of three scenes.

Alternative (3) proposes an incremental scenario reconstruc-
tion. Unlike in the other two approaches, in this case, the recon-
struction of a given scenario receives as input not only the current
sensor data (a point cloud), but also a description of the scenario
as seen by preceding reconstructions. This method appears to be
more interesting than the others, since a scenario representation
is updated or refined when new sensor data arrives. An illustrative
example: a vehicle is moving on a road and there is a long wall on
the side of the road. At the beginning of the road, sensors see only
a portion of the wall and the reconstructed surface corresponds
only to the visible part of the wall. As the vehicle moves forward,
additional areas of the wall become visible to the sensors. These
additional range measurements of the wall should be used to up-
date the already existing shape primitive that represents the wall,
rather than to create a new shape primitive which represents the
new visible portion of the wall, and that overlaps, to some extent,
the first wall primitive.

In the following lines, we present mechanisms that enable a
scene representation based on GPPs to be incrementally refined
from novel point cloud data. To update the representation, an
operation called expansion is executed for each of the existing
GPPs. The expansion receives as input a list of points (the 3D
point cloud) as well as the definition of the polygon that is to
be expanded. It is composed of two parts, a perpendicular and a
longitudinal expansion, and is defined as follows (see Fig. 4): LetP
represent an input point cloud that is received at a given time and
that contains several points (triangles and diamonds in Fig. 4(a)),
and the scenario representation that was previously computed,
being composed of a single primitive G (black solid line polygon
in Fig. 4(a)). The primitive has a support plane, as well as a local
coordinate system represented by red–green–blue lines. The first



M. Oliveira et al. / Robotics and Autonomous Systems ( ) – 5

Fig. 3. Scenario reconstruction approach (2): Accumulation of scene reconstructions over multiple scenes, each marked with a different color; (a) BPA; (b) GPP 2, shown
without the ground plane for an easier visualization. (For interpretation of the references to color in this figure legend, the reader is referred to theweb version of this article.)

Fig. 4. Orthogonal component of the expansion operation: (a) points are tested for their orthogonal distance to the support plane; (b) included points are projected to the
support plane. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

step is to compute a newpoint cloudPort that is given by the points
ofP whose distance to the plane is smaller than the perpendicular
expansion threshold Tort :

Port = {�j ∈ P | dj < Tort}, (2)

where dj is the distance of point �j to the support plane of G.
Only points that lie close to the primitives support plane are
stored in Port and used in the next steps. In Fig. 4(a), some points
are included in Port (triangles) and others discarded (diamonds).
Then, the points in Port are projected into the primitives support
plane and their coordinates transformed into the primitives local
coordinate frame. In this local reference frame, the projected points
always have z value equal to zero, which is why only the x and y
coordinates are stored, i.e., points are defined in R2. Let J be the
point cloud that contains the x and y coordinates of the projected
points viewed from the primitive local coordinate system. Fig. 4(b)
shows the projections of the triangles of Fig. 4(a) to the support
plane (circles). This process is called the orthogonal part of the
expansion. From here onward, all computations are performed in
R2, which significantly speeds up the computation.

The second part of the expansion is referred to as longitudinal
expansion. Fig. 5(a) shows an example point cloud J that contains
several points. Let us consider that some of these points actually
belong to the same object that the primitive represents (circles in
Fig. 5(a)), and others do not (squares in Fig. 5(a)). Since these points
are obtained from new data, not all of them are contained inside
the bounding polygon of the corresponding primitives. Therefore,
the primitive should expand to accommodate these new points. To
do this, an iterative process is proposed. The first step is to offset
the existing bounding polygon of the primitive. The algorithm
used was introduced in [32] and the implementation is from [33].
The offsetting operation generates a new larger polygon, and in
every iteration, the polygon grows as detailed next. The bounding
polygon of the primitive is referred to as P, and the grown or
extended polygon is referred to P̂. Then, all points in J are tested
to see if they are inside P̂. The final stage is to compute a new
convex hull. This new convex hull is computed from the point set

that contains both the points of the previous convex hull and the
points to which the polygon expanded to. The process is repeated
using the newly computed convex hull as the starting hull. The
iterative expansion stops when the extended polygon does not
contain points inside it.

Fig. 5 shows an example of an iterative longitudinal expansion.
Fig. 5(a) shows the initial situation; Fig. 5(b) shows the start of
the iterative process. The expanded polygon (dashed line), is offset
from the initial bounding polygon (solid blue line). Points are
tested to seewhether they are inside the offset polygon (annotated
with crosses). The process repeats until, in the fifth iteration
(Fig. 5(f)), no new points are found inside the offset polygon.
This causes the iterative search to finish. The expansion operation
changes the polygon from its initial state Fig. 5(a) to a new shape,
solid magenta line in Fig. 5(f).

We propose to conduct the expansion of the current primitives
using also a cascade configuration, based on the following
reasoning. Each range measurement is obtained from a laser beam
reflection of a single physical object. Thus, we can assume that
each 3D point is explained by a GPP. Under this assumption,
the points that have been assigned to a given primitive by an
expansion operation, can only belong to that primitive and no
other. Because of this, expanded points are removed from the
input point cloud and are not a part of subsequent expansions (of
other primitives) nor part of detections of new primitives. Since
all the points that are taken by the expansion of a primitive are
removed from the input point cloud, the subsequent expansions or
searches are accelerated since that less points need to be analyzed.
In terms of configuration, a cascade processing recommends that
the faster stages are computed first. The expansion of primitives
is faster than the detection. Because of this, when a new input
point cloud is received, all existing primitives are first expanded
and only then the remainder non expanded points are used for
searching new primitives. Algorithm 2 describes the architecture
of the complete algorithm for the geometric polygonal primitives
representation computation, including both the detection and
expansion operations.



6 M. Oliveira et al. / Robotics and Autonomous Systems ( ) –

Fig. 5. Successive iterations of the longitudinal expansion of GPPs. Solid lines in color represent the convex hull at the start of a given iteration, dashed lines the expanded
polygon. Crosses over points mean they were added to the polygon in a given expansion: (a) initial situation; (b), (c), (d), (e) and (f) iterations 0–4, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Results

In order to evaluate the proposed 3D processing techniques, a
complete data-set with 3D laser data, cameras and accurate ego-
motion is required. The MIT autonomous vehicle Talos competed
in the DARPA Urban Challenge and achieved fourth overall place.
The data logged by the robot is publicly available [6]. In total, the
MIT logs sum up to 315 GB of data. We have cropped a small se-
quence of 40 s (200m of vehicle movement) at the start of the race
(see Fig. 6). The sequence contains a continuous stream of sensor
data, but in addition we have marked five locations (A through E)
which are used to facilitate the analysis of the results. Additional
information on each location is given in Table 2. Fig. 7 shows im-
ages from all cameras, isometric and top views of the 3D data, and a
satellite photograph of location C. The proposed approach is evalu-
ated by analyzing how the scenario contained in thisMIT sequence
is reconstructed. Fig. 6. MIT sequence.



M. Oliveira et al. / Robotics and Autonomous Systems ( ) – 7

Table 2
Information on each of the locations defined in the MIT sequence. Columns description: pt , number of points; size, memory size in mega
bytes; t , mission time in seconds; d, traveled distance in meters.

Location name Location snapshot Sequence accumulated
pt (×106) Size (MB)a pt (×106) Size (MB)a t(s) d(m)

A 1.3 15.6 1.3 15.6 1 0
B 1.3 15.6 13.0 156.0 11 75
C 1.3 15.6 26.0 312.0 21 125
D 1.3 15.6 39.0 468.0 31 140
E 1.3 15.6 52.0 624.0 41 190
a Computed from the number of points times the three xyz dimensions times the four bytes for each dimension (type float32). It is an

approximate value since additional data is present in the message, such as the time stamp, the coordinate frame identification, etc.

Fig. 7. Location C of the MIT sequence: (a) 3d view; (b) top view; (c) satellite view of the location; (d) front 6 mm camera; (e) front; (f) rear; (g) left (h) right.

Fig. 8. Detection of geometric polygonal primitives in the data-sets of the MIT sequence: (a) location C; (b) location D.

Fig. 8 shows the polygonal primitives detected at locations C
and D. It is possible to observe that most of the relevant planes are
picked up by the algorithm.

4.1. One-shot reconstruction

The detection of polygonal primitives is operated in a cascade-
like configuration. In other words, the algorithm will search for
polygonal primitives on a given input point cloud. After the first
primitive is found, all the range measurements that are explained
by that primitive are removed from the input point cloud. The
second primitive is then searched in a smaller point cloud and so
on. Since the search for a primitive is done over a decreasing size
point cloud, it is expected that the search becomes faster as the
primitives are extracted. In Fig. 9 an analysis of the computation
timeof eachprimitive is displayed. Primitiveswith higher numbers
are detected in posterior phases.

Fig. 9(a) shows the number of points remaining in the input
point cloud as a function of the polygon number. Results are shown
for all locations in the MIT sequence. The number of detected
primitives varies from location to location. It is also possible
to observe that, as expected, the number of remaining points
decreases with the increase in the number of detected primitives.
Also, the reduction in the number of points is larger for primitives
detected earlier in the process. Hence, since the algorithm tends
to remove the largest portion of points at the early stages of the
cascade processing, this means that the latter stages will also be
more efficient to compute. The reason for this behavior is the
RANSAC algorithm. Because RANSAC will search for the larger
consensus, it will most likely select planes that are supported by a
greater number of points. In this way, RANSAC tends to select first
polygons with the largest amount of primitive support points. As a
consequence, the largest decreases in the input point cloud occur
early in the cascade, which in turn accelerates the subsequent



8 M. Oliveira et al. / Robotics and Autonomous Systems ( ) –

Fig. 9. Cascade processing analysis for MIT sequence locations A through E: (a) the number of points left to process for a given input point cloud, as a function of the index
of the detected primitive; (b) the time it takes to perform the detection of each of the geometric polygonal primitives as a function of the primitives index.

Fig. 10. Reconstruction of location E of MIT sequence: (a) BPA; (b) GT; (c) POIS; (d) GPP2. The observation of Fig. 16(e) may help the reader better understand the viewpoints
in these images.

detection stages of the cascade. The detection time per primitive
is shown in Fig. 9(b). The detection time tends to decrease with the
increase in polygon number, for the reasons that were previously
reported.

We compare the proposed approach with three surface
reconstruction methodologies: Ball Pivoting Algorithm (BPA) [24],
Greedy Triangulation (GT) [7] and Poisson Surface Reconstruction
(POIS) [25]. Two different parameter configurations for the
proposed approach are used. In the first GPP 1, parameters are set
so that only very large polygons are detected. Processing time is
faster, since a lot of polygons are discarded but, on the other hand,
the accuracy or completeness of the scene representation is not
very good. The second alternative, GPP 2, is configured so that even
small polygons are detected,which should provide amore accurate
scene description at the cost of a higher computation time.

Fig. 10(a) shows that the BPA method Fig. 10(d) shows results
from the GPP. Since our approach uses primitives to define macro
size structures, the number of polygons used to represent the scene
is small. Even though, it can be said that themost relevant polygons
are part of the representation.

Table 3 shows the computation times that each algorithm took
to reconstruct each of the locations in the sequence. The GPP
methodology is the fastest one. This efficiency is related to the
simplicity of the computed representation, and to the fact that
RANSAC analyzes only a small sample of points in the input point
cloud, which means that not all input points are visited in order to
reconstruct the scene, as is the case with the slower triangulation
approaches.

Table 3
Comparison of the computation time of several approaches for surface reconstruc-
tion on the MIT sequence. Results were obtained with an i7-860 2.8 GHz quad core
processor, Ubuntu operating system.

Sequence/Location Processing time (s)
BPA GT POIS GPP 1 GPP 2

A 659.0 154.0 63.2 16.3 27.3
B 752.9 157.5 61.6 25.3 17.4
C 488.2 156.3 56.3 13.5 49.4
D 480.4 142.4 52.6 25.2 25.2
E 558.8 149.0 57.9 47.4 58.1
Average 585.9 151.8 58.3 25.5 35.5

To measure the accuracy of each reconstruction approach, the
results obtained by BPA (the most accurate algorithm) are used
as reference. Let X and Y be two meshes. The Hausdorff distance
between those meshes dH(X, Y ) is computed as:

dH(X, Y ) = max

sup
x∈X


inf
y∈Y

d(x, y)


, sup
y∈Y


inf
x∈X

d(x, y)


, (3)

where sup and inf are the supremum and infimum, respectively.
In this particular case, a variation of the Hausdorff distance,
called the one sided Hausdorff distance is used where only the
supx∈X


infy∈Y d(x, y)


part is computed, because we only wish to

measure how distant is each approach to the ground truth and not
the other way around. In this case, the X meshes are given by each
of the algorithms and the Y mesh is supplied by the ground truth
mesh BPA.



M. Oliveira et al. / Robotics and Autonomous Systems ( ) – 9

Fig. 11. Qualitative analysis of the one sided Hausdorff distance in location C sequence 1: (a) GT; (b) POIS; (c) GPP 1; (d) GPP 2; A Red–Green–Blue color map is used to code
the distance. Red represents zero distance and blue maximum distance. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. Results from the Hausdorff distance obtained when using alternatives for the GPP 2 method for location E, sequence 1: (a) the standard GPP 2, with ground plane
and convex hull; (b) discarded ground plane, convex hull; (c) with ground plane, concave hull; (d) discarded ground plane, concave hull. A Red–Green–Blue color map is
used to code the distance. Red represents zero distance and blue maximum distance. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 4 shows the Hausdorff distance values obtained by GT,
POIS, GPP 1 and GPP 2 using BPA meshes as ground truth.

The algorithm that obtains the best mean results is GT with
an average error of 0.14 m. The accuracy exhibited by the GPP
1 and GPP 2 approaches is about 0.99 and 0.83 m, respectively.
Fig. 11 shows a graphical representation of the error for all of the
approaches. For each approach, the outputmesh has been sampled
and the points are shown with color associated to the computed
one sided Hausdorff distance of each point. A Red–Green–Blue
colormap is used to code the distance. Red represents zero distance
and blue maximum distance. In Fig. 11(a), corresponding to the
GT approach, almost all points have red color, resulting in low
mean error. The POIS approach, represented in Fig. 11(b), shows
many points in blue and green color, e.g., points whose minimum
distance to the ground truth sampled points was very large. This
is why POIS shows low accuracy values. In the case of the GPP

approaches, 11(c) and (d), some regions of the sampled points are
more prone to have large error distances, while those in red seem
to perfectly fit the ground truth mesh. The reason for this is that
the BPA methodology, that was selected to serve as ground truth,
does not perform interpolation over occluded areas, as the GPP
approaches do.Most of the errors appear in the polygonal primitive
that represents the ground plane; that occurs because this is the
one that suffersmore fromocclusion fromother planes. Errorsmay
also result from the usage of convex hulls to compute the boundary
polygons. We have investigated this by using alternatives to the
proposed approachwhere the ground plane polygon is suppressed,
andwhere concave hulls are used. Results are shown in Table 5.We
can observe that, with the option of ground plane suppression and
concave hull, the mean accuracy of GPP 2 improves to 0.1 m.

Fig. 12 shows a visual analysis of the Hausdorff distance errors
for these variations of GPP 2. It is possible to observe that regions



10 M. Oliveira et al. / Robotics and Autonomous Systems ( ) –

Table 4
Comparison of the accuracy of the several approaches using BPA results as ground truth and Hausdorff distance as metric.

Location Hausdorff distance (m)
GT POIS GPP 1 GPP 2
max mean max mean max mean max mean

A 11.7 0.15 14.0 1.39 7.6 1.02 7.6 0.87
B 11.8 0.12 14.1 1.39 12.7 0.94 12.6 0.81
C 12.7 0.18 13.9 1.06 8.9 0.87 8.9 0.69
D 13.8 0.10 13.9 1.90 7.6 0.86 7.6 0.69
E 12.5 0.14 14.0 1.42 14.0 1.25 14.0 1.11
Average 12.5 0.14 13.9 1.43 10.2 0.99 10.1 0.83

Table 5
Comparison of the Hausdorff distance accuracy of the GPP 2 approach using: the standard approach, convex hull and ground plane included (also in Table 4); the convex
hull with no ground plane included; the concave hull with ground plane; and the concave hull without ground plane.

GPP 2 Hausdorff distance (m)
Hull Convex Convex Concave Concave
Ground plane Included Not included Included Not included
Location max mean max mean max mean max mean

A 7.6 0.87 1.8 0.15 6.8 0.71 1.2 0.13
B 12.6 0.81 1.5 0.11 12.6 0.53 1.1 0.08
C 8.9 0.69 1.9 0.16 6.6 0.52 1.9 0.12
D 7.6 0.69 2.2 0.14 7.3 0.59 2.1 0.11
E 14.0 1.11 1.7 0.10 8.8 0.32 1.4 0.08
Average 10.1 0.83 1.8 0.13 8.4 0.53 1.5 0.10

with error, e.g., in blue and green, decrease considerably when
the concave hull is used, but in particular when the ground plane
polygon is discarded.

4.2. Incremental reconstruction

This section presents several results and analysis of the expan-
sion mechanism of the geometric polygonal primitives. The polyg-
onal primitives algorithm without the expansion mechanism is
compared against the same algorithm using the expansionmecha-
nism. These two algorithmswill be referred to as ‘‘with expansion’’
and ‘‘without expansion’’. By using this evaluation, it is possible
to assess what are the benefits or disadvantages of the expansion
mechanism. All five locations of sequence 1 are used to obtain re-
sults. Parameters used in the detection are similar to the GPP 1 set.

Fig. 13 shows a reconstruction of the scene using the expansion
mechanism. The state of the reconstructed scenario at each
location is shown.One clear advantage of this representation is that
there are no overlapping primitives. A qualitative analysis of the
results present in Fig. 13 shows that the most important features
of the scenario are contained in the representation, especially if the
task in mind is navigation.

To evaluate the computational complexity of the proposed al-
gorithms, we measure the amount of detail of the representation
that they produce when given a fixed amount of time to recon-
struct a scene. Fig. 14(a) shows the number of polygons created in
both algorithms. Although at the beginning of the sequence both
algorithms generate a similar number of primitives, after some lo-
cations the algorithm without expansion shows a greater number
of primitives. The explanation is that since the algorithm without
expansion does not compare the stored primitives with the new
data, it ends up duplicating primitives. On the contrary,whenusing
the expansionmechanism, the duplication of primitives is avoided
which leads to a smaller number of primitives. Note that just be-
cause a representation hasmore primitives it is not necessarily bet-
ter. In fact, if there are duplicated primitives, the representation
may be worse than another with a smaller number of non dupli-
cated primitives. Fig. 14(b) shows the number of points that are
given as input for the detection mechanism. In the case of the al-
gorithm without expansion, all of the input points are passed on

to the detection component, i.e., approximately 400000 points per
scan. When the expansion is active, a large number of points are
explained by the expansion component and are not fed into the
detection. In conclusion, the expansion mechanism takes a small
amount of time when compared to the detection and other pro-
cesses, and is able to quickly explain a large portion of the input
points, thus filtering out many points which are not sent to other
slower components. Finally, in Fig. 14(c), the total accumulated
area of the primitives is shown. There is a clear difference between
the with and without expansion approaches. This difference is due
to the duplication of primitives in the case of the without expan-
sion approach.

4.3. Comparison of approaches with and without expansion

Next, we focus on characterizing how the polygonal primitives
evolve. Only the algorithmwith expansion is portrayed, since in the
without expansion approach primitives are static. Fig. 15(a) shows
the number of support points assigned to each primitive. Only
primitives of even index are shown. We can see that primitives
are initialized in different locations in the sequence: at location A
primitive 0 is created, while primitives 2, 4 and 6 are created at
location B. These results show that most primitives significantly
increase their number of support points throughout the sequence:
Primitive 0 was detected at location Awith 0.4× 50× 104

= 200
kpoints, and at location E it already supported 1.4×50×104

= 700
kpoints. In other words, it increased the number of support points
by 350%. Another example, primitive 10, detected at location D
with 3 kpoints, has at location E around 7 kpoints. A 230% increase
between consecutive locations. The same analysis holds when
considering the area of the primitives (see Fig. 15(b)): significant
increases in the area of the primitives bounding polygons are also
observed. All these observations, both in number of support points
as well as in terms of area, show that polygons grow considerably
after being detected. If these primitives were not expanded, the
additional support points and area would have to be handled by
a detection mechanism.

Fig. 16 shows how primitive 0, i.e., the ground plane primitive,
evolves over sequence 1. The primitive expands at every iteration
to accommodate newly observed data points that belong to the
ground plane.



M. Oliveira et al. / Robotics and Autonomous Systems ( ) – 11

Algorithm 2 Cascade configuration for the expansion of existing geometric polygonal primitives and detection of new ones.
Require: Current list of geometric polygonal primitives G = {G0, G1, ..., Gn

}

Require: P , the input point cloud, containing new range measurements
Ensure: The updated list of geometric polygonal primitives G = {G0, G1, ..., Gn, Gn+1..., Gn+m

}, where n is the number of primitives
contained in the current representation andm is the number of additional primitives that are found in this iteration
for i = 0→ n do ◃ Expansion of primitive Gi

Find the orthogonal distances d from all points in P to the support plane of primitive Gi

Compute a new point cloud Port containing all points of P whose distance is smaller than the perpendicular expansion threshold
(Tort ), Port = {�j ∈ P | dj < Tort}

Project all points in Port to support plane of primitive Gi, obtain projected point cloud J defined in R2

Initialize cycle break flag, cycle_break← false
Initialize number of expansion iterations, it ← 0
while cycle_break = false do ◃ Iterative longitudinal expansion

Expand bounding polygon, Pi
it , and obtain expanded polygon P̂

i
it

Compute Jin
it , the points from J that are inside P̂

i
it

if Jin
it = {} then ◃ no expansion occurred, break cycle
break_cycle← true
Update primitive Gi, by defining the updated bounding polygon given by Pi

it , recomputing the support plane using Principal
Component Analysis(PCA) over the old and the new inliers, e.g, the points whose projections are points contained in the list {Jin

0 , ..., Jin
it }

else
Remove all points in Jin

it from J
Remove all points from P whose projections are points in Jin
Compute the bounding polygon of the next iteration, Pi

it+1, from the convex hull of {Pi
it , Jin}

end if
increment number of iterations, it ← it + 1

end while
end for
From the input point cloudP continue to perform detection of new polygonal primitives Gn+1..., Gn+m, adding them to list of primitives
G,

Execute algorithm 1

Fig. 13. GPP reconstruction for sequence 1: (a) The reconstructed scenario after the input point cloud of location A is received; (b) after location B; (c) after location C;
(d) after location D; (e) after location E.



12 M. Oliveira et al. / Robotics and Autonomous Systems ( ) –

Fig. 14. (a) Comparison between the number of polygons generated by the algorithm using expansion and not using expansion through sequence 1; (b) number of points
to use as input to the detection in both cases; (c) Total area of the detected polygons.

Fig. 15. Analysis of the evolution of each of the polygons through sequence 1. Only pair index polygons are shown to simplify the graphs: (a) number of support points per
polygon; (b) total area of the primitives.

Fig. 16. Evolution of polygonal primitive 0 (the ground plane) through sequence 1: (a) location A; (b) location B; (c) location C; (d) location D; (e) location E.

Table 6 provides the links for some videos that show how the
system processes the data stream from the MIT sequence. It is
possible to see the difference between an incremental versus a non
incremental (without expansion) approach.

5. Conclusions

This paper proposes a novel approach to produce scene
representations using the array of sensors on-board autonomous



M. Oliveira et al. / Robotics and Autonomous Systems ( ) – 13

Table 6
Online videos showing the system running for the MIT sequence. The non
incremental approach corresponds to the continuous processing without using the
expansion mechanism. It is possible to observe that because there is no expansion,
the primitives are duplicated.

URL Description

https://youtu.be/hI_tiCYEprk Input data from MIT sequence
https://youtu.be/a1mGGbAiNsk Incremental approach
https://youtu.be/_HPLh3lPz7M Non incremental approach

vehicles. Since roads are semi structured environments with a
great deal of macro size geometric structures, we argue that
the use of polygonal primitives is well suited to describe these
scenes. Furthermore, we propose mechanisms designed to update
the polygonal primitives as new sensor data is collected. Results
have shown that the proposed approach is capable of producing
accurate descriptions of the scene, and that it is considerably faster
than all the approaches used in this evaluation. The proposed
expansion mechanism updates previous descriptions of the scene,
therefore not creating duplicate representations of the same
objects. In addition to this, the expansion mechanism is capable
of efficiently filtering out data points that otherwise would be
handled by (slower) detection mechanisms.

Futureworkwill include the addition of texture on the polygons
generated by the proposed algorithm. In this way, we expect to
have the means to produce scene representations that can be used
not only for standard task such as obstacle detection and motion
planning, but also formore complex endeavors such as recognizing
patterns in the scene.

Acknowledgments

This work has been supported by the Portuguese Founda-
tion for Science and Technology ‘‘Fundação para a Ciência e
Tecnologia’’ (FTC), under grant agreements SFRH/BD/43203/2008
and SFRH/BPD/109651/2015 and projects POCI-01-0145-FEDER-
006961 and UID/CEC/00127/2013. This work was also financed
by the ERDF European Regional Development Fund through the
Operational Programme for Competitiveness and Internationali-
sation - COMPETE 2020. A. Sappa has been partially supported
by the Spanish Government under Project TIN2014-56919-C3-2-R
and the PROMETEO Project of the ‘‘Secretaría Nacional de Edu-
cación Superior, Ciencia, Tecnología e Innovación de la República
del Ecuador’’, reference CEB-02502014.

References

[1] A. Birk, N. Vaskevicius, K. Pathak, S. Schwertfeger, J. Poppinga, H. Buelow, 3-d
perception and modeling, IEEE Robot. Autom. Mag. 16 (4) (2009) 53–60.

[2] R.B. Rusu, S. Cousins, 3D is here: Point Cloud Library (PCL), in: IEEE
International Conference on Robotics and Automation, ICRA, Shanghai, China,
2011.

[3] W. Burgard, P. Pfaff, Editorial: Three-dimensional mapping, part 1, J. Field
Robot. 26 (10) (2009) 757–758.

[4] M. Oliveira, V. Santos, A.D. Sappa, P. Dias, Robot 2015: Second Iberian
Robotics Conference: Advances in Robotics, Volume 1, Springer International
Publishing, Cham, 2016, Ch. Scene Representations for Autonomous Driving:
An Approach Based on Polygonal Primitives, pp. 503–515.

[5] M. Oliveira, V. Santos, A. Sappa, P. Dias, A.P. Moreira, Incremental texture
mapping for autonomous driving, Robot. Auton. Syst. (2016) (submitted
January 2016).

[6] A.S. Huang, M. Antone, E. Olson, L. Fletcher, D. Moore, S. Teller, J. Leonard, A
High-rate, Heterogeneous Data Set from the DARPA Urban Challenge, Int. J.
Robot. Res. 29 (13) (2011) 1595–1601.

[7] Z.C. Marton, R.B. Rusu, M. Beetz, On fast surface reconstruction methods for
large and noisy datasets, in: Proceedings of the IEEE International Conference
on Robotics and Automation, ICRA, Kobe, Japan, 2009.

[8] T. Weiss, B. Schiele, K. Dietmayer, Robust driving path detection in urban
and highway scenarios using a laser scanner and online occupancy grids, in:
Intelligent Vehicles Symposium, 2007 IEEE, 2007, pp. 184–189.

[9] F. Oniga, S. Nedevschi, Processing dense stereo data using elevation maps:
Road surface, traffic isle, and obstacle detection, IEEE Trans. Veh. Technol. 59
(3) (2010) 1172–1182.

[10] K. Zhou, M. Gong, X. Huang, B. Guo, Data-parallel octrees for surface
reconstruction, IEEE Trans. Vis. Comput. Graphics 17 (5) (2011) 669–681.

[11] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C.M. Oakley, M. Palatucci, V. Pratt,
P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C.
Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G.R. Bradski, B. Davies, S.
Ettinger, A. Kaehler, A.V. Nefian, P. Mahoney, Stanley: The robot that won the
darpa grand challenge, J. Field Robot. 23 (9) (2006) 661–692.

[12] C. Urmson, J. Anhalt, D. Bartz, M. Clark, T. Galatali, A. Gutierrez, S. Harbaugh,
J. Johnston, H. Kato, P.L. Koon, W. Messner, N. Miller, A. Mosher, K. Peterson,
C. Ragusa, D. Ray, B.K. Smith, J.M. Snider, S. Spiker, J.C. Struble, J. Ziglar, W.R.L.
Whittaker, A robust approach to high-speed navigation for unrehearsed desert
terrain, J. Field Robot. 23 (8) (2006) 467–508.

[13] C. Urmson, J. Anhalt, H. Bae, J.A.D. Bagnell, C.R. Baker, R.E. Bittner, T. Brown,
M.N. Clark, M. Darms, D. Demitrish, J.M. Dolan, D. Duggins, D. Ferguson, T.
Galatali, C.M. Geyer,M. Gittleman, S. Harbaugh,M.Hebert, T. Howard, S. Kolski,
M. Likhachev, B. Litkouhi, A. Kelly, M. McNaughton, N. Miller, J. Nickolaou, K.
Peterson, B. Pilnick, R. Rajkumar, P. Rybski, V. Sadekar, B. Salesky, Y.-W. Seo,
S. Singh, J.M. Snider, J.C. Struble, A.T. Stentz, M. Taylor, W.R.L. Whittaker, Z.
Wolkowicki, W. Zhang, J. Ziglar, Autonomous driving in urban environments:
Boss and the urban challenge, J. Field Robot. 25 (8) (2008) 425–466. Special
Issue on the 2007 DARPA Urban Challenge, Part I.

[14] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D.
Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer,
A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A.
Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, S. Thrun, Junior: The
stanford entry in the urban challenge, J. Field Robotics (2008).

[15] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz, D. Hong,
A. Wicks, T. Alberi, D. Anderson, S. Cacciola, P. Currier, A. Dalton, J. Farmer, J.
Hurdus, S. Kimmel, P. King, A. Taylor, D.V. Covern, M. Webster, Odin: Team
victortango’s entry in the darpa urban challenge, J. Field Robot. 25 (8) (2008)
467–492.

[16] T. Luettel, M. Himmelsbach, F. von Hundelshausen, M. Manz, A. Mueller, H.-
J. Wuensche, Autonomous Offroad Navigation Under Poor GPS Conditions,
in: Proceedings of 3rd Workshop On Planning, Perception and Navigation for
Intelligent Vehicles, PPNIV, IEEE/RSJ International Conference on Intelligent
Robots and Systems, St. Louis, MO, USA, 2009.

[17] Wikipedia, Google driverless car—Wikipedia, the free encyclopedia, [Online;
accessed November 2015], 2015.

[18] R. Jovanovic, R. Lorentz, Compression of volumetric data using 3d delaunay
triangulation, in: 2011 4th International Conference on Modeling, Simulation
and Applied Optimization, ICMSAO, 2011, pp. 1–5.

[19] A. Specht, M. Devy, Surface segmentation using a modified ball-pivoting
algorithm, in: 2004 International Conference on Image Processing, 2004.
ICIP’04. Vol. 3, 2004, pp. 1931–1934.

[20] C. Yin, D. Gang, C. Zhi-quan, L. Hong-hua, L. Jun, J. Shi-yao, An algorithm of
cuda-based poisson surface reconstruction, in: 2010 International Conference
on Audio Language and Image Processing, ICALIP, 2010, pp. 203–207.

[21] Y.-L. Chen, S.-H. Lai, An orientation inference framework for surface
reconstruction from unorganized point clouds, IEEE Trans. Image Process. 20
(3) (2011) 762–775.

[22] A. de Medeiros Brito, A. Doria Neto, J. Dantas de Melo, L. Garcia Goncalves, An
adaptive learning approach for 3-d surface reconstruction from point clouds,
IEEE Trans. Neural Netw. 19 (6) (2008) 1130–1140.

[23] C. Rivadeneyra, I. Miller, J. Schoenberg, M. Campbell, Probabilistic estimation
of multi-level terrain maps, in: IEEE International Conference on Robotics and
Automation, 2009. ICRA’09. 2009, pp. 1643–1648.

[24] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G. Taubin, The ball-pivoting
algorithm for surface reconstruction, IEEE Trans. Vis. Comput. Graphics 5 (4)
(1999) 349–359.

[25] M. Kazhdan, M. Bolitho, H. Hoppe, Poisson surface reconstruction, in: SGP’06:
Proceedings of the Fourth Eurographics Symposium on Geometry Processing,
Eurographics Association, 2006, pp. 61–70.

[26] R. Triebel, W. Burgard, F. Dellaert, Using hierarchical em to extract
planes from 3d range scans, in: Proceedings of the 2005 IEEE Inter-
national Conference on Robotics and Automation, 2005, pp. 4437–4442.
http://dx.doi.org/10.1109/ROBOT.2005.1570803.

[27] M.A. Fischler, R.C. Bolles, Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography, in:
ACM, Los Angeles, California, 1981.

[28] A. Nurunnabi, D. Belton, G. West, Robust segmentation for multiple planar
surface extraction in laser scanning 3d point cloud data, in: 2012 21st
International Conference on Pattern Recognition, ICPR, 2012, pp. 1367–1370.

[29] S. Hert, S. Schirra, 2D convex hulls and extreme points, in: CGAL User and
Reference Manual, 4.0 Edition, CGAL Editorial Board, 2012.

[30] A. Bykat, Convex hull of a finite set of points in two dimensions, Inform.
Process. Lett. 7 (1978) 296–298.

[31] C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex
hulls, ACM Trans. Math. Software 22 (4) (1996) 469–483.

https://youtu.be/hI_tiCYEprk
https://youtu.be/a1mGGbAiNsk
https://youtu.be/_HPLh3lPz7M
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref1
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref3
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref5
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref6
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref9
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref10
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref11
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref12
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref13
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref14
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref15
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref21
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref22
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref24
http://dx.doi.org/10.1109/ROBOT.2005.1570803
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref30
http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref31


14 M. Oliveira et al. / Robotics and Autonomous Systems ( ) –

[32] O. Aichholzer, F. Aurenhammer, D. Alberts, B. Gartner, A novel type of skeleton
for polygons, J.UCS 1 (12) (1995) 752–761.

[33] F. Cacciola, 2D straight skeleton and polygon offsetting, in: CGAL User and
Reference Manual, 4.0 Edition, CGAL Editorial Board, 2012.

Miguel Oliveira received the Mechanical Engineering and
M.Sc. in Mechanical Engineering degrees from the Univer-
sity of Aveiro, Portugal, in 2004 and 2007, where later in
2013 he obtained the Ph.D. inMechanical Engineering spe-
cialization in Robotics, on the topic of autonomous driv-
ing systems. Currently he is a researcher at the Institute of
Electronics and Telematics Engineering of Aveiro, Portu-
gal, where he works on visual object recognition in open-
ended domains. His research interests includemultimodal
sensor fusion, computer vision and robotics.

Vítor Santos obtained a 5 year degree in Electronics
Engineering and Telecommunications in 1989, at the
University of Aveiro, Portugal, where he later obtained a
Ph.D. in Electrical Engineering in 1995. He was awarded
fellowships to pursue research in mobile robotics during
1990–1994 at the Joint Research Center, Italy. He his
currently Associate Professor at the University of Aveiro
and lectures courses related to advanced perception and
robotics, and has managed research activity on mobile
robotics, advanced perception and humanoid robotics,
with the supervision or cosupervision of more than

100 graduate and undergraduate students, and more that 120 publications in
conferences, books and journals. At the University of Aveiro he has coordinated
the ATLAS project for mobile robot competition that achieved 6 first prizes in the
annual Autonomous Driving competition and has coordinated the development of
ATLASCAR, the first real carwith autonomous navigation capabilities in Portugal. He
is one of the founders of Portuguese Robotics Open in 2001where he has kept active
participation ever since. He his also cofounder of the Portuguese Society of Robotics,
and participated several times in its management since its foundation in 2006. His
current interests extend to humanoid robotics and the application of techniques
from perception and mobile robotics to autonomy and safety in ADAS contexts.

Angel Domingo Sappa (S’94-M’00-SM’12) received the
Electromechanical Engineering degree from National Uni-
versity of La Pampa, General Pico, Argentina, in 1995,
and the Ph.D. degree in Industrial Engineering from the
Polytechnic University of Catalonia, Barcelona, Spain, in
1999. In 2003, after holding research positions in France,
the UK, and Greece, he joined the Computer Vision Cen-
ter, Barcelona, where he is currently a Senior Researcher.
He is a member of the Advanced Driver Assistance Sys-
tems Group. His research interests span a broad spectrum
within the 2D and 3D image processing. His current re-

search focuses on stereoimage processing and analysis, 3D modeling, and dense
optical flow estimation.

Paulo Dias graduated from the University of Aveiro Por-
tugal in 1998 and started working in 3D reconstruction
at the European Joint research Centre in Italy. In Septem-
ber 2003, he concluded his Ph.D. with the thesis ‘‘3D
Reconstruction of real World Scenes Using Laser and In-
tensity Data’’. He is currently an assistant professor within
the Department of Electronics Telecommunications and
Informatics (DETI) and is involved in several works and
projects within the Institute of Electronics and Informat-
ics Engineering of Aveiro (IEETA) related to 3DReconstruc-
tion, Virtual Reality, Computer Vision, Computer Graphics,

Visualization and Combination and Fusion of data from multiple sensors.

António Paulo Moreira graduated with a degree in elec-
trical engineering at the University of Oporto, in 1986. He
then pursued graduate studies at University of Porto, ob-
taining an M.Sc. degree in electrical engineering-systems
in 1991 and a Ph.D. degree in electrical engineering in
1998. Presently, he is an Associate Professor at the Faculty
of Engineering of the University of Porto and researcher
and manager of the Robotics and Intelligent Systems Cen-
tre at INESC TEC. His main research interests are process
control and robotics.

http://refhub.elsevier.com/S0921-8890(16)30060-4/sbref32

	Incremental scenario representations for autonomous driving using geometric polygonal primitives
	Introduction
	Related work
	Proposed approach
	One-shot scene reconstruction
	Incremental scenario reconstruction

	Results
	One-shot reconstruction
	Incremental reconstruction
	Comparison of approaches with and without expansion

	Conclusions
	Acknowledgments
	References


