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Abstract— Localization from sensor measurements is a
fundamental task for navigation. Particle filters are among
the most promising candidates to provide a robust and real-
time solution to the localization problem. They instantiate
the localization problem as a Bayesian filtering problem and
approximate the posterior density over location by a weighted
sample set. In this paper, we introduce map-based priors for
localization, using the semantic information available in maps
to bias the motion model toward areas of higher probability.
We show that such priors, under a particular assumption
, can easily be incorporated in the particle filter by means
of a pseudo likelihood. The resulting filter is more reliable
and more accurate. We show experimental results on a GPS-
based outdoor people tracker that illustrate the approach and
highlight its potential.

I. I NTRODUCTION

In this paper we introduce map-based priors for lo-
calization. Localization from sensor measurements is a
fundamental task for navigation, but in many applications
the available sensor readings are sometimes unreliable or
not available altogether. As an example, at Georgia Tech
we are designing a system to localize blind people in
urban environments based on GPS, but it is well known
that GPS is often unreliable in urban environments, e.g.,
due to satellite obstruction. A redeeming feature of urban
environments, however, is that often high quality maps of
the area are available, and hence the question arises whether
we can use the information contained in these maps to aid in
the tracking process. Our solution is to use a priori available
maps to define a probability distribution over locations and
use that to augment the motion model in a Bayesian filtering
framework. The theory is valid for any Bayesian filtering
framework, but the current paper is mostly concerned with
its implementation within a particle filter, a sampling-based
implementation of the Bayesian filter [1], [2].

A. Localizing Robots and People

There is an extensive literature on localizing both robots
and people. A good overview of the robot localization and
mapping literature can be found in [2]. Localization and
tracking of people has been explored most thoroughly in
the Augmented Reality (AR) community. While systems
for indoors tracking have produced good results, outdoor
tracking has proved to be a more challenging problem [3].
Most current applications do real-time outdoor tracking
with a combination of GPS, dead reckoning and vision
based techniques. GPS is not always reliable, since its
accuracy depends crucially on the number of satellites

visible. In urban areas the view of the satellites can be
blocked by tall buildings or even foliage [4].

To deal with the problems of GPS or similar intermit-
tently available sensors, many current systems fuse the
information coming from multiple, complimentary sensors.
Simple solutions use a cascade of sensors, with GPS
usually being the primary one. [4] use GPS and compass
information, [5] uses GPS and vision, [6] use GPS and
dead reckoning. Others have proposed fusing multiple
sensors using Extended Kalman filters [3], or fusing sensor
information from vision and inertial trackers [7]. However,
dead reckoning is prone to drift over time and can quickly
accumulate considerable error. Vision-based sensors, on the
other hand, typically need a large amount of data about
the environment, and are not robust to lighting and abrupt
motion changes.

B. Map-Based Priors for Localization

The main contribution of this paper is the introduction
of maps as a prior in a Bayesian filtering paradigm. We
use the semantic information available in maps to bias the
motion model toward the areas of higher probability. The
relative probabilities of different areas of the map reflect
our beliefs about both the person and the environment. We
may assign a higher probability to the edges of a sidewalk
if we observe that blind people tend to walk more on the
edges of a sidewalk than in its center. Similarly, blocked
off roads would have higher probability for a pedestrian
than regular roads, and paths that lead to centers of social
interaction will be more probable than those leading to
areas of low interest. Given no other information except
such a probability map, a motion model, and the initial
position and orientation of a person, we can estimate the
short-term trajectory of this person by considering the
most probable behavior. We show that such priors, under
assumption of a particular mathematical form, can easily
be incorporated in the particle filter by means of a pseudo
likelihood.

C. Related Work

Maps have been used previously for robot localization.
Laser range data [8], [9] or odometry [10] can be matched
to an existing reference map to estimate location and orien-
tation. For example, [1] have used maps of the environment
which differentiate between obstacles and paths, but only
for the process of culling useless particles. One observation
is that sighted people generally walk more in the center of
corridors. This can be realized by constraining the particles
to move on a Voronoi diagram of the space [11].



D. Overview

The remainder of this paper is organized as follows:
in the next section, Section II, we present the problem
of localization as an instance of the Bayesian filtering
problem and describe particle filters; Section III discusses
map-based priors and a sampling technique with theoret-
ical justification; Section IV contains experimental results
illustrating the improved performance of our method over
GPS alone.

II. L OCALIZATION

A. The Bayes Filter

The localization problem can be expressed as a Bayesian
filtering problem [1], [12]. Location is typically represented
as a three-dimensional vectorx =[x,y,θ]T encoding position
and orientation, but can be more general, e.g., full 3D
position and attitude with respect to a reference frame. In
the Bayesian framework, we want to obtain the posterior
densityP(xt |Z1:t) over the current statext conditioned on
all measurementsZ1:t = {zi |i = 1..t} up to timet. By Bayes
rule this is expressed (up to a constant factor) as the product
of a likelihood P(zt |xt) and a priorP(xt |Z1:t−1) obtained
recursively from measurementsZ1:t−1 up to timet−1:

P(xt |Z1:t) ∝ P(zt |xt)P(xt |Z1:t−1) (1)

We refer to P(zt |xt) as the measurement modelas it
describes the probability of making observationzt when
the person is at locationxt . Thus, the measurement model
is selected to capture the error characteristics of the sen-
sor. The predictive distribution P(xt |Z1:t−1) denotes the
probability of a person being in the locationxt at time t
given the history of sensor measurementsZ1:t−1. We obtain
the predictive distribution by integrating themotion model
P(xt |xt−1) over the posteriorP(xt−1|Z1:t−1) :

P(xt |Z1:t−1) =
∫

xt−1

P(xt |xt−1)P(xt−1|Z1:t−1) (2)

The motion modelP(xt |xt−1) encodes the dynamics of the
target as a conditional density of the current locationxt

givenxt−1. Note that this motion model can be conditioned
on additional information such as a control inputut at time
t, but for the sake of notational simplicity we leave this
implicit below.

Combining (1) and (2) we obtain theBayes filter,

P(xt |Z1:t) = ktP(zt |xt)
∫

xt−1

P(xt |xt−1)P(xt−1|Z1:t−1) (3)

where kt is a normalizing factor. Thus, the posterior
P(xt |Z1:t) over location is recursively obtained from the
previous posteriorP(xt−1|Z1:t−1), by integrating the pre-
defined model of the target dynamics and the sensor mea-
surements.

B. Particle Filters

Particle filters [1], [13], [14] take an importance sampling
approach to implement the Bayes filter (3). They approxi-
mate the posteriorP(xt−1|Z1:t−1) as a weighted sample set,

P(xt−1|Z1:t−1)≈
N

∑
i=1

w(i)
t−1δ(x(i)

t−1,xt−1) (4)

where locationx(i)
t−1 and weightw(i)

t−1 are the information
stored in ith particle, andN is the number of samples.
The importance sampling approach is applied to sample
efficiently from the posterior density (3) [14]. In the im-
portance sampling approach, we sample from theproposal
distribution and we weight each sample with the relevant
weight. In the case of the localization, the proposal distribu-
tion is the predictive density (2) and the individual weight
is obtained from the measurement modelP(zt |xt). Thus, the
first step to estimate the current posterior densityP(xt |Z1:t)
recursively from the previous posteriorP(xt−1|Z1:t−1) is
to compute the predictive distribution from which we can
efficiently sample. With the given representation, we can
approximate the empirical predictive distribution (2), i.e.,
the mixture model :

P(xt |Z1:t−1)≈
N

∑
i=1

w(i)
t−1P(xt |x

(i)
t−1) (5)

Above, the mixture coefficients are the sample weights
w(i)

t−1, and the mixture componentP(xt |x
(i)
t−1) is the motion

model for each samplex(i)
t−1. This empirical predictive dis-

tribution is then used as the proposal distributionQ(xt) for
the importance sampling, from which we obtain unweighted
samples ˆx( j)

t :

x̂( j)
t ∼ Q(xt) =

N

∑
i=1

w(i)
t−1P(xt |x

(i)
t−1) (6)

To sample from (6), one first chooses a componenti at
random, according to the weightsw(i)

t−1, and then sample

from the corresponding componentP(xt |x
(i)
t−1). This is done

N′ times, whereN′ can equal toN, or can be adapted to the
complexity of the hypothesis or available processing power
[15]. The unweighted samples{x̂( j)

t }N′
j=1 are then upgraded

to the current posteriorP(xt |Z1:t), yielding the importance
weightsw( j)

t :

w( j)
t =

ktP(zt |x̂
( j)
t )P(x̂( j)

t |Z1:t−1)

Q(x̂( j)
t )

≈ ktP(zt |x̂
( j)
t ) (7)

Thus, the current posteriorP(xt |Z1:t) is approximated by
the following newly obtained weighted sample set :

P(xt |Z1:t)≈
N′

∑
j=1

w( j)
t δ(x( j)

t ,xt) (8)

The key advantage of particle filters is that they can
represent arbitrary posterior probability distributions, and
can deal with arbitrarily complex measurement models.



III. M AP-BASED PRIORS

A. Localization with Map-based Priors

When localizing either a robot or a person in a known
environment, it would be beneficial to be able to use the
available semantic information in maps to bias the motion
model P(xt |xt−1) toward the areas of higher probability.
The map in figure 1 shows the probability of being in a
region with colors. The zone with the brighter color is
the area with the high probability while the zone with
the darker color is the area with the low probability.
The black zones denote the zero probability areas which
may include the buildings and shrubs if we consider only
outdoor localization. Note that the map can either contain
information about the outdoor or indoor environments or
both. Denoting the map byM, the Bayes filter (3) in this
case now depends onM :

P(xt |Z1:t ,M)= ktP(zt |xt)
∫

xt−1

P(xt |xt−1,M)P(xt−1|Z1:t−1,M)

(9)
where now theaugmented motion model P(xt |xt−1,M) is
conditioned on the information in the mapM.

The use of pre-existing maps generates a more informed
posteriorP(xt |Z1:t ,M) by exploiting knowledge about the
environment. For example, people tend to walk on the
sidewalks rather than on the road or on the grass, robots
tend to stay away from objects due to on-line obstacle
avoidance methods, etc.

However, there are two potential difficulties :

1) While it is feasible to either hand-build or learn a
map-based priorP(xt |M) over locationsxt , it is not
immediately obvious how to combine this informa-
tion with the unconditional motion modelP(xt |xt−1)
to obtain the augmented motion modelP(xt |xt−1,M).

2) Depending on the nature of the augmented motion
modelP(xt |xt−1,M), evaluating the integral in (9) is
potentially much more difficult.

Below we show that both difficulties are overcome using a
particular form for the augmented motion model.

B. Augmented Motion Model

A map-based priorP(xt |M) and the unconditional motion
modelP(xt |xt−1) can be combined in an augmented motion
model P(xt |xt−1,M) if we require the augmented motion
model to be applied tolocal transitions. The local transition
assumption over the augmented motion model states that
the transition from the previous locationxt−1 to the current
location xt occurs only locally, i.e. the model considers
only the short transitions between two close locations
and the transition is not influenced by the global map
structures. Under this assumption, all possible transitions
can be classified into two cases :

1) The current locationxt and the previous location
xt−1 are in the same probability zone. Thus, the
map-based priors for the two locations are equal,
P(xt |M) = P(xt−1|M) .

2) The locationxt andxt−1 belong to the distinct prob-
ability zones. In this case, the map-based priors for
the locations differ,P(xt |M) 6= P(xt−1|M).

In the first case the augmented motion modelP(xt |xt−1,M)
is the same as the unconditional motion modelP(xt |xt−1).
This is because the local transition assumption will allow
the transition to be unaware of the global mapM.

However, in the second case of the inter-zone transition,
the augmented motion modelP(xt |xt−1,M) should be ad-
justed by the relative ratio of the map-based priors between
the two locations P(xt |M)

P(xt−1|M) . This results in an augmented
motion model which is biased toward the the areas of higher
probability. In general, the inside-zone transition case is
a special case of the inter-zone transition case with the
map-based prior ratioP(xt |M)

P(xt−1|M) equal to one. Thus, under
the particular assumption, we obtain the augmented motion
model :

P(xt |xt−1,M) = αtP(xt |xt−1)(
P(xt |M)

P(xt−1|M)
)β (10)

= α′
tP(xt |xt−1)P(xt |M)β (11)

where theα′
t is a normalizing constant andβ denotes the

relative importance of the map-based priorP(xt |M) with
respect to the unconditional motion modelP(xt |xt−1).

There is another justification for the resulting augmented
motion model (11), based on the Gibbs distributionE(x) :

P(x) ∆= e−E(x) (12)

The Gibbs distributionE(x) is interpreted as an energy
function of P(x). The x that maximizesP(x) equals the
x that minimizes the energy functionE(x). Thus, the
augmented motion model can be obtained by defining its
energy functionE(x) which can also be interpreted as the
penalty function. Natural phenomenon prefers lower energy
states and accordingly there is less penalty in such states.
Thus, the energy function of the augmented motion model
P(xt |xt−1,M) represents the penalty at the pointxt around
the specific locationxt−1 given the mapM. Again, if we
focus on the local transitions only, we can claim that the
penalty at a locationxt is the linear sum of the penalty
which is unconditioned on mapM and the penalty that
results from the inter-zone transition.

The assumption ofadditive penaltyresults in the follow-
ing augmented motion model :

P(xt |xt−1,M) = α′
t exp

{
logP(xt |xt−1)+β′ logP(xt |M)

}
(13)

Above, α′ is a normalizing constant andβ′ is a parameter
that balances the map-based priorP(xt |M) the uncondi-
tional motion modelP(xt |xt−1). The assumption of the
additive penalty model is intuitively appealing, and the
resulting model in (13) equals the model (11) exactly.



Fig. 1. Tracking without using a map prior on the first dataset. Note that
the particle trace is almost coincident with the GPS trace.

C. Incorporating Map Priors in the Bayes Filter

Plugging the new motion model (11) into the augmented
Bayes filter (9), the map prior factorP(xt |M)β can be
moved out of the integral, as it does not depend onxt−1:

P(xt |Z1:t ,M) = k′′t P(zt |xt)P(xt |M)βP′(xt |Z1:t−1,M) (14)

where

P′(xt |Z1:t−1,M) =
∫

xt−1

P(xt |xt−1)P(xt−1|Z1:t−1,M)

is the predictive density without taking the map prior into
account . This has the same form as Equation 3 on page 2,
but now with an additional factorP(xt |M)β that mediates
the information given by the map priorP(xt |M).

The implication of the particularly simple form of the
augmented filter (14) is that incorporating the map prior
in the particle filter is straightforward. We can propose
samples from the same proposal densityQ(xt) (6), and sim-
ply augment the likelihood weight with a factorP(xt |M)β

derived from the map prior:

w( j)
t =

k′′t P(zt |x
( j)
t )P(x( j)

t |M)βP′(x( j)
t |Z1:t−1,M)

Q(x̂( j)
t )

(15)

= k′′t P(zt |x̂
( j)
t )P(x̂( j)

t |M)β (16)

In other words, we have exactly the same particle filter as
before, but now we multiply each importance weight by an
additional map derived factor P(xt |M)β.

IV. RESULTS

A. Experimental Setup

We show results on two different datasets collected
with a GPS receiver in outdoor environments. The Global
Positioning System (GPS) is widely known as a solution

Fig. 2. Tracking using a map-based prior on the first dataset. Compared
with Figure 1, the tracker now prefers to stay on the heavily traveled areas
of the map such as sidewalks (white in the map). The resulting path is
much closer to the ground-truth path, as a result of mediating the noisy
GPS data with map-based prior.

for outdoors localization. The GPS receiver used to gather
the data is a handheld Garmin GPS 72s receiver that has
an error of less than 15 meters 95% of the time. Data from
GPS is converted from Latitude/Longitude coordinates to
map coordinates using the assumption that the curvature of
the Earth is negligible over the small region of interest.
Two GPS datasets were gathered on the Georgia Tech
campus, and used as the test data for the localization
with/without map-based priors. In addition, we assume a
Gaussian measurement model for the GPS.

B. Building the Map Prior

The areas in the maps fall into one of the six possible
zones and are shown in different colors as in Figure 1. The
areas, corresponding colors and the assigned probabilities
are as follows in order of decreasing probability : sidewalks
(white, 60%), parking lots and blocked off roads (light gray,
30%), lawns (gray, 5%), roads (dark gray, 5%), shrubs (very
dark gray, 0%) and buildings (black, 0%). The ratio of two
probabilities determines how easily a particle can cross the
boundary of two areas. The relative importance ratioβ in
Equation 11 is set to be 1.0 in all the experiments.

C. Data set 1

Figures 1 and 2 show that results obtained using the map-
based prior approach are more accurate, stable and keep
closer to the actual path most of the time. The blue crosses
are the trace of the actual GPS readings, the green line
is the ground truth, and the red crosses are the weighted
mean of the particle cloud at each time step. In figure 1,
we show the behavior of the particle filterwithout using
a map prior. Due to erroneous GPS readings the particles



pass through the shrubs at the bottom left and pass through
the building at the left center. In addition, the particles
pass through the lawns during most of the path in the
upper right. By using the map-based priors we can see in
2 that the particles avoid passing through the shrubs and
buildings, and stay on the center of the sidewalks most of
the time. The advantage of the map priors is most clearly
evident when the GPS readings are noisy and unstable. This
tends to happen around tall buildings, where the satellite
reception gets bad. On the left side of figure 2, we can see
that the particles correctly follow the sidewalk where the
GPS readings erroneously indicate that the person is going
through a building or shrubs. In this case the particles tend
to follow the sidewalk, since it is the highest probability
area within the GPS error radius.

Particle \ Var 5 m 10 m 15 m

500 3.01 / 2.43 / 20 2.96 / 2.37 / 20 2.96 / 2.48 / 16
1000 3.03 / 2.42 / 20 2.98 / 2.41 / 19 2.98 / 2.51 / 16
1500 3.03 / 2.43 / 20 2.98 / 2.44 / 18 2.98 / 2.46 / 17

TABLE I

RMSE RESULTS FOR THE FIRST DATASET. THE ROWS ARE THE

NUMBER OF PARTICLES USED AND THE COLUMNS ARE THE ASSIGNED

GPSVARIANCES. EACH CELL SHOWS THREE ESTIMATES: THE RMSE

OF THE NO-MAP VERSION LOCALIZATION IN METER, MAP-PRIOR

BASED LOCALIZATION IN METER AND THE PERCENTAGE OF

IMPROVEMENT BY USING MAP-PRIORS.

To obtain a more quantitative evaluation of our method,
we systematically varied several key parameters and tabu-
lated the results. Table I shows the root mean squared errors
(RMSE) of each experiment along with different values for
the number of particles and GPS variance. The RMSE gives
a measure of how much the estimated path differs from the
ground truth:

RMSE=

√
∑n

i=1(l i − ti)2

n
(17)

RMSE in equation 17 is calculated by summing the squared
distances of each estimated locationl i from the ground
truth ti , which is estimated by interpolating between known
waypoint locations, and dividing by the total number of data
pointsn.

It is evident that the map-based priors perform better
when the error of measurement model is set to be 10
meters or less. This is expected since the Garmin GPS
receiver is known to have an error <15 meters 95% of
the time, which under our Gaussian measurement model
assumption translates to a variance of approximately 7.6
meters. Moreover, a larger number of particles does not
seem to bring additional positive effect; the RMSE of map-
prior based localization is relatively static for a constant
GPS variance. This is because 500 particles can efficiently
approximate the posterior in Equation 8 without need
for additional number of particles which leads to more
processing requirements. This is a particularly encouraging
result for a mobile application where processing resources

Fig. 3. (a) Left. Tracking without map priors.
(b) Right. Tracking results with map priors.

may be limited. For the results shown in figures 1 and 2 the
number of particles are set to be 500 and the GPS variance
is set to be 5 meters.

D. Data set 2

The second dataset shows a similar improvement in
tracking due to the use of map-based priors. Figure 3(a)
shows the tracking result without map-based priors and
the result in figure 3(b) is obtained by applying the map-
based priors. On the top right of 3(a) we note that, similar
to the first dataset, the particles follow the GPS through
the buildings, while the particles in 3(b) stay in the higher
probability area nearby. Similarly, the particles in 3(a) go
into shrubs and the road at the bottom of the map due to the
erroneous GPS readings, but the particles in 3(b) constantly
stay near the center of the sidewalks. Both trajectories
deviate from the true green path at the top right of the
map, due to the extremely bad GPS readings. The number
of particles are set to be 500 and the GPS variance is set
to be 5 meters for the results in figures 3(a) and 3(b).

Particle \ Var 5 m 10 m 15 m

500 4.21 / 3.53 / 16 4.02 / 3.43 / 15 3.85 / 3.47 / 10
1000 4.06 / 3.56 / 12 4.01 / 3.42 / 15 3.84 / 3.59 / 7
1500 4.09 / 3.56 / 13 4.03 / 3.39 / 16 3.88 / 3.69 / 5

TABLE II

RMSE RESULTS FOR THE SECOND DATASET.



The RMSE results with different parameter settings are
summarized in table II. As in table I, the results show the
overall advantage of our map-based priors approach.

Even though the advantage of using the map-based priors
is evident in the figures, the RMSE does not always reflect
this. For example, one of the results (using 1500 particles
and 15 meters GPS variance) in table II shows only a
5 percent performance improvement by using map-priors.
There are two reasons for this. Firstly, the errors between
the estimated and the true path are small for most of the
path in both datasets, since the GPS tends to follow the
ground truth closely in open areas. This outweighs the
larger errors in some sections of the path, and brings the
overall RMSE for the two trajectories, which are generated
with/without map-based priors, closer. Secondly, the RMSE
calculates error based solely on the distance between the
estimated and true locations and does not take into account
the context of the estimated locations. For example, at
the top right part of figure 3(a) the estimates lie inside
a building, and RMSE fails to assign higher error for those
points than to estimates that lie the same distance away
from the ground truth but on the sidewalk, as in the top
right of figure 3(b). Hence, even though the results in figure
3(b) are visually better, there is only a slight decrease in
RMSE.

In summary, the map-based priors provide an effective
and efficient means of improving the accuracy of local-
ization schemes. We showed the improved tracking results
qualitatively in figures 2 and 3(b), and quantitatively in
tables I and II. Specifically, map-prior based localization
produces more logical results in the presence of large sensor
noise and brings the estimated path closer to the ground
truth.

V. CONCLUSIONS ANDFUTURE WORK

We introduced map-based priors, with which we can
efficiently perform localization using particle filters even
when the main sensor is inaccurate or unreliable at times.
As the experimental results show, even the localization
using noisy sensors results in far more stable local tracking,
representing the ground truth route more correctly. This
technique is applicable to variety of applications, including
tracking robots and humans.

Even though the initial results are promising, there is
plenty to do in terms of future work. In fact, the system we
have implemented can be considered a bare-bones version,
so improvements in most areas should lead to even better
results. For example, the accuracy of our method relies on
the quality of the probability map. A more realistic and
useful map could be obtained by taking observations of the
area in question over a period of time. Furthermore, a time-
dependent map could be built in this way. Such maps should
lead to improvements in the accuracy of the method. Also,
in our particular application, the results we show are not as
good as they could be if we had used a better error model
for GPS. In particular, the Gaussian model we used is not

very appropriate to model the systematic errors associated
with GPS.

As a future application of the proposed localization tech-
nique, we plan on integrating the algorithm into the Georgia
Tech System for Wearable Audio Navigation (SWAN), a
mobility tool for the visually impaired. The SWAN system
will provide guidance both outdoors and indoors, with GPS
serving as the primary sensor outdoors and computer vision
as the primary sensor indoors. In conjunction with inertial
sensors and the map-based priors discussed in this paper,
we expect an effective and successful practical application,
of benefit to a great number of people.
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