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Abstract—Event-based vision sensors, such as the Dynamic
Vision Sensor (DVS), do not output a sequence of video frames
like standard cameras, but a stream of asynchronous events. An
event is triggered when a pixel detects a change of brightness
in the scene. An event contains the location, sign, and precise
timestamp of the change. The high dynamic range and temporal
resolution of the DVS, which is in the order of micro-seconds,
make this a very promising sensor for high-speed applications,
such as robotics and wearable computing. However, due to the
fundamentally different structure of the sensor’s output, new
algorithms that exploit the high temporal resolution and the
asynchronous nature of the sensor are required. In this paper, we
address ego-motion estimation for an event-based vision sensor
using a continuous-time framework to directly integrate the
information conveyed by the sensor. The DVS pose trajectory
is approximated by a smooth curve in the space of rigid-body
motions using cubic splines and it is optimized according to the
observed events. We evaluate our method using datasets acquired
from sensor-in-the-loop simulations and onboard a quadrotor
performing flips. The results are compared to the ground truth,
showing the good performance of the proposed technique.

I. INTRODUCTION

Standard frame-based CMOS cameras operate at fixed frame
rates, sending entire images at constant time intervals that are
selected based on the considered application [14]. Contrary to
standard cameras, where pixels are acquired at regular time
intervals (e.g., global shutter or rolling shutter), event-based
vision sensors, such as the Dynamic Vision Sensor (DVS) [19],
have asynchronous pixels. Each pixel of the DVS immediately
triggers an event in case of changing brightness. The temporal
resolution of such events is in the order of micro-seconds. It is
only these changes that are transmitted, and, consequently, the
DVS is also referred to as an event-based vision sensor. Since
the output it produces—an event stream—is fundamentally
different from video streams of standard CMOS cameras,
new algorithms are required to deal with this data. Event-
based adaptations of iterative closest points [24] and optical
flow [5] have already been proposed. Recently, event-based
visual odometry [9, 17], tracking [28, 23], and Simultaneous
Localization And Mapping (SLAM) [29] algorithms have also
been presented. The design goal of such algorithms is that
each incoming event can asynchronously change the estimated
state of the system, thus, preserving the event-based nature of
the sensor and allowing the design of highly-reactive systems,
such as pen balancing [10] or particle tracking in fluids [12].

We aim to use the DVS for ego-motion estimation. The
approach provided by traditional visual-odometry frameworks,
which estimate the camera pose at discrete times (naturally,
the times the images are acquired), is no longer appropriate
for event-based vision sensors, mainly due to two issues.
First, a single event does not contain enough information to
estimate the sensor pose given by the six degrees of freedom
(DOF) of a calibrated camera. We cannot simply consider
several events to determine the pose using standard computer-
vision techniques (e.g., [18]), because the events typically all
have different timestamps, and so the resulting pose will not
correspond to any particular time. Second, a DVS typically
transmits 105 events per second, and so it is intractable to
estimate the DVS pose at the discrete times of all events
due to the rapidly growing size of the state vector needed to
represent all such poses. Instead, we adopt a continuous-time
framework approach [7] that solves the previous issues and
has additional advantages. Regarding the first issue, an explicit
continuous temporal model is a natural representation of the
pose trajectory T(t) of the DVS since it unambiguosly relates
each event, occurring at time tk, with its corresponding DVS
pose, T(tk). To solve the second issue, the DVS trajectory is
described by a smooth parametric model, with significantly
fewer parameters than events, hence achieving state space
size reduction and computational efficiency. For example, to
remove unnecessary states for the estimation of the trajectory
of dynamic objects, [7] proposed to use cubic splines. In the
experiments, they could on average reduce the size of the
state space by 70-90%. Cubic splines are also used in [13]
to model continuous-time trajectories. However, instead of
introducing all states and removing them a posteriori, the
estimation problem was directly stated in continuous time.
Wavelets have also been considered as basis for continuous-
time trajectories [3]. The continuous-time framework was also
motivated to allow data fusion of multiple sensors working
at different rates and to enable increased temporal resolu-
tion [7]. For example, [13] adopted it for dealing with two
unsynchronized sensors, such as vision and inertial ones. In
the same context of visual-inertial fusion, the framework was
used by [21] to take into account the different timestamps of
the lines of the images acquired by rolling-shutter cameras.
Similarly, the continuous-time framework has been applied to
actuated lidar [2]. Recently, connections between continuous-
time trajectory estimation and Gaussian process regression
have been shown both in batch [4] and incremental forms [31].



A. Contribution

To the authors’ knowledge, this work is the first one where
the continuous-time framework is utilized to represent the
trajectory of event-based vision sensors (e.g., the DVS), which
are asynchronous by design. Previous works used sensors of
different rates, but these were not asynchronous by design, but
rather unsynchronized with respect to each other. Since events
occur at high frequency and do not carry enough information
to estimate the full pose of the DVS, this formulation allows
us to naturally incorporate all of the information they contain
while limiting the size of the state space. It especially allows us
to exploit the high temporal resolution of the DVS and enables
us to compute the pose at any point in time along the trajectory,
with no additional sensing. We describe the DVS pose trajec-
tory using cubic B-splines as temporal basis functions and we
estimate it as a whole in a principled optimization approach, as
opposed to being estimated from individually-optimized poses.
We minimize a geometrically meaningful measure in the image
plane of the DVS with respect to the parameters describing the
trajectory. The experiments show the good performance of the
proposed approach. The method has been tested on datasets
acquired from a quadrotor performing flips.

The remainder of the paper is organized as follows. In
Section II, we characterize the Dynamic Vision Sensor (DVS).
In Section III, we review previous work on ego-motion meth-
ods with event-based vision sensors. The method developed
for DVS trajectory estimation is described in Section IV and
evaluated in Section V. Section VI draws conclusions and
points out future work.

II. DYNAMIC VISION SENSOR (DVS)
Standard CMOS cameras send full frames at fixed frame

rates. On the other hand, event-based vision sensors such
as the DVS (Fig. 1(a)) have independent pixels that fire
events at local relative brightness changes in continuous time.
Specifically, if I(x, y) is the brightness or intensity at point
u = (x, y)> in the image plane, the DVS generates an event at
that location if the change in logarithmic brightness is greater
than a threshold [9] (typically 10-15% relative brightness
change),

|∆ log(I)| ≈ | − 〈∇ log(I), u̇∆t〉 | > C, (1)

where ∇ computes the gradient (with respect to spatial coor-
dinates), u̇ is the image motion field [27, p. 183], 〈·, ·〉 is the
dot product, and ∆t is the time since the previous event at the
same pixel location.

These events are timestamped and transmitted asyn-
chronously at the time they occur using a sophisticated digital
circuitry. Each event is a tuple ek = 〈xk, yk, tk, pk〉, where
xk, yk are the pixel coordinates of the event, tk is the
timestamp of the event, and pk ∈ {−1,+1} is the polarity
of the event, which is the sign of the brightness change.
This representation is sometimes also referred to as Address-
Events Representation [19]. The set of all events is denoted
as E = {ek}, k = 1, . . . , nE , where nE is the total number of
events.

t

Standard CMOS camera

∆t ∆t ∆t

t

DVS

(a) Left: The Dynamic Vision Sensor. Right: A standard CMOS camera
sends images at a fixed frame rate (blue). A DVS instead sends spike
events at the time they occur (red). Each event corresponds to a local,
pixel-level change of brightness.

(b) Visualization of the output of a DVS looking at a rotating dot. Colored
dots mark individual events. The polarity of the events is not shown. Events
that are not part of the spiral are caused by sensor noise. Figure adapted
from [20].

Fig. 1. The output of a Dynamic Vision Sensor (DVS).

The DVS has the same optics as traditional perspective
cameras, therefore, standard camera models (e.g., pinhole) still
apply. The sensor’s spatial resolution is 128×128 pixels and it
is connected via USB. A visualization of the output of the DVS
is shown in Fig. 1(b). An additional advantage of the DVS is
its high dynamic range of 120 dB (compared to 60 dB of high
quality traditional image sensors). Current research efforts [8]
are being carried towards increasing the spatial resolution of
the sensor as well as offering the possibility to return the
absolute pixel brightness (at standard frame rates) in addition
to the events.

III. RELATED WORK: EGO-MOTION ESTIMATION WITH
EVENT-BASED VISION SENSORS

A particle-filter approach for robot self-localization using
the DVS was introduced in [28] and later extended to SLAM
in [29]. However, the system was limited to planar motions and
2-D maps. In the experiments, they used an upward-looking
DVS mounted on a ground robot moving at low speed. An
externally provided map consisting of line segments on the
ceiling was used for navigation.

In several ego-motion–estimation applications, the DVS has
been used in combination with other vision sensors. For exam-
ple, in [9], an event-based pipeline for visual odometry with
the DVS and a regular (CMOS) camera was demonstrated.



They used a probabilistic framework that processes the events
from the DVS to update the relative pose displacement of a
mobile platform since the time of the previous CMOS frame.
As another example, in the context of SLAM, the DVS was
combined with a frame-based RGB-D camera in [30]. The
algorithm used a modified particle filter for tracking the current
position and orientation of the sensor while at the same time
incrementally creating a probabilistic voxel grid map of the
previously unknown environment.

Simultaneous mosaicing and tracking with the DVS was
presented in [17]. In that approach, pose tracking was limited
to 3-D rotations and they were able to reconstruct super-
resolution panoramic image mosaics (in absolute grayscale)
from estimated brightness gradients. Their probabilistic filter-
ing algorithm was operating on an event-by-event basis. They
used a SLAM-like method of two parallel (Bayesian) filters to
jointly estimate the camera’s rotational motion and a gradient
map of a scene.

In our previous work [23], we demonstrated robot localiza-
tion in 3-D (with arbitrary 6-DOF motions) using a DVS, with
no additional sensing, during high-speed maneuvers, where
rotational speeds of up to 1,200 ◦/s were measured during
quadrotor flips. The focus was to enable a perception pipeline
whose latency is negligible compared to the dynamics of the
robot. This was done by tracking a set of gradients on a given
map on an event-by-event basis, minimizing the reprojection
error.

None of these reviewed ego-motion references has a
continuous-time representation of the trajectory of the DVS,
which is the approach leveraged in this paper and introduced
in the next section.

IV. CONTINUOUS-TIME TRAJECTORIES

Traditional visual odometry and Simultaneous Localization
and Mapping (SLAM) formulations use a discrete-time ap-
proach, i.e., the camera pose is calculated at the time the
image was acquired. Recent works have shown that, for high-
frequency data, a continuous-time formulation is preferable to
keep the size of the optimization problem bounded [13, 21].
Temporal basis functions, such as B-splines, were proposed
for camera-IMU calibration, where the frequencies of the two
sensor modalities differ by an order of magnitude. While previ-
ous approaches use continuous-time representations mainly to
reduce the computational complexity, in the case of an event-
based sensor this representation is required to cope with the
asynchronous nature of the events. Unlike a standard camera
image or an IMU reading, an event does not carry enough in-
formation to estimate the sensor pose by itself. A continuous-
time trajectory can be evaluated at any time, in particular at
each event’s timestamp, yielding a well-defined pose for every
event. Thus, our method is not only computationally effective,
but it is also necessary for a proper formulation.

Following [21], we represent Euclidean space transforma-
tions between finite cameras [15, p. 157] by means of 4 × 4

matrices of the form

Tb,a =

[
Rb,a ta
0> 1

]
, (2)

where R ∈ SO(3) (the rotation group) and t ∈ R3 are
the rotational and translational components of the rigid-body
motion, respectively. In homogeneous coordinates, a 3-D point
in frame a is mapped to a point in frame b by the change of
coordinates Xb ∼ Tb,aXa, where ∼ means equality up to a
non-zero scale factor. Transformations (2) form the special
Euclidean group SE(3) [22, p. 30], which has the structure
of both a group and a differentiable manifold, i.e., a Lie
group. A curve on SE(3) physically represents the motion
of a rigid body, e.g., the DVS. The tangent space of SE(3) at
the identity is se(3), which has the structure of a Lie algebra.
It corresponds to the space of twists, represented by 4 × 4
matrices of the form

ξ̂ =

[
ω̂ v
0> 0

]
, (3)

where v ∈ R3 and ω̂ is the 3 × 3 skew-symmetric matrix
representing the cross product: ω̂b = ω × b, ∀ω,b ∈ R3.
Variables ω and v physically represent the angular and linear
velocity vectors of the moving DVS.

Based on the theory of Lie groups, the exponential map
from se(3) to SE(3) can be defined, which gives the Eu-
clidean transformation associated to a twist, T = exp(ξ̂).
The inverse of the exponential map is the logarithmic map
ξ̂ = log(T). Moreover, every rigid-body motion T ∈ SE(3)
can be represented in such an exponential parametrization, but
the resulting twist may not be unique [22, p. 33]. However, to
avoid this ambiguity, we adopt a local-chart approach (on the
manifold SE(3)) by means of incremental rigid-body motions
(T = exp(ξ̂) with small matrix norm ‖ξ̂‖) given by the relative
transformation between two nearby poses along the trajectory
of the DVS (see (5)). In addition, this parametrization is free
from singularities. Closed-form formulas for the the exp and
log maps are given in [22].

A. Cumulative B-Splines

Following the approaches in [13, 21], we use the continuous
trajectory representation given by cubic splines since they
are characterized by valuable properties: (i) local dependency
of the trajectory with respect to the control points defining
it, (ii) simple analytical derivatives and integrals, and (iii)
the possibility of having C2 continuity. To this end, we
adopt cumulative B-spline basis functions formed using the
Lie algebra [11], which produce smooth trajectories in the
manifold of rigid-body motions SE(3).

The continuous trajectory of the DVS is parametrized by
control camera poses Tw,i at times ti, i ∈ {0, . . . , n}, where,
following the sub-index notation in (2), Tw,i is the transfor-
mation from the DVS frame at time ti to a world frame (w).
We assume that the control poses are uniformly distributed in
time, in intervals of size ∆t. Due to the locality of the cubic
B-spline basis, the value of the spline curve at any time t only



depends on four control poses. Specifically, for t ∈ [ti, ti+1)
such control poses occur at times {ti−1, . . . , ti+2}, and we
use one absolute pose (in the world frame), Tw,i−1, and three
incremental poses, parameterized by twists (3) ξ̂q ≡ Ωq ,
according to the mentioned local approach on SE(3).

The pose in the spline trajectory at time t ∈ [ti, ti+1) is

Tw,s

(
u(t)

)
= Tw,i−1

3∏
j=1

exp
(
B̃j(u(t))Ωi+j−1

)
, (4)

where u(t) = (t− ti)/∆t ∈ [0, 1), the incremental pose from
frame at time tq−1 to frame at time tq is encoded in the twist

Ωq = log(T−1w,q−1Tw,q) (5)

in terms of world-referenced poses, and

B̃(u) =
1

6


6 0 0 0
5 3 −3 1
1 3 3 −2
0 0 0 1

·


1
u
u2

u3

 (6)

are the cumulative basis functions for the B-splines, de-
rived from the matrix representation of the De Boor-Cox
formula [25]. B̃j is the j-th entry (0 based) of the cubic
polynomial vector.

B. Map Representation

To focus on the DVS trajectory estimation problem, we
assume that the map of the scene is given and is time invariant.
Specifically, the map M is a set of 3-D line segments,

M = {`j}. (7)

Line segments `j may be parametrized in different ways, for
example by their start and end points Xs

j ,X
e
j ∈ R3. As it will

be shown, the objective function (15) measures point-to-line
distances in the image plane, so we may relax the requirement
of precisely known endpoints of the segments by considering
alternative parametrizations, such as Plücker coordinates of
3-D lines and rough estimates of the segments lengths. The
solution of the data association sub-problem (section IV-C2)
between events and line segments also confers robustness to
our method, which further supports the relaxation of the above
representation.

Given a 3× 4 projection matrix P modeling the perspective
projection carried out by the DVS, the lines of the map
M can be projected to the image plane by using Plücker
coordinates [26] or by projecting the endpoints of the segments
(if they are available) and computing the line through them.
The homogeneous coordinates of the projected line through
the j-th segment are, respectively,

lj ∼ PΩ`j , (8)

where `j are the Plücker coordinates of the j-th 3-D line, Ω
is the Klein quadric [15, p.72], and P is the line projection
matrix (obtained from P), or

lj ∼ (PXs
j)× (PXe

j). (9)

C. DVS Trajectory Estimation

1) Probabilistic Approach: In general, the trajectory es-
timation problem over an interval [0, T ] can be cast in a
probabilistic form [13], seeking an estimate of the joint
posterior density p(x(t)|M, z1:N ) of the DVS state x(t) (pose
trajectory) over the interval, given the map M and the set of
all measured events z1:N = {z1, . . . , zN}, zk = (xk, yk)>

being the measured event location at time tk. Using Bayes’
rule, and assuming that the map is independent of the DVS
trajectory, we may rewrite the posterior as

p(x(t)|M, z1:N ) ∝ p(x(t)) p(z1:N |x(t),M). (10)

In the absence of prior belief for the state, p(x(t)),
the optimal trajectory is the one maximizing the likelihood
p(z1:N |x(t),M). Under the standard assumptions that the
measurements are independent of each other (given the trajec-
tory and the map) and that the measurement error in the image
coordinates of the events follows a Gaussian distribution, the
logarithmic likelihood becomes

log (p(z1:N |x(t),M)) (11)

= log

(∏
k

p(zk|x(tk),M)

)
(12)

= log

(∏
k

K exp

(
−‖zk − ẑk(x(tk),M)‖2

2σ2

))
(13)

= K̃ − 1

2σ2

∑
k

‖zk − ẑk(x(tk),M)‖2 (14)

where K, K̃, σ2 are constants. Given the map (7), the predicted
value of the event location ẑk(x(tk),M) is a point on the
projection of one of the 3-D line segments `j , and so the
reprojection error given by the norm in (14) becomes the
Euclidean (perpendicular) distance from the point to a line
segment, d⊥(z, l). The maximization of the likelihood (11)
becomes the minimization of the objective function given by
the sum of squared distances in the image plane

f :=
∑
k

d2⊥
(
zk, lj(x(tk))

)
, (15)

where lj(x(tk)) is the projection of the line segment `j ∈M
according to the pose specified in the DVS trajectory at the
time of the event, tk. Of course, this implies that there is a
data association sub-problem consisting of establishing correct
correspondences between points and line segments.

2) Constrained Optimization in Finite Dimensions: The ob-
jective function (15) is optimized with respect to the trajectory
x(t) of the DVS, which in general is represented by an arbi-
trary curve in SE(3), i.e., a “point” in an infinite-dimensional
function space. However, because we represent the curve in
terms of a finite set of known temporal basis functions (B-
splines, formalized in (4)), the trajectory is parametrized by
control poses Tw,i and, therefore, the optimization problem
becomes finite dimensional. In particular, it is a non-linear
least squares (NLLS) problem, for which standard numerical



solvers such as Gauss-Newton or Levenberg-Marquardt can be
applied.

Hence, we estimate the trajectory by minimizing the objec-
tive function (15) over the control poses,

{T∗w,i} = arg min
T
f. (16)

For each event ek, triggered at time tk in the interval
[ti, ti+1), we compute its pose Tw,s(uk) using (4), where
uk = (tk − ti)/∆t. We then project each line segment into
the current image plane and compute the distance between the
event location zk = (xk, yk)> and the corresponding imaged
line segment lj , which is computed using projection matrices
P(tk) ∼ K(I|0)T−1w,s(tk), K being the time-invariant intrinsic
parameter matrix of the DVS (once the radial distortion has
been removed). To solve the data association sub-problem that
establishes correspondences between events and line segments,
we use an Iterative Closest Point technique [6]. The optimiza-
tion problem (16) is then solved in an iterative way using the
Ceres solver [1], an efficient numerical implementation for
NLLS problems.

3) Trajectory Initialization and Extrapolation: We assume
the first DVS pose to be known: considering that the map
consists of line segments (7), the position of the DVS can be
computed by integrating the events caused by the segments
and using the Hough transform to detect the corresponding
lines (see [23]). Due to the local convergence property of the
iterative solving strategy, the control poses must be initialized
in the basin of attraction of the optimal value. Since we
cannot optimize the entire trajectory in one run without prior
knowledge, we adopt a growing-window approach, optimizing
over all existing control poses. We build up the trajectory by
initializing the first four control poses to the known initial
pose and run the optimization. We then use the last two
control poses to extrapolate the new control pose that we
add at the end. Then, we optimize again and repeat until
the entire trajectory is approximated. Specifically, for a cubic
spline trajectory, to evaluate the pose corresponding to an event
with timestamp in the interval L = [ti, ti+1) we need the
two control poses at ti+1 and ti+2 (see section IV-A). A new
control pose at time ti+3 is extrapolated when the first event
with a timestamp outside the interval L arrives. Extrapolation
is performed assuming constant velocity: Ti+3 = Ti+2dT
with dT = T−1i+1Ti+2. In the experiments we found that the
influence of new events on the optimization of previous poses
decays rapidly, hence if the number of poses becomes very
large, one may switch to a sliding-window approach after
building up an initial window.

V. EXPERIMENTS

For the experiments, we used the datasets from [23] and
compare the results of our continuous-time approach with
those achieved by the event-based reprojection error minimiza-
tion algorithm in [23]. The first experiment uses data captured
in a sensor-in-the-loop simulation. The second experiment uses
data captured by a DVS mounted on a quadrotor that was per-
forming flips, reaching rotational speeds of 1,200 ◦/s. In both
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Fig. 2. Estimated trajectories for sensor-in-the-loop simulation with respect
to the synthetic map (black square). The DVS only senses the apparent motion
of the edges of this square.

cases, the edges of a black square of known size on a white
background constitute the map M. The simplicity of the map
facilitates the data association problem (see section IV-C2) and
allows us to focus on the continuous-time trajectory estimation
that naturally incorporates the asynchronous information of
event-based cameras. These datasets fulfill all the requirements
to test and quantify the results of our method because: (1) the
DVS motion is in 6-DOF, (2) the apparent motion is large
(this would cause significant motion blur in standard cameras,
which would produce a breakdown of tracking algorithms),
and (3) ground truth is available.

A. Sensor-in-the-Loop Simulation

In the first experiment, a 3-D simulation on a computer
screen was filmed by an actual DVS. The simulation shows a
virtual flight in a circle over a black square (see Fig. 2), of
which the DVS only senses the apparent motion of the edges.
Since the DVS was calibrated with respect to the screen, the
ground-truth trajectory is known. The trajectory is shown in
Figs. 2 and 3. Control poses were placed every 0.1 s. The po-
sition and orientation errors are shown in Fig. 4, summarized
in Table I, and compared to the results of [23]. Among the
plots for the six degrees of freedom, those corresponding to
x and y positions and roll angle are the most relevant. They
reflect the DVS trajectory on a circle while always pointing
at the center of the square (cf. Fig 2). The mean reprojection
error was 0.49 pixels. Our results are consistently better than
the ones achieved with the algorithm in [23].

To measure the error between an estimated orientation R̃

and that of ground truth Rgt, we use the angle θ of the relative
rotation R̃R>gt, computed as (cf. [15, p. 584])

θ = arccos
(
(trace(R̃R>gt)− 1)/2

)
, (17)

which is the geodesic distance in SO(3) that comes naturally
with the Lie group structure [16]. We compute the position
and orientation errors for the pose of every event along the
trajectory and then compute the statistics reported in Table I:
mean (µ), standard deviation (σ), and root mean square
(RMS).

The current implementation of our method is not optimized
and, similarly to [13] and [21], not real-time. For example,
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Fig. 4. Position and orientation errors for the sensor-in-the-loop experiment.

TABLE I
RESULTS OF THE SENSOR-IN-THE-LOOP EXPERIMENT.

Position error [cm] Orientation error [◦]
µ σ RMS µ σ RMS

[23] 7.79 3.94 8.73 2.74 1.07 2.94
Spline 5.47 0.81 5.53 1.72 0.21 1.74

it takes 87.7 s to optimize a trajectory with 23 control poses
from 40,518 events. However, our formulation results in an
optimization problem with very few variables (i.e., the control
poses) compared to the number of observations (i.e., the
events) and, thus, is potentially real-time capable: possible
optimizations include the computation of analytic derivatives
(instead of numerical ones) and motion-dependent control-
pose placement.

B. Quadrotor Experiment

The second experiment uses data provided by a DVS
mounted on a quadrotor that performed flips around the optical
axis of the DVS. The experimental setup is shown in Fig. 5.
During high-speed maneuvers of mobile robots, images from
standard cameras suffer from strong motion-blur effects (see
Fig. 5(c)). However, the high temporal resolution of the DVS,
which is in the order of micro-seconds, allows us to track such
fast motions. In the present case, the rotational speed of the
quadrotor reached 1,200 ◦/s. Fig. 5(d) shows all events in a
time interval of 2 ms during a flip. The color (red or blue)
corresponds to the sign of the brightness change.

Fig. 6 shows the trajectories of our approach together with
the estimated poses of [23] and the ground truth, which was
measured with an OptiTrack motion capture system. Control
poses were placed every 0.05 s. The errors for both algorithms
are shown in Fig. 7 and analyzed in Table II. The most relevant
plots of the six degrees of freedom are the height (z) and roll
angle. The quadrotor accelerates upwards, performs the flip,
and stabilizes as it goes down. The mean reprojection error



(a) The DVS mounted on a quadrotor: (1) DVS (top) and a standard camera
(bottom), (2) single-board computer for data recording, and (3) fiducial
markers for tracking.

(b) Quadrotor performing a flip.

(c) Standard CMOS camera. (d) Integrated DVS events (2ms).

Fig. 5. Experimental Setup.

TABLE II
RESULTS OF THE QUADROTOR EXPERIMENT.

Position error [cm] Orientation error [◦]
µ σ RMS µ σ RMS

[23] 7.3 4.3 8.5 2.8 1.6 3.3
Spline 4.6 3.0 5.5 1.8 1.1 2.1

after our optimization was 0.61 pixels. Again, these results
outperform those by algorithm [23].
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Fig. 6. Plots of the six degrees of freedom for the quadrotor dataset showing
the results of the method in [23] (cyan), our method (blue), and ground truth
(black).
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Fig. 7. Position and orientation errors for the quadrotor experiment.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a method to estimate the
trajectory of an event-based vision sensor using a continuous-
time framework, which constitutes a first step towards event-
based visual SLAM in 6-DOF and without additional sensing.
This approach can deal with the high temporal resolution
and asynchronous nature of the DVS’ events in a principled
way, while providing a compact and smooth representation
of the trajectory using a parametric cubic spline model. We
optimized the approximated trajectory according to a geomet-
rically meaningful error measure in the image plane, which
has a probabilistic justification. We tested our method on real
sensor data from two experiments. In both the sensor-in-the-
loop and flipping-quadrotor datasets, our method outperformed
previous algorithms when comparing to the ground truth.
While the experiments were carried out with a simplified map,
the method can cope with arbitrary scenes composed of line
segments, which are common in man-made environments.

Control poses are currently placed equidistant in time, but
a more sensible strategy would be to add new control poses
according to the event rate and scene complexity. Future work
may also extend the method to remove the need for a given
map, in the spirit of SLAM. For robotic applications with
event-based vision sensors on a mobile platform, our method
could be extended to incorporate robot-dynamics motion mod-
els.
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Continuous-Time Trajectory Estimation as Exactly
Sparse Gaussian Process Regression. In Robotics: Sci-
ence and Systems (RSS), 2014.

[5] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and
C. Bartolozzi. Event-Based Visual Flow. IEEE Trans.
Neural Networks and Learning Systems, 25(2):407–417,
2014.

[6] P.J. Besl and Neil D. McKay. A method for registration
of 3-D shapes. IEEE Trans. Pattern Anal. Machine Intell.,
14(2):239–256, 1992.

[7] C. Bibby and I.D. Reid. A hybrid SLAM representation
for dynamic marine environments. In IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2010.

[8] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Del-
bruck. A 240x180 130dB 3us Latency Global Shutter
Spatiotemporal Vision Sensor. IEEE J. of Solid-State
Circuits, 2014.

[9] A. Censi and D. Scaramuzza. Low-Latency Event-Based
Visual Odometry. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2014.

[10] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, RJ.
Douglas, and T. Delbruck. A Pencil Balancing Robot
using a Pair of AER Dynamic Vision Sensors. In Intl.
Conf. on Circuits and Systems (ISCAS), 2009.

[11] P. Crouch, G. Kun, and F. Silva Leite. The De Casteljau
Algorithm on Lie Groups and Spheres. Journal of
Dynamical and Control Systems, 5(3):397–429, 1999.

[12] D. Drazen, P. Lichtsteiner, P. Hafliger, T. Delbruck, and
A. Jensen. Toward real-time particle tracking using
an event-based dynamic vision sensor. Experiments in
Fluids, 51(5):1465–1469, 2011. ISSN 0723-4864.

[13] P. Furgale, T.D. Barfoot, and G. Sibley. Continuous-
Time Batch Estimation using Temporal Basis Functions.
In IEEE Intl. Conf. on Robotics and Automation (ICRA),
2012.

[14] A. Handa, R.A. Newcombe, A. Angeli, and A.J. Davison.
Real-Time Camera Tracking: When is High Frame-Rate
Best? In Eur. Conf. on Computer Vision (ECCV), 2012.

[15] R. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, 2003.
Second Edition.

[16] D. Q. Huynh. Metrics for 3D Rotations: Comparison and
Analysis. Journal of Mathematical Imaging and Vision,
35(2):155–164, 2009.

[17] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. J.
Davison. Simultaneous Mosaicing and Tracking with an

http://ceres-solver.org
http://dx.doi.org/10.1109/ICRA.2014.6907757
http://dx.doi.org/10.1109/ICRA.2014.6907757
http://dx.doi.org/10.1109/ICRA.2014.6906884
http://dx.doi.org/10.1109/ICRA.2014.6906884
http://www.roboticsproceedings.org/rss10/p01.html
http://www.roboticsproceedings.org/rss10/p01.html
http://www.roboticsproceedings.org/rss10/p01.html
http://dx.doi.org/10.1109/TNNLS.2013.2273537
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/ROBOT.2010.5509262
http://dx.doi.org/10.1109/ROBOT.2010.5509262
http://dx.doi.org/10.1109/JSSC.2014.2342715
http://dx.doi.org/10.1109/JSSC.2014.2342715
http://dx.doi.org/10.1109/ICRA.2014.6906931
http://dx.doi.org/10.1109/ICRA.2014.6906931
http://dx.doi.org/10.1109/ISCAS.2009.5117867
http://dx.doi.org/10.1109/ISCAS.2009.5117867
http://dx.doi.org/10.1023/A:1021770717822
http://dx.doi.org/10.1023/A:1021770717822
http://dx.doi.org/10.1007/s00348-011-1207-y
http://dx.doi.org/10.1007/s00348-011-1207-y
http://dx.doi.org/10.1109/ICRA.2012.6225005
http://dx.doi.org/10.1109/ICRA.2012.6225005
http://dx.doi.org/10.1007/978-3-642-33786-4_17
http://dx.doi.org/10.1007/978-3-642-33786-4_17
http://www.robots.ox.ac.uk/~vgg/hzbook/
http://www.robots.ox.ac.uk/~vgg/hzbook/
http://dx.doi.org/10.1007/s10851-009-0161-2
http://dx.doi.org/10.1007/s10851-009-0161-2
http://www.bmva.org/bmvc/2014/papers/paper066/index.html


Event Camera. In British Machine Vision Conf. (BMVC),
2014.

[18] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel
parametrization of the perspective-three-point problem
for a direct computation of absolute camera position and
orientation. In Proc. IEEE Int. Conf. Computer Vision
and Pattern Recognition, pages 2969–2976, 2011.

[19] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128×128
120 dB 15 µs latency asynchronous temporal contrast
vision sensor. IEEE J. of Solid-State Circuits, 43(2):
566–576, 2008.

[20] S.-C. Liu and T. Delbruck. Neuromorphic sensory
systems. Current Opinion in Neurobiology, 20(3):288–
295, 2010.

[21] S. Lovegrove, A. Patron-Perez, and G. Sibley. Spline Fu-
sion: A continuous-time representation for visual-inertial
fusion with application to rolling shutter cameras. In
British Machine Vision Conf. (BMVC), 2013.

[22] Y. Ma, S. Soatto, J. Kos̆ecká, and S. Shankar Sastry.
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