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Abstract. In this paper, fast techniques are proposed to achieve real
time and robust monocular visual odometry. We apply an iterative 5-
point method to estimate instantaneous camera motion parameters in
the context of a RANSAC algorithm to cope with outliers efficiently. In
our method, landmarks are localized in space using a probabilistic tri-
angulation method utilized to enhance the estimation of the last camera
pose. The enhancement is performed by multiple observations of land-
marks and minimization of a cost function consisting of epipolar geom-
etry constraints for far landmarks and projective constraints for close
landmarks. The performance of the proposed method is demonstrated
through application to the challenging KITTI visual odometry dataset.

1 Introduction

Monocular visual odometry is known as a demanding problem in robotic and
computer vision communities. The main challenge of a monocular odometry
system is that feature depths are not measurable but rather they should be
estimated. Unknown depths of features are mainly handled in literature based
on two approaches. In the first approach, camera and feature positions are con-
currently estimated in the context of extended Kalman filters. The methods
belonging to this approach are mostly known as EKF-Monocular-SLAM meth-
ods (e.g. [3,9,16]). The main focus of this approach is how to parametrize large
uncertainties of landmark positions in Gaussian forms in order to handle the
problem in EKF filters. A good survey and comparison of these methods can
be found in [15]. Among the EKF-based methods, the inverse depth parame-
terization (IDP) method [3] is known to be well established and has shown the
best performance. However, it usually diverges if cameras move in depth. The
reason is that this method localizes landmarks observed at low parallax angles
very often behind cameras (negative depth problem). Additionally, complexity
of the EKF based methods increases exponentially with respect to the number of
landmarks, which makes them inappropriate for large scale robust visual odom-
etry purposes. The second approach is based on bundle adjustment, in which a
cost function between observed and predicted measurements (feature positions
on the retina of a camera) at different camera poses is defined. Then the cam-
era poses and feature positions are estimated by the minimization of the cost
function. These methods require good initial guesses of camera poses. The initial
guesses can be obtained from the epipolar geometry or based on the assumption
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that the motion parameters of the camera do not change abruptly. Based on the
epipolar geometry, a 3 × 3 matrix known as the essential matrix (for calibrated
cameras) is estimated, which encodes camera motion. Essential matrices can be
estimated using the 8-point [6], the 7-point [7] and the 5-point [13] methods.

In [19], the authors used bundle adjustment to minimize a cost function
in which feature positions parametrized using IDP. This method is not real-
time and may diverge if the camera moves in depth (due to the negative depth
problem of the IDP). In [20], the 8-point method and a delayed parameterization
technique known as the parallax angle parameterization are utilized to avoid
the negative depth problem. This method essentially relies on the landmarks
observed at high parallax angles. In [12], the authors used the perspective n point
method (PnP) to estimate camera motion iteratively. The PnP method is mainly
applicable if the positions of features in space are known (for instance from a
stereo system). In case of a monocular system, it is assumed that the motion
parameters do not change noticeably in consecutive frames; therefore, features
can roughly be localized in space. Obviously, this method can only utilize features
observed at high parallax angles and highly depends on the previous estimation
of landmark positions. Hence, if the landmarks are not localized well in the
previous steps, for instance due to measurement noise or small errors in the
estimation of motion parameters, the method diverges. One common problem
among the last three mentioned methods is that they cannot detect translation
scale appropriately without using loop closure techniques. The reason is that
visual features are hardly observed at high parallax angles in multiple frames.
Consequently, the features cannot be used to detect scale drifts efficiently. Hence
in the recent years, the scale detection problem has been approached in a different
way. In case that a camera is installed on a wheeled vehicle and the height of
the camera over the ground plane is known, absolute scale of camera motion
can be determined. Geiger et al. in [5] used the 8-point method and the height
of the camera over the ground plane to come up with the method known as
libviso. Due to the usage of the 8-point method, libviso has a poor performance,
especially in the estimation of rotation matrices. Additionally, in this method,
they did not use any constraint to distinguish between the ground plane features
from other features, resulting in large drifts in scale estimation. In [17,18], Song
et al. developed multicore real time methods in which PnP is used to estimate
motion parameters. Due to the usage of PnP, the methods produce large errors
in case of bad localization of landmarks in previous steps. In another recent
work proposed in [11], the 7-point method is modified to regularize roll and
pitch angles of rotation matrices to enhance rotation estimations. This method
is relatively time consuming and the rotation estimation is not as good as the
PnP based methods.

In this paper, we propose a new visual odometry method which can handle far
and close landmarks robustly. Our contribution to the monocular visual odome-
try is fourfold. First, using an iterative 5-point method to estimate initial guesses
of motion parameters. Second, proposing a probabilistic triangulation method to
obtain uncertainties of landmark positions. Third, robust tracking of low quality
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features on ground planes to estimate scale of camera motion. Fourth, enhanc-
ing the last camera pose by minimization of a cost function containing epipolar
and projective constraints to handle far and close landmarks intuitively. In our
method, only camera poses are iteratively estimated and landmark positions are
estimated based on the probabilistic triangulation method. This technique allows
us to leverage hundreds of features in the optimization process in real time.

The paper is organized as follows: in Sect. 2, the iterative 5-point method
is discussed. The probabilistic triangulation method is presented in Sect. 3. In
Sect. 4, our method to detect scale of camera motion is proposed. Leverage of
multiple observations of features is discussed in Sect. 5. The proposed algorithm
is evaluated in Sect. 6. Section 7 concludes this paper.

2 Inter Frame Camera Motion Estimation

A typical approach to estimate camera motion parameters between two frames is
using epipolar geometry. For a calibrated camera, given a set of matched points
{(x, y), (x′, y′)}, the following equation holds:

[x′ y′ 1]E[x y 1]T = 0 (1)

where E is known as the essential matrix. Assuming that a coordinate frame is
attached to each camera pose, each point in space in the first camera frame such
as p = [px, py, pz]T will have the coordinate of p′ = [p′

x, p′
y, p′

z]
T in the second

frame obtained as follows:

p′ = R(p − t) (2)

where R is a rotation matrix encoding the rotation from the second frame to
the first frame and t = [tx, ty, tz]T is the translation of the second frame with
respect to the first frame. It can be shown that the essential matrix is related to
R and t as follows:

E =

⎡
⎣

e1 e2 e3
e4 e5 e6
e7 e8 e9

⎤
⎦ = RT (3)

where T = [t]× is an antisymmetric matrix.
As Nister discussed in [13], the 5-point method is the best algebraic method

to estimate essential matrices. The good performance of the 5-point method
stems from two facts: first, it deals with degenerate cases efficiently; second, it
uses the minimal number of points to estimate essential matrices, which makes
the 5-point method more robust against outliers in the context of a RANSAC
algorithm [4]. Unfortunately, the 5-point method is complex and demanding to
apply it for real time purposes. In [8], an iterative 5-point method is proposed,
which runs in real time. Nevertheless, in this method, the possibility of more
solutions is not considered and it delivers only one solution. Additionally, in this
work, translation vectors are parametrized using two independent angles. This
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parametrization produces more degree of nonlinearity and consequently more
local minima in which the optimization process may get stuck. Here, we form
a nonlinear equation system based on the Sampson distance [7] and two more
constraints over the rotation and translation parameters. If we parametrize the
rotation matrix with a quaternion q = [q0, q1, q2, q3]T , given five matched points
such as {(xi, yi), (x′

i, y
′
i)}, i = 1...5, the equation system will be:

eT f1√
a2
1 + b21 + a′2

1 + b′2
1

= 0

...

eT fn√
a2
5 + b25 + a′2

5 + b′2
5

= 0

q20 + q21 + q22 + q23 = 1

t2x + t2y + t2z = 1 (4)

where, e = [e1, ..., e9]T , fi = [x′
ixi, x

′
iyi, x

′
i, y

′
ixi, y

′
iyi, y

′
i, xi, yi, 1]T , [ai, bi, ci]T =

E[xi, yi, 1]T and [a′
i, b

′
i, c

′
i] = ET [x′

i, y
′
i, 1]T (c and c′ are not used in Eq. 4). The

last two equations in Eq. 4 are due to the property of quaternions and the fact
that the translation vector can only be estimated up to a scale factor. The above
system of equations can be solved using the Gauss-Newton method. In iterative
methods, initial guesses of parameters determine the converged solution. Thus,
given five matched points, we obtain maximally up to 3 solutions based on the
following initial guesses: q = [1, 0, 0, 0]T , t ∈ {[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T }.
Using the 5-point method in [13], we may obtain more solutions. However, in
practical cases where rotations are not large, the other solutions are not either
feasible or they are close to the solutions from the iterative method. Hence, the
solutions are good enough to be used in the optimization process based on the
multiple observations of landmarks.

3 Probabilistic Triangulation

We denote a camera pose at time t with respect to a global frame as Pt =
{Rt, ct}, where Rt is a rotation matrix encoding the orientation of the camera
and ct shows the position of the camera in the global frame. If a landmark with
the coordinate p = [px, py, pz]T is observed at two camera poses Pk = {Rk, ck}
and Pt = {Rt ct} (k < t), at the points (xk, yk) and (xt, yt) on the retina of
the camera, the landmark can be localized in space using triangulation. Our
triangulation method is based on the fact that the point should lie on the lines
drawn from the center of each camera pose in the directions of the observations.
As a result, the following equations hold:

p = ck + dkvk (5)
p = ct + dtvt (6)
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where vk = Rk[xk, yk, 1]T and vt = Rt[xt, yt, 1]T . dk and dt are the depths of
the landmark in the camera frames attached to each camera pose. Using the two
equations, the following linear equation system is obtained:

[vk| − vt]
[
dk

dt

]
= ct − ck = ct,k (7)

By solving the above equation system, the depth of the landmark in the kth

camera frame will be:

dk =
ν

ρ
=

(
vT

t vtvT
k − vT

k vtvT
t

)
ct,k

vT
t vtvT

k vk − (vT
k vt)2

(8)

It can be shown that if there are measurement noise or errors in the estimation
of rotation and translation parameters, ρ and ν will be joint Gaussian random
variables: [ρ, ν]T ∼ N ([ρ̄, ν̄]T , Σ). As a result, dk has the distribution of the ratio
of two dependent Gaussian random variables. It can be shown that:

p(dk|ρ) =
1√

2πσν

|ρ|
d2k

exp
(

− (ρ − ν̄dk)2

2σ2
νd2k

)
(9)

where σ2
ν is the variance of ν obtained from the marginalization of ρ from the

joint distribution of ρ and ν. The goal of probabilistic triangulation is to find
a confidence range for dk such as [dmin

k , dmax
k ] at each new observation of the

landmark. To this end, we use Eq. 9 for ρ = ρ̄ − 2σρ and ρ = ρ̄ + 2σρ and find
two positive dk at which the probability of p(dk|ρ) is equal to a small ratio of
the maximum pick of the distribution. In Fig. 1, the two distributions for ρ = 1,
σρ = 0.1, ν = 0.1 and σν = 0.1 are depicted.
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Fig. 1. Distribution of the depth parameter based on the probabilistic triangulation
method.

It can be verified that the depth distribution tends to a Gaussian distribution
in high parallax angles. In Eq. 8, the parallax angle is the angle between vt and
vk (α = acos( vT

t vk

|vt||||vk||| )). We trim the range [dmin
k , dmax

k ] based on the new
observations of the landmark such that |dmax

k −dmin
k | reduces or stays the same.

In another word, the uncertainty of a landmark position does not increase (in
analogy to Bayesian filters) as the landmarks are assumed stationary.
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4 Scale Detection

In case that a camera is installed on a wheeled vehicle parallelly to the ground
plane, scale of translations can be obtained by using the height of the camera
over the ground plane as a known parameter. Given R and t (||t|| = 1) for two
consecutive frames and the matched points {(x, y), (x′, y′)}, we use triangulation
to localize the corresponding 3D point in the first camera frame as follows:

p = d1v1 (10)

where d1 is the depth of the point in the first camera frame and v1 = [x, y, 1]T .
It can be shown that d1 is linearly proportional to the scale factor: d1 = ηs.
Thus, given the known height of the camera h, we have: s = h

yη .
To utilize the above mentioned method, it is required to track features on

typically highly homogeneous ground planes. In this regard, we extract features
at different resolutions from a rectangular region of interest in the half bottom of
both images. Then for each feature in the first frame, we find two matches in the
second frame based on the feature descriptor used in libviso [5]. An important
criterion by which many of wrong matches can be filtered is the distances of the
matched features to their corresponding epipolar lines. Using all of the matches,
different scale factors are calculated and then by applying a median filter, the
most probable scale factor is found. This method is fast and much more accurate
than the the method used in libviso.

5 Multiple Observations of Landmarks

To deal with degenerate cases and also uncertainties of scale factors, multiple
observations of landmarks should be leveraged. Hence, we optimize the current
camera pose Pt based on the multiple observations of landmarks. To this end,
we use two types of constraints: the epipolar constraint for landmarks observed
at low parallax angles as their uncertainties are far from Gaussian distributions
and the projective constraint for landmarks observed at high parallax angles.
For a landmark observed for the first time at the camera pose Pk = {Rk, ck}
with the coordinate (xk, yk), the Sampson distance is defined as follows:

Se =
eT

t,kft,k√
a2 + b2 + a′2 + b′2 = 0 (11)

where et,k = vect(Rt,kTt,k), Rt,k = RT
t Rk, Tt,k = [ct − ck]×, [a, b, c]T =

Rt,kTt,k[xk, yk, 1]T , [a′, b′, c′]T = TT
t,kRT

t,k[xt, yt, 1]T and ft,k = [xtxk, xtyk, xt,

ytxk, ytyk, yt, xk, yk, 1]T .
In case of close landmarks, we can use the projective constraint:

(xt − x̂t)T M−1(xt − x̂t) = 0 (12)
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where xt = [xt, yt]T is the vector of the real measurement, x̂t = [x̂t, ŷt]T is the
vector of predicted measurement and M is a covariance matrix encoding the
uncertainty of the measurement. x̂t and ŷt are calculated as follows:

x̂t =
{RT

t (ck + dkRk[xk, yk, 1]T )}1
{RT

t (ck + dkRk[xk, yk, 1]T )}3
ŷt =

{RT
t (ck + dkRk[xk, yk, 1]T )}2

{RT
t (ck + dkRk[xk, yk, 1]T )}3 (13)

where {}i is the ith element of a vector. In Eq. 12, M is calculated at each frame
based on the uncertainty of the depth of the landmark. Hence to calculate M , we
insert three samples: dk, dmin

k and dmax
k in Eq. 13 and obtain three samples for

the predicted measurement. Finally, based on the three samples, M is calculated.
Now we can form a cost function which contains Sampson distances, projective
constraints and a regularization constraint as follows:

C =
n1∑
i=1

S2
e,i +

n2∑
i=1

(x̂i,t − xi,t)T M−1
i (x̂i,t − xi,t) + (yt − ŷt)T N−1(yt − ŷt)

(14)

where, n1 and n2 are the number of landmarks observed at low and high parallax
angles respectively. yt = [cx,t, cy,t, cz,t, q0,t, q1,t, q2,t, q3,t]T is a vector containing
the parameters of the last camera pose. ŷt is the initial guess of the camera pose
which is calculated based on the following motion model:

ct = ct−1 + Rt−1(qt−1)st

Rt(qt) = Rt−1(qt−1)RT (15)

where R and t are obtained from the inter frame camera motion estimation and
s comes from the scale detection module. In Eq. 14, N is a covariance matrix
obtained by the linearization of the motion model and error propagation through
the linear model. In this regard, we consider some uncertainties for the instanta-
neous motion parameters. Experimentally, we found that the variance 0.0001 for
the quaternion and translation elements works well. Additionally, the standard
deviation of s is calculated dynamically based on the difference of two consec-
utive scale factors. The last term in the cost function is essential as the cost
function could have several minima and the term regularizes the optimization
process to converge to a state near to the initial guess (in the sense of Maha-
lanobis distances). The covariance matrix is also fed to the triangulation part,
based on which the probabilistic triangulation is conducted. It should be men-
tioned that at each step the uncertainty of the previous camera pose is set to
zero as we only use N as a regularization term in a smoothing scheme not a
filtering scheme. In another word, we establish an intuitive relation between the
unknown parameters and predefine the ranges of changes for each parameter in
the optimization process. The overall method can be summarized as follows:
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1. Given the last two images, calculate inter frame motion: R and t.
2. Estimate scale of translation: s.
3. Predict the last camera pose and the covariance matrix N .
4. Minimize the cost function in Eq. 14. Use the Sampson distance for a land-

mark if dmax
k − dmin

k > Δdthreshold, otherwise use the projective constraint.
5. Run probabilistic triangulation.

6 Experimental Results

We implemented the proposed method in C++ and used the KITTI visual odom-
etry dataset for the evaluation. Concerning feature tracking, Shi-Thomasi cor-
ner features [14] with the minimum quality of 0.01 were extracted and tracked
using the Lucas-Kanade optical flow method (LK) [10]. Both of the algorithms
are implemented in OpenCV [2]. The minimum distance between features was
30 pixels and the maximum number of features was 300. For the estimation of
motion parameters between two frames, the iterative 5-point method discussed in
Sect. 2 was used. The parameters were updated in fixed number of 5 iterations.
The features were tracked maximally within 10 frames and Δdthreshold = 15.
Based on multiple observations of features, the cost function in Eq. 14 was opti-
mized with 5 iterations. With this setup, we achieved a real time performance
(10 Hz) on a PC with an Intel Xeon E31270 @ 3.40GHz CPU without using any
parallelism technique. For the evaluation, two measures are used: translation
and rotation errors. Given the real position of a camera at time t as ct and the
estimated camera position as ĉt, the average translation error is calculated as
follows:

εc =
1

Nf

Nf−1∑
t=0

‖ct − ĉt‖ (16)

where Nf is the number of frames. The average rotation error is defined as:

εR =
180
πNf

Nf−1∑
t=0

∣∣∣∣acos

(
trace(Re

t ) − 1
2

)∣∣∣∣ (17)

where Re
t = RT

t R̂t. We compared our method based on the multiple observa-
tions (MO) and only two view optimization using our iterative 5-point method
(TVO) with libviso (LV) [5], the iterative method in [8] (I5p) and a visual odom-
etry method based on the normalized 8-point method [6] and the LK tracker
(8pLK). In Table 1, the translation and rotation errors for some of the chal-
lenging training sequences of the KITTI dataset and also the average errors
for all 11 sequences are presented. Interestingly, we see that only applying our
iterative 5-point method (TVO) yields dramatically better estimations in com-
parison to the other two view based methods. In average, I5p has the poorest
performance as it neglects possibility of multiple solutions and also gets stuck in
local minima due to the way it parametrizes the essential matrix. Especially, it
performs poorly for sequences where the car often drives through sharp bends
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(due to the occurrence of degenerate cases). Interestingly, 8pLK performs better
than libviso, which signifies superiority of LK tracker over the feature match-
ing technique used in libviso as LK provides sub-pixel accuracies resulting in
less measurement noise. As expected, the multiple view observation technique
enhances the results from TVO, especially for the sequences where the ratio of
outliers is high or the number of observed features at high parallax angles is low
(for instance sequence 1). In Fig. 2, the estimated paths for the sequence 1 using
MO, TVO and LV are visualized. In this sequence, the car drives in an autobahn
and the number of landmarks observed at high parallax angles is low. As can be
seen, TVO has a poor performance when estimating the elevation of the camera
(originated from the error in the estimation of roll and pitch angles); whereas
MO is able to estimate the path well.

Table 1. Average of translation and rotation errors using different methods for the
training sequences of KITTI dataset.

Seq. Nf Method MO TVO 8pLK LV I5p MO TVO 8pLK LV I5p

Length [m] εc [m] εR [deg]

0 4541 3723.6 10.4 29.6 65.5 283.2 129.2 1.4 2.1 32.4 43.2 37.7

1 1101 2453.1 97.9 171.7 495.7 867.0 312.7 4.7 7.1 49.1 50.15 13.3

2 4661 5067.0 32.3 39.9 63.9 229.5 491.9 1.2 1.5 5.8 17.6 39.1

7 1101 694.7 25.7 89.6 123.3 115.1 99.3 2.6 3.7 4.3 40.9 22.1

Avg. 2109.2 2016.1 21.3 38.6 83.2 224.0 233.1 1.9 2.8 8.7 22.9 31.8

Fig. 2. Ground truth (G. T.) and estimated paths using different methods for the
sequence 1 of the KITTI dataset.

We also submitted our results for the test sequences to the KITTI website
under the name of FTMVO [1]. In the KITTI website, the methods are evaluated
based on the percentage of errors until 800 meters with the step of 100 meters. In
Table 2, the average of translation and rotation errors for our method and two
recent methods of state-of-the-art are presented. As can be seen, our method
outperforms the two methods MLM-SFM [17] and RCMPE+GP [11]. In [1], it
can be seen that our method also outperforms many of the stereo vision based
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Table 2. Average of translation and rotation errors for the test sequences of KITTI
dataset: our method (FTMVO), MLM-SFM (M. 1) and RCMPE+GP (M. 2).

Method FTMVO M. 1 M. 2

Tr. error [%] 2.24 2.54 2.55

Method FTMVO M. 1 M. 2

Rot. error [deg/m] 0.049 0.057 0.087

Fig. 3. Estimated (blue) and ground truth (red) paths for test sequence 14 based on
our method (left) and MLM-SFM (right) (Colour figure online).

methods. From the test sequences, the X − Z path of the first five sequences
are visualized in the KITTI website. In Fig. 3, the estimated paths using our
method and MLM-SFM for the sequence 14 are shown. The poor performance
of MLM-SFM for this sequence lies in using the PnP method which degrades
the estimations if the landmarks are badly localized in the previous frames. This
situation occurs often if the camera experiences relatively large rotations and
small translations.

7 Conclusion

An intuitive monocular visual odometry method is proposed, in which far and
close landmarks are robustly handled. Through the proposed probabilistic trian-
gulation technique, unlike the common SLAM or structure from motion methods,
we can run the optimization process only on the last camera pose and exclude
the localization of landmarks from the optimization process. Such an approach
results in speeding up the algorithm to a great extent and also robustness of
the algorithm against outliers. The performance of the method is demonstrated
based on the large and demanding KITTI dataset for visual odometry.
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