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MOT16: A Benchmark for Multi-Object Tracking
Anton Milan∗, Laura Leal-Taixé∗, Ian Reid, Stefan Roth, and Konrad Schindler

Abstract—Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking
tables should not be over-claimed, benchmarks often provide the most objective measure of performance and are therefore important
guides for reseach. Recently, a new benchmark for Multiple Object Tracking, MOTChallenge, was launched with the goal of collecting
existing and new data and creating a framework for the standardized evaluation of multiple object tracking methods [28]. The first
release of the benchmark focuses on multiple people tracking, since pedestrians are by far the most studied object in the tracking
community. This paper accompanies a new release of the MOTChallenge benchmark. Unlike the initial release, all videos of MOT16
have been carefully annotated following a consistent protocol. Moreover, it not only offers a significant increase in the number of labeled
boxes, but also provides multiple object classes beside pedestrians and the level of visibility for every single object of interest.

Index Terms—multiple people tracking, benchmark, evaluation metrics, dataset
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1 INTRODUCTION

Evaluating and comparing multi-target tracking meth-
ods is not trivial for numerous reasons (cf. e.g. [34]).
First, unlike for other tasks, such as image denoising,
the ground truth, i.e. the perfect solution one aims to
achieve, is difficult to define clearly. Partially visible,
occluded, or cropped targets, reflections in mirrors or
windows, and objects that very closely resemble targets
all impose intrinsic ambiguities, such that even humans
may not agree on one particular ideal solution. Second, a
number of different evaluation metrics with free param-
eters and ambiguous definitions often lead to conflicting
quantitative results across the literature. Finally, the lack
of pre-defined test and training data makes it difficult to
compare different methods fairly.

Even though multi-target tracking is a crucial problem
in scene understanding, until recently it still lacked
large-scale benchmarks to provide a fair comparison
between tracking methods. In 2014, we released the
MOTChallenge benchmark, which consisted of three main
components: (1) a (re-)collection of publicly available
and new datasets, (2) a centralized evaluation method,
and (3) an infrastructure that allows for crowdsourcing
of new data, new evaluation methods and even new an-
notations. The first release of the dataset named MOT15
consisted of 11 sequences for training and 11 for testing,
with a total of 11286 frames or 996 seconds of video.
Pre-computed object detections, annotations (only for the
training sequences), and a common evaluation method
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for all datasets was provided to all participants, which
allowed for all results to be compared in a fair way.

Since October 2014, 47 methods have been publicly
tested on the MOTChallenge benchmark, and over 180
users have registered. It has been established as a new
standard benchmark for multiple people tracking, and
methods have improved accuracy by over 10%. The first
workshop [2] organized on the MOTChallenge bench-
mark took place in early 2015 in conjunction with the
Winter Conference on Applications of Computer Vision
(WACV). Despite its success, MOT15 is lacking in a few
aspects:

• The annotation protocol is not consistent across all
sequences since some of the ground truth was col-
lected from various sources with already available
annotations;

• the distribution of crowd density is not balanced for
training and test sequences;

• some of the sequences are easy and well-known (e.g.
PETS09-S2L1) and methods are overfitted to them,
which makes them not ideal for training purposes;

• the provided detections did not show good per-
formance on the benchmark, which made some
participants switch to another pedestrian detector.

In order to improve the above shortcomings, we
now introduce the new MOT16 benchmark, a set of
14 sequences with more crowded scenarios, different
viewpoints, camera motions and weather conditions.
Most importantly, the annotations for all sequences have
been carried out by qualified researchers from scratch
following a strict protocol, and finally double-checked to
ensure highest annotation accuracy. Not only pedestrians
are annotated, but also vehicles, sitting people, occluding
objects, as well as other significant object classes. With
this fine-grained level of annotation it is possible to
accurately compute the degree of occlusion and cropping
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of all bounding boxes, which is also provided with
the benchmark. We hope that this rich ground truth
information will be very useful to the community in
order to develop even more accurate tracking methods
and advancing the field further. This paper has thus
three main goals:

1) To present the new MOT16 benchmark for fair
evaluation of multi-target tracking methods;

2) to detail the annotation protocol strictly followed
to create the ground truth of the benchmark;

3) to bring forward the strengths and weaknesses of
state-of-the-art multi-target tracking methods.

The benchmark with all datasets, current ranking and
submission guidelines can be found at:

http://www.motchallenge.net/

1.1 Related work

Benchmarks and challenges. In the recent past, the
computer vision community has developed centralized
benchmarks for numerous tasks including object detec-
tion [14], pedestrian detection [12], 3D reconstruction
[39], optical flow [7], [19], visual odometry [19], single-
object short-term tracking [26], and stereo estimation
[19], [37]. Despite potential pitfalls of such benchmarks
(e.g. [42]), they have proven to be extremely helpful to
advance the state of the art in the respective area. For
multiple target tracking, in contrast, there has been very
limited work on standardizing quantitative evaluation.

One of the few exceptions is the well known PETS
dataset [16], targeted primarily at surveillance applica-
tions. The 2009 version consisted of 3 subsets: S1 targeted
at person count and density estimation, S2 targeted
at people tracking, and S3 targeted at flow analysis
and event recognition. The easiest sequence for track-
ing (S2L1) consisted of a scene with few pedestrians,
and for that sequence state-of-the-art methods perform
extremely well with accuracies of over 90% given a
good set of initial detections [23], [33], [47]. Methods
then moved to tracking on the hardest sequence (i.e.
with the highest crowd density), but hardly ever on the
complete dataset. Even for this widely used benchmark,
we observe that tracking results are commonly obtained
in an inconsistent fashion: involving using different sub-
sets of the available data, inconsistent model training
that is often prone to overfitting, varying evaluation
scripts, and different detection inputs. Results are thus
not easily comparable. Hence, the question that arises is:
Are these sequences already too easy for current tracking
methods, are methods simply overfit, or are they poorly
evaluated?

The PETS team organizes a workshop approximately
once a year to which researchers can submit their results,
and methods are evaluated under the same conditions.
Although this is indeed a fair comparison, the fact that
submissions are evaluated only once a year means that
the use of this benchmark for high impact conferences

like ICCV or CVPR remains challenging. Furthermore,
the sequences tend to be focused only on surveillance
scenarios, and lately on specific tasks such as vessel
tracking.

A well-established and useful way of organizing
datasets is through standardized challenges. These are
usually in the form of web servers that host the data and
through which results are uploaded by the users. Results
are then computed in a centralized way by the server
and afterwards presented online to the public, making
comparison with any other method immediately possi-
ble. There are several datasets organized in this fashion:
the Labeled Faces in the Wild [24] for unconstrained face
recognition, the PASCAL VOC [14] for object detection,
the ImageNet large scale visual recognition challenge
[?], or the Reconstruction Meets Recognition Challenge
(RMRC) [1].

Recently, the KITTI benchmark [19] was introduced
for challenges in autonomous driving, which included
stereo/flow, odometry, road and lane estimation, object
detection and orientation estimation, as well as track-
ing. Some of the sequences include crowded pedestrian
crossings, making the dataset quite challenging, but the
camera position is always the same for all sequences (at
a car’s height).

Another work that is worth mentioning is [4], in which
the authors collected a very large amount of data with 42
million pedestrian trajectories. Since annotation of such
a large collection of data is infeasible, they use a denser
set of cameras to create the “ground truth” trajectories.
Though we do not aim at collecting such a large amount
of data, the goal of our benchmark is somewhat similar:
to push research in tracking forward by generalizing the
test data to a larger set that is highly variable and hard
to overfit.

In the near future, DETRAC, a new benchmark for ve-
hicle tracking [44], is going to open a similar submission
system to the one we proposed with MOTChallenge. The
benchmark consists of a total of 100 sequences, 60% of
which is used for training. Sequences are filmed from a
high viewpoint (surveillance scenarios) with the goal of
vehicle tracking.

With the MOT16 release within the MOTChallenge
benchmark, we aim to increase the difficulty by in-
cluding a variety of sequences filmed from different
viewpoints, with different lighting conditions, and far
more crowded scenarios when compared to our first
release.

Evaluation. A critical point with any dataset is how
to measure the performance of the algorithms. In the
case of multiple object tracking, the CLEAR metrics [25]
have emerged as one of the standard measures. We will
discuss them in more detail in Sec. 4.1. By measuring the
intersection over union of bounding boxes and match-
ing those from ground truth annotations and results,
measures of accuracy and precision can be computed.
Precision measures how well the persons are localized,

http://www.motchallenge.net/
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Fig. 1: An overview of the MOT16 dataset. Top: Training sequences; bottom: test sequences.

while accuracy evaluates how many distinct errors such
as missed targets, ghost trajectories, or identity switches
are made.

Another set of measures that is widely used in the
tracking community is that of [30]. There are three
widely used metrics introduced in that work: mostly
tracked, mostly lost, and partially tracked pedestrians.
These numbers give a very good intuition on the per-
formance of the method. We refer the reader to [28] for
more formal definitions.

A key parameter in both families of metrics is the
intersection-over-union threshold, which determines if
a bounding box is matched to an annotation or not. It
is fairly common to observe methods compared under
different thresholds, varying from 25% to 50%. There are
often many other variables and implementation details
that differ between evaluation scripts, but which may
affect results significantly.

It is therefore clear that standardized benchmarks
are the only way to compare methods in a fair and
principled way. Using the same ground truth data and
evaluation methodology is the only way to guarantee
that the only part being evaluated is the tracking method
that delivers the results. This is the main goal behind this
paper and behind the MOTChallenge benchmark.

2 ANNOTATION RULES

We follow a set of rules to annotate every moving person
or vehicle within each sequence with a bounding box as
accurately as possible. In the following we define a clear
protocol that was obeyed throughout the entire dataset
to guarantee consistency.

2.1 Target class
In this benchmark we are interested in tracking moving
objects in videos. In particular, we are interested in eval-
uating multiple people tracking algorithms, therefore,
people will be the center of attention of our annotations.
We divide the pertinent classes into three categories:
(i) moving or standing pedestrians;
(ii) people that are not in an upright position or artificial
representations of humans; and
(iii) vehicles and occluders.

In the first group, we annotate all moving or standing
(upright) pedestrians that appear in the field of view
and can be determined as such by the viewer. People

on bikes or skateboards will also be annotated in this
category (and are typically found by modern pedestrian
detectors). Furthermore, if a person briefly bends over or
squats, e.g. to pick something up or to talk to a child,
they shall remain in the standard pedestrian class. The
algorithms that submit to our benchmark are expected
to track these targets.

In the second group we include all people-like objects
whose exact classification is ambiguous and can vary
depending on the viewer, the application at hand, or
other factors. We annotate all static people that are not
in an upright position, e.g. sitting, lying down. We also
include in this category any artificial representation of
a human that might fire a detection response, such as
mannequins, pictures, or reflections. People behind glass
should also be marked as distractors. The idea is to
use these annotations in the evaluation such that an
algorithm is neither penalized nor rewarded for tracking,
e.g., a sitting person or a reflection.

In the third group, we annotate all moving vehicles
such as cars, bicycles, motorbikes and non-motorized
vehicles (e.g. strollers), as well as other potential oc-
cluders. These annotations will not play any role in
the evaluation, but are provided to the users both for
training purposes and for computing the level of occlu-
sion of pedestrians. Static vehicles (parked cars, bicycles)
are not annotated as long as they do not occlude any
pedestrians.

The rules are summarized in Tab. 1 and in Fig. 2 we
present a diagram of the classes of objects we annotate,
as well as a sample frame with annotations.

2.2 Bounding box alignment

The bounding box is aligned with the object’s extent as
accurately as possible. The bounding box should contain
all pixels belonging to that object and at the same time be
as tight as possible, i.e. no pixels should be left outside
the box. This means that a walking side-view pedestrian
will typically have a box whose width varies periodically
with the stride, while a front view or a standing person
will maintain a more constant aspect ratio over time. If
the person is partially occluded, the extent is estimated
based on other available information such as expected
size, shadows, reflections, previous and future frames
and other cues. If a person is cropped by the image
border, the box is estimated beyond the original frame
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Target Ambiguous Other
Pedestrian

OnDvehicle
Walking
Running
Standing
... Cycling

Skating
...

StaticDperson

Sitting
Lying
...

Distractor

Mannikin
Poster
Statue

...
Reflection

Bicycle

Car

Occluder

LampDpost
TrashDbin
Pillar
Tree
Stroller

Motorbike

Fig. 2: Left: An overview of annotated classes. The classes in orange will be the central ones to evaluate on. The
red classes include ambiguous cases such that both recovering and missing them will not be penalized in the
evaluation. The classes in green are annotated for training purposes and for computing the occlusion level of all
pedestrians. Right: An exemplar of an annotated frame. Note how partially cropped objects are also marked outside
of the frame. Also note that the bounding box encloses the entire person but not e.g. the white bag of Pedestrian 1
(bottom left).

Instruction
What? Targets: All upright people including

+ walking, standing, running pedestrians
+ cyclists, skaters

Distractors: Static people or representations
+ people not in upright position (sitting, lying down)
+ reflections, drawings or photographs of people
+ human-like objects like dolls, mannequins

Others: Moving vehicles and occluders
+ Cars, bikes, motorbikes
+ Pillars, trees, buildings

When? Start as early as possible.
End as late as possible.
Keep ID as long as the person is inside the field of
view and its path can be determined unambiguously.

How? The bounding box should contain all pixels belong-
ing to that person and at the same time be as tight
as possible.

Occlusions Always annotate during occlusions if the position can
be determined unambiguously.
If the occlusion is very long and it is not possible
to determine the path of the object using simple rea-
soning (e.g. constant velocity assumption), the object
will be assigned a new ID once it reappears.

TABLE 1: Instructions obeyed during annotations.

to represent the entire person and to estimate the level
of cropping. If an occluding object cannot be accurately
enclosed in one box (e.g. a tree with branches or an
escalator may require a large bounding box where most
of the area does not belong to the actual object), then
several boxes may be used to better approximate the
extent of that object.

Persons on vehicles will only be annotated separately
from the vehicle if clearly visible. For example, children
inside strollers or people inside cars will not be anno-
tated, while motorcyclists or bikers will be.

2.3 Start and end of trajectories
The box (track) appears as soon as the person’s location
and extent can be determined precisely. This is typically
the case when ≈ 10% of the person becomes visible.
Similarly, the track ends when it is no longer possible

to pinpoint the exact location. In other words the anno-
tation starts as early and ends as late as possible such
that the accuracy is not forfeited. The box coordinates
may exceed the visible area. Should a person leave the
field of view and appear at a later point, they will be
assigned a new ID.

2.4 Minimal size

Although the evaluation will only take into account
pedestrians that have a minimum height in pixels, anno-
tations will contain all objects of all sizes as long as they
are distinguishable by the annotator. In other words, all
targets independent of their size on the image shall be
annotated.

2.5 Occlusions

There is no need to explicitly annotate the level of
occlusion. This value will be computed automatically
using the ground plane assumption and the annotations.
Each target is fully annotated through occlusions as long
as its extent and location can be determined accurately
enough. If a target becomes completely occluded in the
middle of the sequence and does not become visible
later, the track should be terminated (marked as ‘outside
of view’). If a target reappears after a prolonged period
such that its location is ambiguous during the occlusion,
it will reappear with a new ID.

2.6 Sanity check

Upon annotating all sequences, a “sanity check” was
carried out to ensure that no relevant entities were
missed. To that end, we ran a pedestrian detector on
all videos and added all high-confidence detections that
corresponded to either humans or distractors to the
annotation list.
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3 DATASETS

One of the key aspects of any benchmark is data col-
lection. The goal of MOT16 is to compile a benchmark
with new sequences, which are more challenging than
the ones presented in MOT15. In Fig. 1 and Tab. 2 we
show an overview of the sequences included in the
benchmark.

3.1 2D MOT 2016 sequences
We have compiled a total of 14 sequences, of which we
use half for training and half for testing. The annotations
of the testing sequences will not be released in order
to avoid (over)fitting of the methods to the specific
sequences.

Sequences are very different from each other, we can
classify them according to:

• Moving or static camera – the camera can be held
by a person, placed on a stroller or on a car, or can
be positioned fixed in the scene.

• Viewpoint – the camera can overlook the scene from
a high position, a medium position (at pedestrian’s
height), or at a low position.

• Conditions – the weather conditions in which the se-
quence was taken are reported in order to obtain an
estimate of the illumination conditions of the scene.
Sunny sequences may contain shadows and satu-
rated parts of the image, while the night sequence
contains a lot of motion blur, making pedestrian
detection and tracking rather challenging. Cloudy
sequences on the other hand contain fewer of those
artifacts.

The new data contains almost 3 times more bounding
boxes for training and testing compared to MOT15. Most
sequences are filmed in high resolution, and the mean
crowd density is 3 times higher when compared to
the first benchmark release. Hence, we expect the new
sequences to be more challenging for the tracking com-
munity. In Tab. 2, we give an overview of the training
and testing sequence characteristics for the challenge,
including the number of bounding boxes used.

Aside from pedestrians, the annotations also include
other classes like vehicles, bicycles, etc. as detailed in
Sec. 2. In Tab. 3, we detail the types of annotations that
can be found in each sequence of MOT16.

3.2 Detections
We tested several state-of-the-art detectors on our bench-
mark, obtaining the Precision-Recall curves in Fig. 3.
Note that the deformable part-based model (DPM) v5
[15], [22] outperforms the other detectors in the task
of pedestrian detection. As noted in [21], out-of-the-
box R-CNN outperforms DPM in detecting all object
classes except for the class “person”, which is why we
supply DPM detections with the benchmark. We use the
pretrained model with a low threshold of −1 in order to
maintain relatively high recall. Note that the recall does

not reach 100% because of the non-maximum suppres-
sion applied. Exemplar detection results are shown in
Fig. 3.

A detailed breakdown of detection bounding boxes on
individual sequences is provided in Tab. 4.

Seq nDet. nDet./fr. min height max height
MOT16-01 3,775 8.39 19.00 258.92
MOT16-02 7,267 12.11 19.00 341.97
MOT16-03 85,854 57.24 19.00 297.57
MOT16-04 39,437 37.56 19.00 341.97
MOT16-05 4,333 5.18 19.00 225.27
MOT16-06 7,851 6.58 19.00 210.12
MOT16-07 11,309 22.62 19.00 319.00
MOT16-08 10,042 16.07 19.00 518.84
MOT16-09 5,976 11.38 19.00 451.55
MOT16-10 8,832 13.50 19.00 366.58
MOT16-11 8,590 9.54 19.00 518.84
MOT16-12 7,764 8.63 19.00 556.15
MOT16-13 5,355 7.14 19.00 210.12
MOT16-14 8,781 11.71 19.00 258.92
total 215,166 19.15 19.00 556.15

TABLE 4: Detection bounding box statistics.

Obviously, we cannot (nor necessarily want to) pre-
vent anyone from using a different set of detections,
or relying on a different set of features. However, we
require that this is noted as part of the tracker’s de-
scription and is also displayed in the ratings table for
transparency.

3.3 Data format

All images were converted to JPEG and named sequen-
tially to a 6-digit file name (e.g. 000001.jpg). Detection
and annotation files are simple comma-separated value
(CSV) files. Each line represents one object instance and
contains 9 values as shown in Tab. 5.

The first number indicates in which frame the object
appears, while the second number identifies that object
as belonging to a trajectory by assigning a unique ID (set
to −1 in a detection file, as no ID is assigned yet). Each
object can be assigned to only one trajectory. The next
four numbers indicate the position of the bounding box
of the pedestrian in 2D image coordinates. The position
is indicated by the top-left corner as well as width
and height of the bounding box. This is followed by a
single number, which in case of detections denotes their
confidence score. The last two numbers for detection files
are ignored (set to -1).

An example of such a 2D detection file is:
1, -1, 794.2, 47.5, 71.2, 174.8, 67.5, -1, -1
1, -1, 164.1, 19.6, 66.5, 163.2, 29.4, -1, -1
1, -1, 875.4, 39.9, 25.3, 145.0, 19.6, -1, -1
2, -1, 781.7, 25.1, 69.2, 170.2, 58.1, -1, -1

For the ground truth and results files, the 7th value
(confidence score) acts as a flag whether the entry is to
be considered. A value of 0 means that this particular
instance is ignored in the evaluation, while a value of
1 is used to mark it as active. The 8th number indicates
the type of object annotated, following the convention of
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Training sequences
Name FPS Resolution Length Tracks Boxes Density Camera Viewpoint Conditions Source
MOT16-02 30 1920x1080 600 (00:20) 49 17,833 29.7 static medium cloudy new
MOT16-04 30 1920x1080 1,050 (00:35) 80 47,557 45.3 static high night new
MOT16-05 14 640x480 837 (01:00) 124 6,818 8.1 moving medium sunny [13]
MOT16-09 30 1920x1080 525 (00:18) 25 5,257 10.0 static low indoor new
MOT16-10 30 1920x1080 654 (00:22) 54 12,318 18.8 moving medium night new
MOT16-11 30 1920x1080 900 (00:30) 67 9,174 10.2 moving medium indoor new
MOT16-13 25 1920x1080 750 (00:30) 68 11,450 15.3 moving high sunny new

Total training 5,316 (03:35) 512 110,407 20.8

Testing sequences
Name FPS Resolution Length Tracks Boxes Density Camera Viewpoint Conditions Source
MOT16-01 30 1920x1080 450 (00:15) 23 6,395 14.2 static medium cloudy new
MOT16-03 30 1920x1080 1,500 (00:50) 148 104,556 69.7 static high night new
MOT16-06 14 640x480 1,194 (01:25) 217 11,538 9.7 moving medium sunny [13]
MOT16-07 30 1920x1080 500 (00:17) 55 16,322 32.6 moving medium shadow new
MOT16-08 30 1920x1080 625 (00:21) 63 16,737 26.8 static medium sunny new
MOT16-12 30 1920x1080 900 (00:30) 94 8,295 9.2 moving medium indoor new
MOT16-14 25 1920x1080 750 (00:30) 230 18,483 24.6 moving high sunny new

Total testing 5,919 (04:08) 830 182,326 30.8

TABLE 2: Overview of the sequences currently included in the MOT16 benchmark.

Annotation classes

Sequence
Pedes-

trian
Person

on
vehicle

Car
Bicy-

cle

Mo-
tor-

bike

Non
motor-

ized
vehi-

cle

Static
per-
son

Dis-
trac-

tor

Oc-
cluder
on the
ground

Oc-
cluder

full

Re-
flec-
tion Total

MOT16-01 6,395 346 0 341 0 0 4,790 900 3,150 0 0 15,922
MOT16-02 17,833 1,549 0 1,559 0 0 5,271 1,200 1,781 0 0 29,193
MOT16-03 104,556 70 1,500 12,060 1,500 0 6,000 0 24,000 13,500 0 163,186
MOT16-04 47,557 0 1,050 11,550 1,050 0 4,798 0 23,100 18,900 0 108,005
MOT16-05 6,818 315 196 315 0 11 0 16 0 0 0 7,671
MOT16-06 11,538 150 0 118 0 0 269 238 109 0 0 12,422
MOT16-07 16,322 0 0 0 0 0 2,023 0 1,920 0 0 20,265
MOT16-08 16,737 0 0 0 0 0 1,715 2,719 6,875 0 0 28,046
MOT16-09 5,257 0 0 0 0 0 0 1,575 1,050 0 948 8,830
MOT16-10 12,318 0 25 0 0 0 1,376 470 2,740 0 0 16,929
MOT16-11 9,174 0 0 0 0 0 0 306 596 0 0 10,076
MOT16-12 8,295 0 0 0 0 0 1,012 765 1,394 0 0 11,464
MOT16-13 11,450 0 4,484 103 0 0 0 4 2,542 680 0 19,263
MOT16-14 18,483 0 1,563 0 0 0 712 47 4,062 393 0 25,260

Total 292,733 2,430 8,818 26,046 2,550 11 27,966 8,238 73,319 33,473 948 476,532

TABLE 3: Overview of the types of annotations currently found in the MOT16 benchmark.

Tab. 6. The last number shows the visibility ratio of each
bounding box. This can be due to occlusion by another
static or moving object, or due to image border cropping.

An example of such an annotation 2D file is:
1, 1, 794.2, 47.5, 71.2, 174.8, 1, 1, 0.8
1, 2, 164.1, 19.6, 66.5, 163.2, 1, 1, 0.5
2, 4, 781.7, 25.1, 69.2, 170.2, 0, 12, 1.

In this case, there are 2 pedestrians in the first frame of
the sequence, with identity tags 1, 2. In the second frame,
we can see a reflection (class 12), which is to be consid-
ered by the evaluation script and will neither count as
a false negative, nor as a true positive, independent of
whether it is correctly recovered or not. Note that all
values including the bounding box are 1-based, i.e. the
top left corner corresponds to (1, 1).

To obtain a valid result for the entire benchmark,

a separate CSV file following the format described
above must be created for each sequence and called
‘‘Sequence-Name.txt’’. All files must be com-
pressed into a single ZIP file that can then be uploaded
to be evaluated.

4 EVALUATION
Our framework is a platform for fair comparison of state-
of-the-art tracking methods. By providing authors with
standardized ground truth data, evaluation metrics and
scripts, as well as a set of precomputed detections, all
methods are compared under the exact same conditions,
thereby isolating the performance of the tracker from
everything else. In the following paragraphs, we detail
the set of evaluation metrics that we provide in our
benchmark.
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Recall

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

0

0.2

0.4

0.6

0.8

1

Rcll: 43.7 %

Prc: 60.1 %Rcll: 49.5 %

Prc: 66.0 %

Detector Performance

Training Set

Test Set

(c) DPM v5 [15] (d) MOT16-03

Fig. 3: (a) The performance of three popular pedestrian detectors evaluated on the training (blue) and the test (red)
set. The circle indicates the operating point (i.e. the input detection set) for the trackers. (d) Exemplar detection
results. As can be seen, DPM provides the highest recall at the best precision, which is why we release only this
detection set to the public.

Position Name Description
1 Frame number Indicate at which frame the object is present
2 Identity number Each pedestrian trajectory is identified by a unique ID (−1 for detections)
3 Bounding box left Coordinate of the top-left corner of the pedestrian bounding box
4 Bounding box top Coordinate of the top-left corner of the pedestrian bounding box
5 Bounding box width Width in pixels of the pedestrian bounding box
6 Bounding box height Height in pixels of the pedestrian bounding box
7 Confidence score DET: Indicates how confident the detector is that this instance is a pedestrian.

GT: It acts as a flag whether the entry is to be considered (1) or ignored (0).
8 Class GT: Indicates the type of object annotated
9 Visibility GT: Visibility ratio, a number between 0 and 1 that says how much of that object is visible. Can be due

to occlusion and due to image border cropping.

TABLE 5: Data format for the input and output files, both for detection (DET) and annotation/ground truth (GT)
files.

Label ID
Pedestrian 1
Person on vehicle 2
Car 3
Bicycle 4
Motorbike 5
Non motorized vehicle 6
Static person 7
Distractor 8
Occluder 9
Occluder on the ground 10
Occluder full 11
Reflection 12

TABLE 6: Label classes present in the annotation files and
ID appearing in the 7th column of the files as described
in Tab. 5.

4.1 Evaluation metrics

In the past, a large number of metrics for quantitative
evaluation of multiple target tracking have been pro-
posed [8], [30], [38], [40], [41], [46]. Choosing “the right”
one is largely application dependent and the quest for a
unique, general evaluation metric is still ongoing. On the
one hand, it is desirable to summarize the performance
into one single number to enable a direct comparison. On
the other hand, one might not want to lose information
about the individual errors made by the algorithms and
provide several performance estimates, which precludes
a clear ranking.

Following a recent trend [6], [33], [45], we employ two

sets of measures that have established themselves in the
literature: The CLEAR metrics proposed by Stiefelhagen
et al. [41], and a set of track quality measures introduced
by Wu and Nevatia [46]. The evaluation scripts used in
our benchmark are publicly available.1

4.1.1 Tracker-to-target assignment
There are two common prerequisites for quantifying the
performance of a tracker. One is to determine for each
hypothesized output, whether it is a true positive (TP)
that describes an actual (annotated) target, or whether
the output is a false alarm (or false positive, FP). This
decision is typically made by thresholding based on
a defined distance (or dissimilarity) measure d (see
Sec. 4.1.2). A target that is missed by any hypothesis
is a false negative (FN). A good result is expected to
have as few FPs and FNs as possible. Next to the
absolute numbers, we also show the false positive ratio
measured by the number of false alarms per frame (FAF),
sometimes also referred to as false positives per image
(FPPI) in the object detection literature.

Obviously, it may happen that the same target is
covered by multiple outputs. The second prerequisite
before computing the numbers is then to establish the
correspondence between all annotated and hypothesized
objects under the constraint that a true object should be
recovered at most once, and that one hypothesis cannot
account for more than one target.

1. http://motchallenge.net/devkit

http://motchallenge.net/devkit
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GT Traj.

ID sw.

ID sw.

FP TP FN Tracked
Frag. ID sw.

(a) (b) (c) (d)

Frag.

1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 61 2 3 4 5 6
frame

Fig. 4: Four cases illustrating tracker-to-target assignments. (a) An ID switch occurs when the mapping switches
from the previously assigned red track to the blue one. (b) A track fragmentation is counted in frame 3 because
the target is tracked in frames 1-2, then interrupts, and then reacquires its ‘tracked’ status at a later point. A new
(blue) track hypothesis also causes an ID switch at this point. (c) Although the tracking results is reasonably good,
an optimal single-frame assignment in frame 1 is propagated through the sequence, causing 5 missed targets (FN)
and 4 false positives (FP). Note that no fragmentations are counted in frames 3 and 6 because tracking of those
targets is not resumed at a later point. (d) A degenerate case illustrating that target re-identification is not handled
correctly. An interrupted ground truth trajectory will typically cause a fragmentation. Also note the less intuitive
ID switch, which is counted because blue is the closest target in frame 5 that is not in conflict with the mapping
in frame 4.

For the following, we assume that each ground truth
trajectory has one unique start and one unique end
point, i.e. that it is not fragmented. Note that the current
evaluation procedure does not explicitly handle target
re-identification. In other words, when a target leaves
the field-of-view and then reappears, it is treated as an
unseen target with a new ID. As proposed in [41], the
optimal matching is found using Munkre’s (a.k.a. Hun-
garian) algorithm. However, dealing with video data,
this matching is not performed independently for each
frame, but rather considering a temporal correspon-
dence. More precisely, if a ground truth object i is
matched to hypothesis j at time t − 1 and the distance
(or dissimilarity) between i and j in frame t is below
td, then the correspondence between i and j is carried
over to frame t even if there exists another hypothesis
that is closer to the actual target. A mismatch error (or
equivalently an identity switch, IDSW) is counted if a
ground truth target i is matched to track j and the last
known assignment was k 6= j. Note that this definition
of ID switches is more similar to [30] and stricter than
the original one [41]. Also note that, while it is certainly
desirable to keep the number of ID switches low, their
absolute number alone is not always expressive to assess
the overall performance, but should rather be considered
in relation to the number of recovered targets. The
intuition is that a method that finds twice as many
trajectories will almost certainly produce more identity
switches. For that reason, we also state the relative
number of ID switches, which is computed as IDSW /
Recall.

These relationships are illustrated in Fig. 4. For sim-
plicity, we plot ground truth trajectories with dashed
curves, and the tracker output with solid ones, where
the color represents a unique target ID. The grey areas
indicate the matching threshold (see next section). Each
true target that has been successfully recovered in one
particular frame is represented with a filled black dot

with a stroke color corresponding to its matched hypoth-
esis. False positives and false negatives are plotted as
empty circles. See figure caption for more details.

After determining true matches and establishing cor-
respondences it is now possible to compute the metrics.
We do so by concatenating all test sequences and eval-
uating on the entire benchmark. This is in general more
meaningful instead of averaging per-sequences figures
due to the large variation in the number of targets.

4.1.2 Distance measure

In the most general case, the relationship between
ground truth objects and a tracker output is established
using bounding boxes on the image plane. Similar to
object detection [14], the intersection over union (a.k.a.
the Jaccard index) is usually employed as the similarity
criterion, while the threshold td is set to 0.5 or 50%.

4.1.3 Target-like annotations

People are a common object class present in many
scenes, but should we track all people in our benchmark?
For example, should we track static people sitting on a
bench? Or people on bicycles? How about people behind
a glass? We define the target class of MOT16 as all
upright people, standing or walking, that are reachable
along the viewing ray without a physical obstacle, i.e.
reflections, people behind a transparent wall or window
are excluded. We also exclude from our target class
people on bycicles or other vehicles. For all these cases
where the class is very similar to our target class (see
Figure 5), we adopt a similar strategy as in [32]. That
is, a method is neither penalized nor rewarded for
tracking or not tracking those similar classes. Since a
detector is likely to fire in those cases, we do not want
to penalize a tracker with a set of false positives for
properly following that set of detections, i.e. of a person
on a bicycle. Likewise, we do not want to penalize with
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Fig. 5: The annotations include different classes of objects similar to the target class, a pedestrian in our case. We
consider these special classes (distractor, reflection, static person and person on vehicle) to be so similar to the
target class that a tracker should neither be penalized nor rewarded for tracking them in the sequence.

false negatives a tracker that is based on motion cues
and therefore does not track a sitting person.

In order to handle these special cases, we adapt the
tracker-to-target assignment algorithm to perform the
following steps:

1) At each frame, all bounding boxes of the result file
are matched to the ground truth via the Hungarian
algorithm.

2) All result boxes that overlap > 50% with one of
these classes (distractor, static person, reflection,
person on vehicle) are removed from the solution.

3) During the final evaluation, only those boxes that
are annotated as pedestrians are used.

4.1.4 Multiple Object Tracking Accuracy
The MOTA [41] is perhaps the most widely used metric
to evaluate a tracker’s performance. The main reason for
this is its expressiveness as it combines three sources of
errors defined above:

MOTA = 1−
∑

t (FNt + FPt + IDSWt)∑
t GTt

, (1)

where t is the frame index and GT is the number of
ground truth objects. We report the percentage MOTA
(−∞, 100] in our benchmark. Note that MOTA can also
be negative in cases where the number of errors made
by the tracker exceeds the number of all objects in the
scene.

Even though the MOTA score gives a good indica-
tion of the overall performance, it is highly debatable
whether this number alone can serve as a single perfor-
mance measure.

Robustness. One incentive behind compiling this
benchmark was to reduce dataset bias by keeping the
data as diverse as possible. The main motivation is to
challenge state-of-the-art approaches and analyze their
performance in unconstrained environments and on un-
seen data. Our experience shows that most methods can
be heavily overfitted on one particular dataset, and may
not be general enough to handle an entirely different
setting without a major change in parameters or even in
the model.

To indicate the robustness of each tracker across all
benchmark sequences, we show the standard deviation
of their MOTA score.

4.1.5 Multiple Object Tracking Precision
The Multiple Object Tracking Precision is the average
dissimilarity between all true positives and their corre-
sponding ground truth targets. For bounding box over-
lap, this is computed as

MOTP =

∑
t,i dt,i∑
t ct

, (2)

where ct denotes the number of matches in frame t
and dt,i is the bounding box overlap of target i with
its assigned ground truth object. MOTP thereby gives
the average overlap between all correctly matched hy-
potheses and their respective objects and ranges between
td := 50% and 100%.

It is important to point out that MOTP is a measure of
localization precision, not to be confused with the positive
predictive value or relevance in the context of precision /
recall curves used, e.g., in object detection.

In practice, it mostly quantifies the localization ac-
curacy of the detector, and therefore, it provides little
information about the actual performance of the tracker.

4.1.6 Track quality measures
Each ground truth trajectory can be classified as mostly
tracked (MT), partially tracked (PT), and mostly lost
(ML). This is done based on how much of the trajectory is
recovered by the tracking algorithm. A target is mostly
tracked if it is successfully tracked for at least 80% of
its life span. Note that it is irrelevant for this measure
whether the ID remains the same throughout the track.
If a track is only recovered for less than 20% of its
total length, it is said to be mostly lost (ML). All other
tracks are partially tracked. A higher number of MT and
few ML is desirable. We report MT and ML as a ratio
of mostly tracked and mostly lost targets to the total
number of ground truth trajectories.

In certain situations one might be interested in ob-
taining long, persistent tracks without gaps of untracked
periods. To that end, the number of track fragmentations
(FM) counts how many times a ground truth trajectory is
interrupted (untracked). In other words, a fragmentation
is counted each time a trajectory changes its status from
tracked to untracked and tracking of that same trajectory
is resumed at a later point. Similarly to the ID switch
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ratio (cf . Sec. 4.1.1), we also provide the relative number
of fragmentations as FM / Recall.

4.1.7 Tracker ranking
As we have seen in this section, there are a number of
reasonable performance measures to assess the quality
of a tracking system, which makes it rather difficult to
reduce the evaluation to one single number. To never-
theless give an intuition on how each tracker performs
compared to its competitors, we compute and show
the average rank for each one by ranking all trackers
according to each metric and then averaging across all
performance measures.

5 BASELINE METHODS

As a starting point for the benchmark, we are working
on including a number of recent multi-target tracking
approaches as baselines, which we will briefly outline
for completeness but refer the reader to the respective
publication for more details. Note that we have used
the publicly available code and trained all of them in
the same way (cf . Sec. 5.1). However, we explicitly
state that the provided numbers may not represent the
best possible performance for each method, as could
be achieved by the authors themselves. Table 7 lists
current benchmark results for all baselines as well as
for all anonymous entries at the time of writing of this
manuscript.

5.1 Training and testing

Most of the available tracking approaches do not include
a learning (or training) algorithm to determine the set of
model parameters for a particular dataset. Therefore, we
follow a simplistic search scheme for all baseline meth-
ods to find a good setting for our benchmark. To that
end, we take the default parameter set Θ := {θ1, . . . , θP }
as suggested by the authors, where P is the number of
free parameters for each method. We then perform 20
independent runs on the training set with varying pa-
rameters. In each run, a parameter value θi is uniformly
sampled around its default value in the range [ 12θi, 2θi].
Finally, the parameter set Θ∗ that achieved the highest
MOTA score across all 20 runs (cf . Sec. 4.1.4) is taken
as the optimal setting and run once on the test set. The
optimal parameter set is stated in the description entry
for each baseline method on the benchmark website.

5.2 DP NMS: Network flow tracking

Since its original publication [49], a large number of
methods that are based on the network flow formulation
have appeared in the literature [9], [29], [31], [35], [43].
The basic idea is to model the tracking as a graph,
where each node represents a detection and each edge
represents a transition between two detections. Special
source and sink nodes allow spawning and absorbing

trajectories. A solution is obtained by finding the mini-
mum cost flow in the graph. Multiple assignments and
track splitting is prevented by introducing binary and
linear constraints.

Here we use two solvers: (i) the successive shortest
paths approach [35] that employs dynamic programming
with non-maxima suppression, termed DP NMS; (ii) a
linear programming solver that appears as a baseline in
[27]. This solver uses the Gurobi Library [3].

5.3 CEM: Continuous energy minimization
CEM [33] formulates the problem in terms of a high-
dimensional continuous energy. Here, we use the basic
approach [5] without explicit occlusion reasoning or
appearance model. The target state X is represented by
continuous x, y coordinates in all frames. The energy
E(X) is made up of several components, including a
data term to keep the solution close to the observed data
(detections), a dynamic model to smooth the trajectories,
an exclusion term to avoid collisions, a persistence term
to reduce track fragmentations, and a regularizer. The re-
sulting energy is highly non-convex and is minimized in
an alternating fashion using conjugate gradient descent
and deterministic jump moves.

5.4 SMOT: Similar moving objects
The Similar Multi-Object Tracking (SMOT) approach [10]
specifically targets situations where target appearance is
ambiguous and rather concentrates on using the motion
as a primary cue for data association. Tracklets with
similar motion are linked to longer trajectories using
the generalized linear assignment (GLA) formulation.
The motion similarity and the underlying dynamics of
a tracklet are modeled as the order of a linear regressor
approximating that tracklet.

5.5 TBD: Tracking-by-detection
This two-stage tracking-by-detection (TBD) approach
[18], [48] is part of a larger traffic scene understanding
framework and employs a rather simple data association
technique. The first stage links overlapping detections
with similar appearance in successive frames into track-
lets. The second stage aims to bridge occlusions of up to
20 frames. Both stages employ the Hungarian algorithm
to optimally solve the matching problem. Note that we
did not re-train this baseline but rather used the original
implementation and parameters provided.

5.6 JPDA M: Joint probabilistic data association us-
ing m-best solutions
Joint Probabilistic Data Association (JPDA) [17] is one
of the oldest techniques for global data association. It
first builds a joint hypothesis probability that includes all
possible assignments, and then computes the marginal
probabilities for each target to be assigned to each mea-
surement. The state for each target is estimated in an
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Method MOTA MOTP FAR MT(%) ML(%) FP FN IDsw rel.ID FM rel.FM Hz Ref.
TBD 33.7 ±9.2 76.5 1.0 7.2 54.2 5,804 112,587 2,418 63.3 2,252 58.9 1.3 [18]
CEM 33.2 ±7.9 75.8 1.2 7.8 54.4 6,837 114,322 642 17.2 731 19.6 0.3 [33]
DP NMS 32.2 ±9.8 76.4 0.2 5.4 62.1 1,123 121,579 972 29.2 944 28.3 212.6 [35]
SMOT 29.7 ±7.3 75.2 2.9 4.3 47.7 17,426 107,552 3,108 75.8 4,483 109.3 0.2 [10]
JPDA M 26.2 ±6.1 76.3 0.6 4.1 67.5 3,689 130,549 365 12.9 638 22.5 22.2 [36]

TABLE 7: Quantitative results of the baselines on MOT16.

online manner, typically using one Kalman filter per
target. While this approach is theoretically sound, it is
prohibitive in practice due to the exponential number of
possible assignment hypotheses to be considered. It has
thus long been considered impractical for computer vi-
sion applications, especially in crowded scenes. Recently,
an efficient approximation to JPDA was proposed [36].
The main idea is to approximate the full joint probability
distribution by m strongest hypotheses. It turns out that
in practice, only around 100 most likely assignments are
sufficient to obtain the exact same solution as full JPDA.

6 CONCLUSION AND FUTURE WORK

We have presented a new challenging set of sequences
within the MOTChallenge benchmark. The 2016
sequences contain 3 times more targets to be tracked
when compared to the initial 2015 version. Furthermore,
more accurate annotations were carried out following
a strict protocol, and extra classes such as vehicles,
sitting people, reflections or distractors were also
annotated to provide further information to the
community. We believe that the MOT16 release within
the already established MOTChallenge benchmark
provides a fairer comparison of state-of-the-art tracking
methods, and challenges researchers to develop more
generic methods that perform well in unconstrained
environments and on unseen data. In the future, we
plan to continue our workshops and challenges series,
and also introduce various other (sub-)benchmarks for
targeted applications, e.g. sport analysis, or biomedical
cell tracking.
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