
Approximate Bayesian Image Interpretation using

Generative Probabilistic Graphics Programs

Vikash K. Mansinghka⇤ 1,2, Tejas D. Kulkarni⇤ 1,2, Yura N. Perov1,2,3, and Joshua B. Tenenbaum1,2

1Computer Science and Artificial Intelligence Laboratory, MIT
2Department of Brain and Cognitive Sciences, MIT

3Institute of Mathematics and Computer Science, Siberian Federal University

Abstract

The idea of computer vision as the Bayesian inverse problem to computer graphics
has a long history and an appealing elegance, but it has proved difficult to directly
implement. Instead, most vision tasks are approached via complex bottom-up
processing pipelines. Here we show that it is possible to write short, simple prob-
abilistic graphics programs that define flexible generative models and to automati-
cally invert them to interpret real-world images. Generative probabilistic graphics
programs (GPGP) consist of a stochastic scene generator, a renderer based on
graphics software, a stochastic likelihood model linking the renderer’s output and
the data, and latent variables that adjust the fidelity of the renderer and the toler-
ance of the likelihood. Representations and algorithms from computer graphics
are used as the deterministic backbone for highly approximate and stochastic gen-
erative models. This formulation combines probabilistic programming, computer
graphics, and approximate Bayesian computation, and depends only on general-
purpose, automatic inference techniques. We describe two applications: read-
ing sequences of degraded and adversarially obscured characters, and inferring
3D road models from vehicle-mounted camera images. Each of the probabilistic
graphics programs we present relies on under 20 lines of probabilistic code, and
yields accurate, approximately Bayesian inferences about real-world images.

1 Introduction

Computer vision has historically been formulated as the problem of producing symbolic descriptions
of scenes from input images [10]. This is usually done by building bottom-up processing pipelines
that isolate the portions of the image associated with each scene element and extract features that
signal its identity. Many pattern recognition and learning techniques can then be used to build
classifiers for individual scene elements, and sometimes to learn the features themselves [11, 7].

This approach has been remarkably successful, especially on problems of recognition. Bottom-up
pipelines that combine image processing and machine learning can identify written characters with
high accuracy and recognize objects from large sets of possibilities. However, the resulting systems
typically require large training corpuses to achieve reasonable levels of accuracy, and are difficult
both to build and modify. For example, the Tesseract system [16] for optical character recognition
is over 10, 000 lines of C++. Small changes to the underlying assumptions frequently necessitates
end-to-end retraining and/or redesign.

Generative models for a range of image parsing tasks are also being explored [17, 4, 18, 22, 20].
These provide an appealing avenue for integrating top-down constraints with bottom-up processing,

* The first two authors contributed equally to this work.
* (vkm, tejask, perov, jbt)@mit.edu — Project URL: http://probcomp.csail.mit.edu/gpgp/

1

and provide an inspiration for the approach we take in this paper. But like traditional bottom-up
pipelines for vision, these approaches have relied on considerable problem-specific engineering,
chiefly to design and/or learn custom inference strategies, such as MCMC proposals [18, 22] that
incorporate bottom-up cues. Other combinations of top-down knowledge with bottom up processing
have been remarkably powerful [9]. For example, [8] has shown that global, 3D geometric informa-
tion can significantly improve the performance of bottom-up object detectors.

In this paper, we propose a novel formulation of image interpretation problems, called generative
probabilstic graphics programming (GPGP). GPGP shares a common template: a stochastic scene
generator, an approximate renderer based on existing graphics software, a highly stochastic likeli-
hood model for comparing the renderer’s output with the observed data, and latent variables that
control the fidelity of the renderer and the tolerance of the image likelihood. Our probabilistic
graphics programs are written in Venture, a probabilistic programming language descended from
Church [6]. Each model we introduce requires less than 20 lines of probabilistic code. The ren-
derers and likelihoods for each are based on standard templates written as short Python programs.
Unlike typical generative models for scene parsing, inverting our probabilistic graphics programs re-
quires no custom inference algorithm design. Instead, we rely on the automatic Metropolis-Hastings
(MH) transition operators provided by our probabilistic programming system. The approximations
and stochasticity in our renderer, scene generator and likelihood models serve to implement a variant
of approximate Bayesian computation [19, 12]. This combination can produce a kind of self-tuning
analogue of annealing that facilities reliable convergence.

To the best of our knowledge, our GPGP framework is the first real-world image interpretation for-
mulation to combine all of the following elements: probabilistic programming, automatic inference,
computer graphics, and approximate Bayesian computation; this constitutes our main contribution.
Our second contribution is to provide demonstrations of the efficacy of this approach on two im-
age interpretation problems: reading snippets of degraded and adversarially obscured alphanumeric
characters, and inferring 3D road models from vehicle mounted cameras. In both cases we quanti-
tatively report the accuracy of our approach on representative test datasets, as compared to standard
bottom-up baselines that have been extensively engineered.

2 Generative Probabilistic Graphics Programs and Approximate Bayesian

Inference.

GPGP defines generative models for images by combining four components. The first is a stochas-

tic scene generator written as probabilistic code that makes random choices for the location and
configuration of the main elements in the scene. The second is an approximate renderer based on

existing graphics software that maps a scene S and control variables X to an image IR = f(S,X).
The third is a stochastic likelihood model for image data ID that enables scoring of rendered scenes
given the control variables. The fourth is a set of latent variables X that control the fidelity of the
renderer and/or the tolerance in the stochastic likelihood model. These components are described
schematically in Figure 1.

We formulate image interpretation tasks in terms of sampling (approximately) from the posterior
distribution over images:

P (S|ID) /
Z

P (S)P (X)�f(S,X)

(IR)P (ID|IR, X)dX

We perform inference over execution histories of our probabilistic graphics programs using a
uniform mixture of generic, single-variable Metropolis-Hastings transitions, without any custom,
bottom-up proposals. We first give a general description of the generative model and inference algo-
rithm induced by our probabilistic graphics programs; in later sections, we describe specific details
for each application.

Let S = {Si} be a decomposition of the scene S into parts Si with independent priors P (Si). For
example, in our text application, the Sis include binary indicators for the presence or absence of each
glyph, along with its identity (“A“ through ”Z”, plus digits 0-9), and parameters including location,
size and rotation. Also let X = {Xj} be a decomposition of the control variables X into parts Xj

with priors P (Xj), such as the bandwidths of per-glyph Gaussian spatial blur kernels, the variance

2

Stochastic
Scene Generator

Approximate
Renderer

Stochastic
Comparison

S ~ P(S)

IR = f(S,X)

Data ID

X ~ P(X)

P(ID|IR,X)

Figure 1: An overview of the GPGP framework. Each of our models shares a common template: a
stochastic scene generator which samples possible scenes S according to their prior, latent variables
X that control the fidelity of the rendering and the tolerance of the model, an approximate render
f(S,X) ! IR based on existing graphics software, and a stochastic likelihood model P (ID|IR, X)

that links observed rendered images. A scene S

⇤ sampled from the scene generator according to
P (S) could be rendered onto a single image I⇤R. This would be extremely unlikely to exactly match
the data I

⇤
D. Instead of requiring exact matches, our formulation can broaden the renderer’s output

P (IR|S⇤) and the image likelihood P (I

⇤
D|IR) via the latent control variables X . Inference over X

mediates the degree of smoothing in the posterior.

of a Gaussian image likelihood, and so on. Our proposals modify single elements of the scene and
control variables at a time, as follows:

P (S) =

Y

i

P (Si) qi(S
0
i, Si) = P (S

0
i) P (X) =

Y

j

P (Xj) qj(X
0
j , Xj) = P (X

0
j)

Now let K = |{Si}| + |{Xj}| be the total number of random variables in each execution. For
simplicity, we describe the case where this number can be bounded above beforehand, i.e. total
a priori scene complexity is limited. At each inference step, we choose a random variable index
k < K uniformly at random. If k corresponds to a scene variable i, then we propose from qi(S

0
i, Si),

so our overall proposal kernel q((S,X) ! (S

0
, X

0
)) = �S�i

(S

0
)P (S

0
i)�X(X

0
). If k corresponds

to a control variable j, we propose from qj(X
0
j , Xj). In both cases we re-render the scene I

0
R =

f(S

0
, X

0
). We then run the kernel associated with this variable, and accept or reject via the MH

equation:

↵MH((S,X) ! (S

0
, X

0
)) = min

�
1,

P (ID|f(S0
, X

0
), X

0
)P (S

0
)P (X

0
)q((S

0
, X

0
) ! (S,X))

P (ID|f(S,X), X)P (S)P (X)q((S,X) ! (S

0
, X

0
))

�

We implement our probabilistic graphics programs in the Venture probabilistic programming lan-
guage. The Metropolis-Hastings inference algorithm we use is provided by default in this system;
no custom inference code is required. In the context of our GPGP formulation, this algorithm makes
implicit use of ideas from approximate Bayesian computation (ABC). ABC methods approximate
Bayesian inference over complex generative processes by using an exogenous distance function
to compare sampled outputs with observed data. In the original rejection sampling formulation,
samples are accepted only if they match the data within a hard threshold. Subsequently, combina-
tions of ABC and MCMC were proposed [12], including variants with inference over the threshold
value [15]. Most recently, extensions have been introduced where the hard cutoff is replaced with
a stochastic likelihood model [19]. Our formulation incorporates a combination of these insights:
rendered scenes are only approximately constrained to match the observed image, with the tight-
ness of the match mediated by inference over factors such as the fidelity of the rendering and the
stochasticity in the likelihood. This allows image variability that is unnecessary or even undesirable
to model to be treated in a principled fashion.

3

Figure 2: Four input images from our CAPTCHA corpus, along with the final results and conver-
gence trajectory of typical inference runs. The first row is a highly cluttered synthetic CAPTCHA
exhibiting extreme letter overlap. The second row is a CAPTCHA from TurboTax, the third row
is a CAPTCHA from AOL, and the fourth row shows an example where our system makes errors
on some runs. Our probabilistic graphics program did not originally support rotation, which was
needed for the AOL CAPTCHAs; adding it required only 1 additional line of probabilistic code. See
the main text for quantitative details, and supplemental material for the full corpus.

3 Generative Probabilistic Graphics in 2D for Reading Degraded Text.

We developed a probabilistic graphics program for reading short snippets of degraded text consisting
of arbitrary digits and letters. See Figure 2 for representative inputs and outputs. In this program,
the latent scene S = {Si} contains a bank of variables for each glyph, including whether a potential
letter is present or absent from the scene, what its spatial coordinates and size are, what its identity
is, and how it is rotated:

P (S

pres

i = 1) = 0.5 P (S

x
i = x) =

⇢
1/w 0 x w

0 otherwise

P (S

y
i = y) =

⇢
1/h 0 x h

0 otherwise

P (S

glyph id

i = g) =

(
1/G 0 S

glyph id

i < G

0 otherwise

P (S

✓
i = g) =

⇢
1/2✓

max �✓

max S

✓
i < ✓

max

0 otherwise

Our renderer rasterizes each letter independently, applies a spatial blur to each image, composites
the letters, and then blurs the result. We also applied global blur to the original training image
before applying the stochastic likelihood model on the blurred original and rendered images. The
stochastic likelihood model is a multivariate Gaussian whose mean is the blurry rendering; formally,
ID ⇠ N(IR;�). The control variables X = {Xj} for the renderer and likelihood consist of per-
letter Gaussian spatial blur bandwidths X

i
j ⇠ � · Beta(1, 2), a global image blur on the rendered

image X

blur rendered

⇠ � · Beta(1, 2), a global image blur on the original test image X

blur test

⇠
� · Beta(1, 2), and the standard deviation of the Gaussian likelihood � ⇠ Gamma(1, 1) (with �,
� and � set to favor small bandwidths). To make hard classification decisions, we use the sample
with lowest pixel reconstruction error from a set of 5 approximate posterior samples. We also
experimented with enabling enumerative (griddy) Gibbs sampling for uniform discrete variables
with 10% probability. The probabilistic code for this model is shown in Figure 4.

To assess the accuracy of our approach on adversarially obscured text, we developed a corpus con-
sisting of over 40 images from widely used websites such as TurboTax, E-Trade, and AOL, plus
additional challenging synthetic CAPTCHAs with high degrees of letter overlap and superimposed
distractors. Each source of text violates the underlying assumptions of our probabilistic graphics
program in different ways. TurboTax CAPTCHAs incorporate occlusions that break strokes within

4

(a) (b)

(c) (d) (e) (f)

Figure 3: Inference over renderer fidelity significantly improves the reliability of inference. (a) Re-
construction errors for 5 runs of two variants of our probabilistic graphics program for text. Without
sufficient stochasticity and approximation in the generative model — that is, with a strong prior over
a purely deterministic, high-fidelity renderer — inference gets stuck in local energy minima (red
lines). With inference over renderer fidelity via per-letter and global blur, the tolerance of the image
likelihood, and the number of letters, convergence improves substantially (blue lines). Many local
minima in the likelihood are escaped over the course of single-variable inference, and the blur vari-
ables are automatically adjusted to support localizing and identifying letters. (b) Clockwise from
top left: an input CAPTCHA, two typical local minima, and one correct parse. (c,d,e,f) A repre-
sentative run, illustrating the convergence dynamics that result from inference over the renderer’s
fidelity. From left to right, we show overall log probability, pixel-wise disagreement (many local
minima are escaped over the course of inference), the number of active letters in the scene, and the
per-letter blur variables. Inference automatically adjusts blur so that newly proposed letters are often
blurred out until they are localized and identified accurately.

letters, while AOL CAPTCHAs include per-letter warping. These CAPTCHAs all involve arbitrary
digits and letters, and as a result lack cues from word identity that the best published CAPTCHA
breaking systems depend on [13]. The dynamically-adjustable fidelity of our approximate renderer
and the high stochasticity of our generative model appear to be necessary for inference to robustly
escape local minima. We have observed a kind of self-tuning annealing resulting from inference
over the control variables; see Figure 3 for an illustration. We observe robust character recognition
given enough inference, with an overall character detection rate of 70.6%. To calibrate the difficulty
of our corpus, we also ran the Tesseract optical character recognition engine [16] on our corpus; its
character detection rate was 37.7%.

4 Generative Probabilistic Graphics in 3D: Road Finding.

We have also developed a generative probabilistic graphics program for localizing roads in 3D from
single images. This is an important problem in autonomous driving. As with many perception
problems in robotics, there is clear scene structure to exploit, but also considerable uncertainty
about the scene, as well as substantial image-to-image variability that needs to be robustly ignored.
See Figure 5b for example inputs.

The probabilistic graphics program we use for this problem is shown in Figure 7. The latent
scene S is comprised of the height of the roadway from the ground plane, the road’s width and
lane size, and the 3D offset of the corner of the road from the (arbitrary) camera location. The
prior encodes assumption that the lanes are small relative to the road, and that the road has two
lanes and is very likely to be visible (but may not be centered). This scene is then rendered to
produce a surface-based segmentation image, that assigns each input pixel to one of 4 regions
r 2 R = {left o↵road, right o↵road, road, lane}. Rendering is done for each scene element sep-
arately, followed by compositing, as with our 2D text program. See Figure 5a for random surface-
based segmentation images drawn from this prior. Extensions to richer road and ground geometries
are an interesting direction for future work. This model is similar in spirit to [1] but the key differ-

5

ASSUME is_present (mem (lambda (id) (bernoulli 0.5)))

ASSUME pos_x (mem (lambda (id) (uniform_discrete 0 200)))

ASSUME pos_y (mem (lambda (id) (uniform_discrete 0 200)))

ASSUME size_x (mem (lambda (id) (uniform_discrete 0 100)))

ASSUME size_y (mem (lambda (id) (uniform_discrete 0 100)))

ASSUME rotation (mem (lambda (id) (uniform_continuous -20.0 20.0)))

ASSUME glyph (mem (lambda (id) (uniform_discrete 0 35))) // 26 + 10.

ASSUME blur (mem (lambda (id) (

*

7 (beta 1 2))))

ASSUME global_blur (

*

7 (beta 1 2))

ASSUME data_blur (

*

7 (beta 1 2))

ASSUME epsilon (gamma 1 1)

ASSUME data (load_image "captcha_1.png" data_blur)

ASSUME image (render_surfaces max-num-glyphs global_blur

(pos_x 1) (pos_y 1) (glyph 1) (size_x 1) (size_y 1) (rotation 1) (blur 1)

(is_present 1) (pos_x 2) (pos_y 2) (glyph 2) (size_x 2) (size_y 2)

(rotation 2) (blur 2) (is_present 2) ... (is_present 10))

OBSERVE (incorporate_stochastic_likelihood data image epsilon) True

Figure 4: A generative probabilistic graphics program for reading degraded text. The scene genera-
tor chooses letter identity (A-Z and digits 0-9), position, size and rotation at random. These random
variables are fed into the renderer, along with the bandwidths of a series of spatial blur kernels (one
per letter, another for the overall rendered image from generative model and another for the original
input image). These blur kernels control the fidelity of the rendered image. The image returned by
the renderer is compared to the data via a pixel-wise Gaussian likelihood model, whose variance is
also an unknown variable.

ence is that our framework relies on automatic inference techniques, is representationally richer due
to compact model description and goes beyond point estimates to report posterior uncertainty.

In our experiments, we used k-means (with k = 20) to cluster RGB values from a randomly chosen
training image. We used these clusters to build a compact appearance model based on cluster-center
histograms, by assigning text image pixels to their nearest cluster. However, we are agnostic to
the particular choice of the appearence model and many feature engineering and feature learning
techniques can be substituted here without the loss of generality. Our stochastic likelihood incorpo-
rates these histograms, by multiplying together the appearance probabilities for each image region
r 2 R. These probabilities, denoted ~

✓r, are smoothed by pseudo-counts ✏ drawn from a Gamma
distribution. Let Zr be the per-region normalizing constant, and ID(x,y)

be the quantized pixel at
coordinates (x, y) in the input image. Then our likelihood model is:

P (ID|IR, ✏) =
Y

r2R

Y

x,y s.t. I
R

=r

✓

I
D(x,y)

r + ✏

Zr

Figure 5f shows appearance model histograms from one random training frame. Figure 5c shows
the extremely noisy lane/non-lane classifications that result from the appearance model on its own,
without our scene prior; accuracy is extremely low. Other, richer appearance models, such as Gaus-
sian mixtures over RGB values (which could be either hand specified or learned), are compatible
with our formulation; our simple, quantized model was chosen primarily for simplicity. We use the
same generic Metropolis-Hastings strategy for inference in this problem as in our text application.
Although deterministic search strategies for MAP inference could be developed for this particular
program, it is less clear how to build a single deterministic search algorithm that could work on both
of the generative probabilistic graphics programs we present.

In Table 1, we report the accuracy of our approach on one road dataset from the KITTI Vision
Benchmark Suite [5]. To focus on accuracy in the face of visual variability, we do not exploit tempo-
ral correspondences. We test on every 5th frame for a total of 80. We report lane/non-lane accuracy
results for maximum likelihood classification over 10 appearance models (from 10 randomly chosen
training images), as well as for the single best appearance model from this set. We use 10 posterior
samples per frame for both. For reference, we include the performance of a sophisticated bottom-up
baseline system from [2]. This baseline system requires significant 3D a priori knowledge, including

6

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: An illustration of generative probabilistic graphics for 3D road finding. (a) Renderings
of random samples from our scene prior, showing the surface-based image segmentation induced
by each sample. (b) Representative test frames from the KITTI dataset [5]. (c) Maximum likeli-
hood lane/non-lane classification of the images from (b) based solely on the best-performing single-
training-frame appearance model (ignoring latent geometry). Geometric constraints are clearly
needed for reliable road finding. (d) Results from [2]. (e) Typical inference results from the pro-
posed generative probabilistic graphics approach on the images from (b). (f) Appearance model his-
tograms (over quantized RGB values) from the best-performing single-training-frame appearance
model for all four region types: lane, left offroad, right offroad and road.

(a) Lanes superimposed
from 30 scenes sampled
from our prior (b) 30 posterior samples on

a low accuracy (Frame 199),
high uncertainty frame

(c) 30 posterior samples on a
high accuracy (Frame 384),
low uncertainty frame

(d) Posterior samples
of left lane position
for both frames

Figure 6: Approximate Bayesian inference yields samples from a broad, multimodal scene posterior
on a frame that violates our modeling assumptions (note the intersection), but reports less uncertainty
on a frame more compatible with our model (with perceptually reasonable alternatives to the mode).

the intrinsic and extrinsic parameters of the camera, and a rough initial segmentation of each test
image. In contrast, our approach has to infer these aspects of the scene from the image data. We
also show some uncertainty estimates that result from approximate Bayesian inference in Figure 6.
Our probabilistic graphics program for this problem requires under 20 lines of probabilistic code.

5 Discussion

We have shown that it is possible to write short probabilistic graphics programs that use simple
2D and 3D computer graphics techniques as the backbone for highly approximate generative mod-
els. Approximate Bayesian inference over the execution histories of these probabilistic graphics

7

ASSUME road_width (uniform_discrete 5 8) //arbitrary units

ASSUME road_height (uniform_discrete 70 150)

ASSUME lane_pos_x (uniform_continuous -1.0 1.0) //uncentered renderer

ASSUME lane_pos_y (uniform_continuous -5.0 0.0) //coordinate system

ASSUME lane_pos_z (uniform_continuous 1.0 3.5)

ASSUME lane_size (uniform_continuous 0.10 0.35)

ASSUME eps (gamma 1 1)

ASSUME theta_left (list 0.13 ... 0.03)

ASSUME theta_right (list 0.03 ... 0.02)

ASSUME theta_road (list 0.05 ... 0.07)

ASSUME theta_lane (list 0.01 ... 0.21)

ASSUME data (load_image "frame201.png")

ASSUME surfaces (render_surfaces lane_pos_x lane_pos_y lane_pos_z

road_width road_height lane_size)

OBSERVE (incorporate_stochastic_likelihood theta_left theta_right

theta_road theta_lane data surfaces eps) True

Figure 7: Source code for a generative probabilistic graphics program that infers 3D road models.

Method Accuracy

Aly et al [2] 68.31%
GPGP (Best Single Appearance) 64.56%
GPGP (Maximum Likelihood over Multiple Appearances) 74.60%

Table 1: Quantitative results for lane detection accuracy on one of the road datasets in the KITTI
Vision Benchmark Suite [5]. See main text for details.

programs — automatically implemented via generic, single-variable Metropolis-Hastings transi-
tions, using existing rendering libraries and simple likelihoods — then implements a new variation
on analysis by synthesis [21]. We have also shown that this approach can yield accurate, globally
consistent interpretations of real-world images, and can coherently report posterior uncertainty over
latent scenes when appropriate. Our core contributions are the introduction of this conceptual frame-
work and two initial demonstrations of its efficacy.

To scale our inference approach to handle more complex scenes, it will likely be important to con-
sider more complex forms of automatic inference, beyond the single-variable Metropolis-Hastings
proposals we currently use. For example, discriminatively trained proposals could help, and in fact
could be trained based on forward executions of the probabilistic graphics program. Appearance
models derived from modern image features and texture descriptors [14, 7, 11] — going beyond the
simple quantizations we currently use — could also reduce the burden on inference and improve the
generalizability of individual programs. It is important to note that the high dimensionality involved
in probabilistic graphics programming does not necessarily mean inference (and even automatic in-
ference) is impossible. For example, approximate inference in models with probabilities bounded
away from 0 and 1 can sometimes be provably tractable via sampling techniques, with runtimes that
depend on factors other than dimensionality [3]. Exploring the role of stochasticity in facilitating
tractability is an important avenue for future work.

The most interesting potential of GPGP lies in bringing graphics representations and algorithms
to bear on the hard modeling and inference problems in vision. For example, to avoid global re-
rendering after each inference step, we need to represent and exploit the conditional independencies
between latent scene elements and image regions. Inference in GPGP based on a z-buffer or a lay-
ered compositor could potentially do this. We hope the GPGP framework facilitates image analysis
by Bayesian inversion of rich graphics algorithms for scene generation and image synthesis.

Acknowledgments

We are grateful to K. Bonawitz and E. Jonas for preliminary work on CAPTCHA breaking, and to S.
Teller, B. Freeman, T. Adelson, M. James, M. Siegel and anonymous reviewers for helpful feedback
and discussions. T. Kulkarni was graciously supported by the Henry E Singleton (1940) Fellowship.
This research was supported by ONR award N000141310333, ARO MURI W911NF-13-1-2012,
the DARPA UPSIDE program and a gift from Google.

8

References

[1] José Manuel Álvarez, Theo Gevers, and Antonio M Lopez. “3D scene priors for road de-
tection”. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on.
IEEE. 2010, pp. 57–64.

[2] Mohamed Aly. “Real time detection of lane markers in urban streets”. In: Intelligent Vehicles

Symposium, 2008 IEEE. IEEE. 2008, pp. 7–12.
[3] Paul Dagum and Michael Luby. “An optimal approximation algorithm for Bayesian infer-

ence”. In: Artificial Intelligence 93.1 (1997), pp. 1–27.
[4] L Del Pero et al. “Bayesian geometric modeling of indoor scenes”. In: Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012, pp. 2719–2726.
[5] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous driving?

The KITTI vision benchmark suite”. In: Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on. IEEE. 2012, pp. 3354–3361.
[6] Noah Goodman, Vikash Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua Tenenbaum.

“Church: A language for generative models”. In: UAI. 2008.
[7] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for deep

belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554.
[8] Derek Hoiem, Alexei A Efros, and Martial Hebert. “Putting objects in perspective”. In: Com-

puter Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. Vol. 2.
IEEE. 2006, pp. 2137–2144.

[9] Derek Hoiem, Alexei A Efros, and Martial Hebert. “Recovering surface layout from an im-
age”. In: International Journal of Computer Vision 75.1 (2007), pp. 151–172.

[10] Berthold Klaus Paul Horn. Robot vision. the MIT Press, 1986.
[11] Yann LeCun and Yoshua Bengio. “Convolutional networks for images, speech, and time se-

ries”. In: The handbook of brain theory and neural networks 3361 (1995).
[12] Paul Marjoram, John Molitor, Vincent Plagnol, and Simon Tavaré. “Markov chain Monte

Carlo without likelihoods”. In: Proceedings of the National Academy of Sciences 100.26
(2003).

[13] Greg Mori and Jitendra Malik. “Recognizing objects in adversarial clutter: Breaking a visual
CAPTCHA”. In: Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE

Computer Society Conference on. Vol. 1. IEEE. 2003, pp. I–134.
[14] Javier Portilla and Eero P Simoncelli. “A parametric texture model based on joint statistics of

complex wavelet coefficients”. In: International Journal of Computer Vision 40.1 (2000).
[15] Oliver Ratmann, Christophe Andrieu, Carsten Wiuf, and Sylvia Richardson. “Model criticism

based on likelihood-free inference, with an application to protein network evolution”. In:
106.26 (2009), pp. 10576–10581.

[16] Ray Smith. “An overview of the Tesseract OCR engine”. In: Ninth International Conference

on Document Analysis and Recognition. Vol. 2. IEEE. 2007, pp. 629–633.
[17] Zhuowen Tu, Xiangrong Chen, Alan L Yuille, and Song-Chun Zhu. “Image parsing: Unifying

segmentation, detection, and recognition”. In: International Journal of Computer Vision 63.2
(2005), pp. 113–140.

[18] Zhuowen Tu and Song-Chun Zhu. “Image Segmentation by Data-Driven Markov Chain
Monte Carlo”. In: IEEE Trans. Pattern Anal. Mach. Intell. 24.5 (May 2002).

[19] Richard D Wilkinson. “Approximate Bayesian computation (ABC) gives exact results under
the assumption of model error”. In: arXiv preprint arXiv:0811.3355 (2008).

[20] David Wingate, Noah D Goodman, A Stuhlmueller, and J Siskind. “Nonstandard interpreta-
tions of probabilistic programs for efficient inference”. In: Advances in Neural Information

Processing Systems 23 (2011).
[21] Alan Yuille and Daniel Kersten. “Vision as Bayesian inference: analysis by synthesis?” In:

Trends in cognitive sciences 10.7 (2006), pp. 301–308.
[22] Yibiao Zhao and Song-Chun Zhu. “Image Parsing via Stochastic Scene Grammar”. In: Ad-

vances in Neural Information Processing Systems. 2011.

9

