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Abstract—Visual place recognition is a challenging problem due
to the vast range of ways in which the appearance of real-world
places can vary. In recent years, improvements in visual sensing
capabilities, an ever-increasing focus on long-term mobile robot au-
tonomy, and the ability to draw on state-of-the-art research in other
disciplines—particularly recognition in computer vision and ani-
mal navigation in neuroscience—have all contributed to significant
advances in visual place recognition systems. This paper presents a
survey of the visual place recognition research landscape. We start
by introducing the concepts behind place recognition—the role of
place recognition in the animal kingdom, how a “place” is defined in
a robotics context, and the major components of a place recognition
system. Long-term robot operations have revealed that changing
appearance can be a significant factor in visual place recognition
failure; therefore, we discuss how place recognition solutions can
implicitly or explicitly account for appearance change within the
environment. Finally, we close with a discussion on the future of
visual place recognition, in particular with respect to the rapid ad-
vances being made in the related fields of deep learning, semantic
scene understanding, and video description.

Index Terms—Visual place recognition, place recognition.

I. INTRODUCTION

V ISUAL place recognition is a well-defined but extremely
challenging problem to solve in the general sense; given an

image of a place, can a human, animal, or robot decide whether
or not this image is of a place it has already seen? Whether
referring to humans, animals, computers, or robots, there are
some fundamental things a place recognition system must have
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Fig. 1. Visual place recognition systems must be able to (a) successfully match
very perceptually different images while (b) also rejecting incorrect matches
between aliased image pairs of different places.

and must do. First, a place recognition system must have an
internal representation—a map—of the environment to com-
pare to the incoming visual data. Second, the place recognition
system must report a belief about whether or not the current
visual information is from a place already included in the map,
and if so, which one. Performing visual place recognition can
be difficult due to a range of challenges; the appearance of a
place can change drastically (see Fig. 1), multiple places in an
environment may look very similar, a problem known as per-
ceptual aliasing, and places may not always be revisited from
the same viewpoint and position as before.

In robotics, this research topic is highly relevant given the ever
increasing focus on long-term mobile robot autonomy and rapid
improvements in visual sensing capabilities and cost. Vision is
the primary sensor for many localization and place recognition
algorithms [1]–[19]. Place recognition is also a growing re-
search field, as evidenced by citation analyses and a number of
dedicated place recognition workshops at recent and upcoming
robotics and computer vision conferences including the IEEE
International Conference on Robotics and Automation (2014,
2015) and the IEEE Conference on Computer Vision and Pat-
tern Recognition (2015). The problem of persistent place recog-
nition has also formed a regular component of many more gen-
eral workshops including the long-running ICRA Workshop on
Long-Term Autonomy (2011–2014).

Our aim in writing this survey article is to provide a compre-
hensive review of the current state of place recognition research
that is relevant both to robotics and other fields of research in-
cluding computer vision and neuroscience. The timing for such
a survey is particularly fortuitous given major events across
these related fields: for example, the almost universal usage of
deep learning techniques in state of the art recognition systems
in computer vision, and the 2014 Nobel Prize in Physiology or
Medicine award to Edvard Moser, May-Britt Moser, and John
O’Keefe, who discovered the key representations of place in
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Fig. 2. Neuroscience experiments have shown that the brains of animals such
as rats contain place cell and grid cell neurons. Each place cell fires strongly at
one location in an environment, while each grid cell fires at multiple, regularly
spaced locations. This figure shows the firing locations of (a) a place cell and (b)
a grid cell placed over the path of an animal in a square environment (Annual
Review of Neuroscience by Annual Reviews. Republished with permission of
Annual Reviews, from [34]; permission conveyed through Copyright Clearance
Center, Inc.).

the mammalian brain. This paper provides an overview of the
place recognition problem and its relationship with many ma-
jor robotics research fields including simultaneous localization
and mapping (SLAM), localization, mapping, and recognition.
Because of the increasing focus in the research community on
long-term robot autonomy in challenging environments, we also
provide a particular focus on the problem of lifelong visual place
recognition for robots.

II. CONCEPT OF PLACE IN ROBOTICS AND THE

NATURAL KINGDOM

The problem of navigation and place recognition has a ven-
erable tradition in psychology and neuroscience. In 1948, the
research of Tolman [20] on rats navigating mazes motivated
him to propose the cognitive map—a mental representation of
the world with information about relationships between places
that animals gradually learn. The concept of the cognitive map,
while not without its critics [21], [22], has been influential not
only in psychology and neuroscience, but also areas such as ur-
ban planning, where Lynch [23] proposed that the elements of a
cognitive map be paths, edges, nodes, districts, and landmarks,
and in robotics, where mapping approaches have been inspired
by the cognitive map [24], [25], and by its successor, the spatial
semantic hierarchy [26].

With the development of techniques to record neural activity
in the brain of animals [27] came the identification of place
cells in the rat hippocampus by O’Keefe and Dostrovsky [28].
Place cells fire when the rat is in a particular place in the envi-
ronment [see Fig. 2(a)], and the population of place cells cover
the entire environment [29], [30]. Furthermore, if a rat moves
from one environment to another, the same place cells can be
used to represent multiple different environments. O’Keefe and
Conway [31] proposed that these place cells form a part of Tol-
man’s cognitive map. The understanding about the relationships
between neural activity and places in the world was extended by
the discovery of head direction cells in the dorsal presubiculum
[32] and of grid cells [33] in the medial entorhinal cortex. Head
direction cells fire when an animal turns its head in a particu-

Fig. 3. Schematic of a visual place recognition system. Incoming visual data
is processed by the image processing module. The robot’s knowledge of the
world is stored in the map. The belief generation module decides whether the
current visual data matches a previously stored place. Motion information is
also often included, and the map may be continually updated during operation.

lar direction relative to its body, while grid cells fire in multiple
places in the environment, in such a format that their firing fields
form a regular grid [see Fig. 2(b)].

Place recognition, as observed via the firing of place cells,
is triggered by both sensory cues and self-motion [29]. Stud-
ies with rats show that place cell firing is initially based on
self-motion, but if the environment is changed—by altering the
distance between start and end goals, for example—the place
cell will update to the correct location according to the external
visual landmarks [35], [36]. The correction may occur smoothly
or abruptly, depending on the size of the mismatch.

Many of the same concepts arise in robotics. Most robots have
access to external observation data as well as self-motion infor-
mation. Topological and metric relationships between places
are used in combination with sensory cues to determine the
most likely place, similar to the neuronal firing of the place
cells. Fig. 3 presents a schematic of a visual place recogni-
tion system. Visual place recognition systems contain three key
components—an image processing module to interpret the in-
coming visual data, a map that maintains a representation of the
robot’s knowledge of the world, and a belief generation module,
which uses the incoming sensor data in combination with the
map to make a decision about whether the robot is in a familiar
or novel place. A place recognition system may also use motion
or transition information to inform the belief generation pro-
cess. Furthermore, most place recognition systems are designed
to operate online and, thus, must update the map accordingly.

This paper discusses what qualifies as a place in the context
of robotic navigation. It then looks at the three key modules
that make up the place recognition system: the image process-
ing module, the mapping framework, and the belief genera-
tion module. The paper then turns to the problem of chang-
ing environments. It revisits each of the modules—the image
processing module, the mapping module, and the belief gen-
eration module—and investigates how each has to be adapted
to incorporate the notion of appearance change into the place
recognition system’s model of the world.

III. WHAT IS A PLACE?

The concept of places in robotics is motivated by the chal-
lenges of robotic navigation and mapping. A real robot has
fallible sensors and actuators, and it is challenging to build a
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metrically accurate map of the world, and to maintain self-
localization within such a representation. The combination of
both these goals, known as SLAM [37]–[41], is even more dif-
ficult to consistently achieve.

Instead of maintaining an accurate metric map, an alterna-
tive approach is to use a “relational map, which is rubbery and
stretchy, rather than to try to place observations in a 2-D coordi-
nate system” (see [40]). Such a topological map is conceptually
similar to the biological notion of a cognitive map. Nodes rep-
resent the possible places in the world and edges represent the
possible paths between these places. Robot navigation can then
be abstractly defined as following edges between nodes. Places
represent key intersections or decision points between routes
[42], [43] as well as desirable end goals.

This topological approach to navigation is not without dif-
ficulties in practice. The robot has to associate abstract routes
and places with physical places and paths, and the complex re-
lationship between the robot sensors, the robot controls, and the
robot’s topological and metric interpretations of the world need
to be defined [26]. Another issue is how a robot can generate
topological maps. If the robot has access to a metric gridmap
of the environment, it can extract topological information, em-
phasizing relevant navigation information like open spaces and
passageways [44]. Alternatively, a topological map can be cre-
ated by a robot from visual and transition information.

The definition of a place depends on the navigation context,
and may either be considered as a precise position—“a place
describes part of the environment as a zero-dimensional point”
(see [26]), or as a larger area—“a place may also be defined
as the abstraction of a region” where a region “represents a
two-dimensional subset of the environment” (see [26]). For ex-
ample, a room in a building might in some cases qualify as a
single place, while in other cases, it might contain many dif-
ferent places. A region could also be defined as a 3-D area,
depending on the requirements of the environment or robot.
Unlike a robot pose, a place does not have an orientation, and
an ongoing challenge in place recognition is pose invariance—
ensuring recognition regardless of the orientation of the robot
within the place.

The location of each place—whether a 1-D point or a larger
region—can be selected based on spatial or temporal density.
In this approach, a new place is added according to a particular
time step, or when the robot has travelled a certain distance.
Alternatively, a place can be defined in terms of its appearance.
Kuipers and Byun [25] defined a place as somewhere distinctive
relative to other nearby locations, according to some associated
sensory information known as a place signature or place descrip-
tion. While the distinctiveness criterion is not always required, a
topological place is defined as having a certain appearance con-
figuration [45], [46] and the physical bounds of a place occur
where the appearance changes significantly, called a “gateway”
[47].

This qualitative concept of topological places as regions that
are visually homogeneous needs to be quantified—that is, how
can a place recognition system actually segment the world into
distinct places? Ranganathan [48] noted that there are simi-
larities with the problem of change-point detection in video

segmentation [49], [50], and used change-point detection algo-
rithms such as Bayesian surprise [50] and segmented regression
[51] to define places within a topological map [48], [52]. A new
place is created when the appearance of the environment, de-
termined from the sensor measurements, becomes sufficiently
different from the current model of the environment. Similarly,
Korrapati et al. [53] used image sequencing partitioning tech-
niques to group visually similar images together as topological
graph nodes, while Chapoulie et al. [54] combined Kalman fil-
tering with the Neyman–Pearson Lemma. Murphy and Sibley
[55] combined dynamic vocabulary building [56] and incre-
mental topic modeling [57] to continually learn new topological
places in an environment, and Volkov et al. [58] used coresets
[59] to segment the environment. Topic modeling, coresets, and
Bayesian surprise techniques can also be used for other aspects
of robotic navigation, such as summarizing a robot’s past expe-
rience [60]–[62], or determining exploration strategies [63].

Appearance-based and density-based place selection meth-
ods are practical to implement as they depend on measurable
quantities such as distance, time, or sensor values [64]. An on-
going challenge is the enhancement of appearance information
with semantic labels such as “door” or “intersection” so places
can be selected online based on their value as decision points.
The addition of semantic data to maps can improve planning
and navigation tasks [65] and requires place recognition to be
linked with other recognition and classification tasks, especially
scene classification and object recognition. These relationships
are symbiotic: place recognition can improve object detection
by providing contextual priming for object detection as well as
contextual priors for object localization [66], and conversely,
object recognition can also aid place recognition [67]–[70], par-
ticularly in indoor environments where the function of a place
such as “kitchen” or “office” can be inferred from the objects
within it, and used to infer the location from a labeled semantic
map [71].

IV. DESCRIBING PLACES: THE IMAGE PROCESSING MODULE

Visual place description techniques fall into two broad cate-
gories: those that selectively extract parts of the image that are
in some way interesting or notable; and those that describe the
whole scene, without a selection phase. Examples of the first
category are local feature descriptors such as scale-invariant
feature transforms (SIFT) [72] and speeded-up robust features
(SURF) [73]. Local feature descriptors first require a detection
phase which determines the parts of the image to retain as local
features [see Fig. 4(a)]. In contrast, global or whole-image de-
scriptors such as Gist [74], [75] do not have a detection phase but
process the whole image regardless of its content [see Fig. 4(b)].

A. Local Feature Descriptors

The development of the local feature method SIFT [72] led to
its widespread use in place recognition [76]–[83]. As other local
feature detection and description methods were developed, they
too were applied to the visual localization and place recognition
problem. For example, Ho and Newman [84] used Harris affine
regions [85], Murillo et al. [86] and Cummins and Newman [87]
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Fig. 4. Visual place description techniques fall into two broad categories. (a)
Interesting or salient parts of the image are selected for extraction, description
and storage. For example, SURF [73] extracts interest points in an image for
description. The circles are interest points selected by SURF within this image.
The number of possible features may vary depending on the number of interest
points detected in the image. (b) Image is described in a predefined way such
as the grid shown here without first detecting interest points. Whole-image
descriptors such as Gist [74], [75] then process each block regardless of its
content.

used SURF [73], while FrameSLAM [2] used CenSurE [88].
Since local feature extraction consists of two steps—detection
followed by description—it is not uncommon to combine dif-
ferent techniques for each. For example, Mei et al. [89] used
the detection technique FAST [90] to find keypoints in the im-
age, which were then described by SIFT descriptors. Similarly,
Churchill and Newman [15] used FAST extraction combined
with BRIEF [91] descriptors.

Each image may contain hundreds of local features, and di-
rectly matching image features can be inefficient. The bag-of-
words model [92], [93] increases efficiency by quantizing local
features into a vocabulary that can be compared using text re-
trieval techniques [94]. The bag-of-words model partitions a
feature space, such as SIFT or SURF descriptors, into a finite
number of visual words. A typical vocabulary contains 5000–
10 000 words, but a vocabulary as large as 100 000 words has
been used for place recognition by FAB-MAP 2.0 [87]. For each
image, every feature is assigned to a particular word, ignoring
any geometric or spatial structure, thereby allowing images to
be reduced to binary strings or histograms of length n, where n
is the number of words in the vocabulary.

Images described using the bag-of-words model can be ef-
ficiently compared using binary string comparison such as a
Hamming distance or histogram comparison techniques. Vo-
cabulary trees [95] can make the process for large-scale place

recognition even more efficient. Originally proposed for object
recognition, vocabulary trees use a hierarchical model to define
words, an approach that enables faster lookup of visual words
and the use of a larger and thus more discriminating vocabu-
lary. Localization systems that use the bag-of-words approach
include [82], [84], [87], [96], [97] and many others.

Because the bag-of-words model ignores the geometric struc-
ture of the place it is describing, the resulting place description is
pose invariant; that is, the place can be recognized regardless of
the position of the robot within the place. However, the addition
of geometric information to a place has been shown to improve
the robustness of place matching, particularly in changing con-
ditions [14], [87], [98]–[100]. These systems may assume a
laser sensor is available for 3-D information [98], use stereo vi-
sion [14], epipolar constraints [100], [101], or simply define the
scene geometry according to the position of the elements within
the image [102], [103]. The tradeoff between pose invariance—
recognizing places regardless of the robot orientation—and con-
dition invariance—recognizing places when the visual appear-
ance changes—has not yet been resolved and is a current chal-
lenge in place recognition research.

The bag-of-words model is typically predefined based on fea-
tures extracted from a training image sequence. This approach
can be limiting as the resulting model is environment dependent
and needs to be retrained if a robot is moved into a new area.
Nicosevici and Garcia [56] propose an online method to con-
tinuously update the vocabulary based on observations, while
still being able to match prior observations with future obser-
vations. As a result, a bag-of-words model can be used without
requiring a pretraining phase and can adapt to the environment,
outperforming pretrained models despite requiring less a priori
knowledge [56].

B. Global Descriptors

Global place descriptors used in early localization systems
included color histograms [5] and descriptors based on principal
component analysis [104]. Lamon et al. [105] used a variety
of image features—such as edges [106], corners [107], and
color patches—combined into a fingerprint of a location. By
ordering these features in a sequence between 0◦ and 360◦, place
recognition could be reduced to string-matching. These systems
used omnidirectional cameras which allowed rotation-invariant
matching at each place.

Global descriptors can be generated from local feature de-
scriptors by predefining the keypoints in the image—for ex-
ample, using a grid-based pattern—and then using the chosen
feature description method on the preselected keypoints. Badino
et al. [108] used whole-image descriptors based on SURF fea-
tures known as WI-SURF to perform localization and BRIEF-
Gist [109] used BRIEF features [91] in a similar whole-image
fashion.

A popular whole-image descriptor is Gist [74], [75], which
has been used for place recognition on a number of occasions
[110]–[113]. Gist uses Gabor filters at different orientations and
different frequencies to extract information from the image. The
results are averaged to generate a compact vector that represents
the “gist” of a scene.
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Fig. 5. Object proposal methods such as the Edge Boxes method [123] shown
here were developed for object detection but can also be used to identify potential
landmarks for place recognition. The boxes in the images above show landmarks
that have been correctly matched between two viewpoints of a scene (from
[122]).

C. Describing Places Using Local and Global Techniques

Local and global descriptors each have different advantages
and disadvantages. Local feature descriptors are not restricted
to defining a place only in terms of a previous robot pose, but
can be recombined to create new places that have not previously
been explicitly observed by the robot. For example, Mei et al.
[114] defined places via covisibility: the system finds cliques in
the landmark covisibility map, and these cliques define places
even when the landmarks have not simultaneously been seen
in a single frame. Covisibility can outperform standard image-
based techniques [78]. Lynen et al. [115] generated a 2-D space
of descriptor votes where regions of high vote density represent
loop closure candidates.

Local features can also be combined with metric information
to enable metric corrections to localization [2], [7], [76]. Global
descriptors do not have the same flexibility, and furthermore,
whole-image descriptors are more susceptible to change in the
robot’s pose than local descriptor methods, as whole-image de-
scriptor comparison methods tend to assume that the camera
viewpoint remains similar. This problem can be somewhat ame-
liorated by the use of circular shifts as in [116] or by combining
a bag-of-words approach with a Gist descriptor on segments of
the image [17], [110].

While global descriptors are more pose dependent than lo-
cal feature descriptors, local feature descriptors perform poorly
when lighting conditions change [117] and are comprehensively
outperformed by global descriptors at performing place recogni-
tion in changing conditions [118], [119]. Using global descrip-
tors on image segments rather than whole images may provide
a compromise between the two approaches, as sufficiently large
image segments exhibit some of the condition invariance of
whole images, and sufficiently small image segments exhibit
the pose invariance of local features. McManus et al. [120] used
the global descriptor HOG [121] on image patches to learn con-
dition invariant scene signatures, while Sünderhauf et al. [122]
used the Edge Boxes object proposal method [123] combined
with a mid-level convolutional neural network (CNN) feature
[124] to identify and extract landmarks as illustrated in Fig. 5.

D. Including Three-Dimensional Information
in Place Descriptions

The image processing techniques described above are appear-
ance based—they “model the data directly in the visual domain

(instead of making a geometric model)” (see [104]). However, in
metric localization systems, the appearance-based models must
be extended with metric information. Monocular image data is
not a natural source of geometric landmarks—“the essential ge-
ometry of the world does not “pop out” of images the same way
as it does from laser data” (see [125]). While many systems use
data from additional sensors such as lasers [98] or RGB-D cam-
eras [126]–[128], geometric data can also be extracted from con-
ventional cameras to allow metric calculation of the robot pose.

Metric range information can be inferred using stereo cam-
eras [2], [129]–[131]. Monocular cameras can also infer metric
information using Structure-from-Motion algorithms [132].
Methods include MonoSLAM [7], PTAM [133], DTAM [134],
LSD-SLAM [135], and ORB-SLAM [136]. Metric information
can be sparse: that is, range measurements are associated with
local features such as image patches as in MonoSLAM [7],
SIFT features as in [76], CenSurE features as in FrameSLAM
[2], or ORB features [137] as in ORB-SLAM [136]. In contrast,
DTAM stores dense metric information about every pixel, and
LSD-SLAM maintains semidense depth data on the parts of
the image containing structure and information. Dense metric
data allow a robot to perform obstacle avoidance and metric
planning as well as mapping and localization; therefore, fully
autonomous vision-only navigation can be performed [16].

The introduction of novel sensors, such as RGB-D cameras,
that provide dense depth information as well as image data has
spurred the development of dense mapping techniques [70],
[126]–[128], [138], [139]. These sensors can also exploit 3-D
object information to improve place recognition. SLAM++ [70]
stores a database of 3-D object models, uses this database to
perform object recognition during navigation, and uses these
objects as high-level place features. Objects have a number
of advantages over low-level place features: they provide rich
semantic information and can reduce memory requirements via
semantic compression, that is, storing object labels rather than
full object models in the map [70].

V. REMEMBERING PLACES: THE MAPPING MODULE

For a place recognition or navigation task, the system needs to
refer to a map—a stored representation of the robot’s knowledge
of the world—to which the current observation is compared. The
map framework differs depending on what data are available
and what type of place recognition is being performed. Table I
displays a taxonomy of mapping approaches, which depends on
the level of physical abstraction in the map and whether or not
metric information is included in the place description. The most
concrete mapping framework listed is the topological-metric
or topometric map. Although it is possible to have a globally
metric map, such maps are only feasible in small geographical
areas, and there are mechanisms for fusing topometric maps
into globally metric maps [140]. Thus, for the purposes of place
recognition, any globally metric map can be considered as a
one-node topometric map.

A. Pure Image Retrieval

The most abstract form of mapping framework for place
recognition only stores appearance information about each place
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TABLE I
MAPPING FRAMEWORKS FOR VISUAL PLACE RECOGNITION

Level of map abstraction Place description type Comments

Pure image retrieval Appearance-based No position information
Topological Appearance-based Includes transition information
Topological-metric Appearance-based Includes metric information between but not within places
Topological-metric Sparse metric information (landmark maps) SLAM system – includes metric information between and within places
Topological-metric Dense metric information (occupancy grid maps) SLAM system – includes metric information between and within places

in the environment, with no associated position information.
Pure image retrieval assumes that matching is based solely on
appearance similarity and applies image retrieval techniques
from computer vision that are not specific to place-based in-
formation [3]. Although valuable information is lost by not in-
cluding relative position information, there are computationally
efficient indexing techniques that can be exploited.

A key concern with place recognition is system scalability—
as the robot visits more and more places, storage requirements
will increase and search efficiency will decrease. As a result,
maps need to be designed to ensure large-scale efficiency. If a
bag-of-words model is used to quantize the descriptor space,
image retrieval can be accelerated using inverted indices; the
image ID numbers are stored against the words that appear in
the image, rather than the words being stored against the image
IDs. Inverted indices allow quicker elimination of unlikely im-
ages, rather than requiring a linear search of all images in the
database.

Schindler et al. [3] used a hierarchical vocabulary tree [95] to
achieve efficient visual place recognition of a city-sized dataset
(a 20-km traversal with around 100 million features). This pa-
per showed that place recognition performance improves if only
the most informative features from each image are used, where
information gain is measured using a conditional entropy cal-
culation. Improved place recognition with a reduced feature set
was also observed by Li and Košecká [141].

FAB-MAP 2.0 [87], [142] also used an inverted index with
a bag-of-words model to demonstrate visual place recognition
along a 1000-km path. While Schindler et al. [3] used a voting
scheme to match locations, FAB-MAPs probabilistic model that
included negative observations—words that did not appear in the
image—as well as positive observations required simplification
before the inverted index approach could be applied.

Place recognition can also be made more efficient by using hi-
erarchical searching at the place level as well as at the vocabulary
level. Mohan et al. [143] selected the most likely environment
using cooccurent feature matrices. Preselecting a subset of the
global environment reduced the search space, thereby increasing
the efficiency of the place recognition process.

B. Topological Maps

Pure topological maps contain information about relative po-
sitions of places but do not store metric information regarding
how these places are related [5], [6], [118], [119]. Topological
information can be used to both increase the number of cor-

rect place matches and filter out incorrect matches [14], [84]. A
probabilistic system like FAB-MAP can be run as a pure image
retrieval process by assuming a uniform location prior at all
steps, but performance improves when transition information is
included through Bayesian filtering or similar techniques.

While image retrieval techniques can use an inverted index
to improve efficiency, topological maps can use a location prior
to speed up matching, that is, the place recognition system only
has to search places known to be close to the robot’s current
position. A sampling-based method such as a particle filter can
be used to sample possible places [12], [13], [111], [144]. The
particles are resampled according to which places are the most
likely and can stay close by the current robot location if it is
well localized, or spread out across the whole environment if
the robot is lost. Computation time is thus proportional to the
number of particles, not the size of the environment [145].

Alternatively, since the number of loop closures in an envi-
ronment is naturally sparse, Latif et al. [19] used topological
information to formulate place recognition as a sparse convex
L1-minimization problem and applied efficient homotopy meth-
ods [146] to provide loop closure hypotheses.

The addition of topological information into the recogni-
tion process allows place recognition using low-resolution data
and thus lower memory requirements. Using the sparse con-
vex L1-minimization formulation, successful place recognition
was achieved using images as small as 48 pixels [19]. Even in
challenging scenarios where images were blurred or observed
under different environment conditions such as different times
of day, the use of topological information allowed visual place
recognition using as few as 32 4-bit pixels per image [147].

C. Topological-Metric Maps

As image retrieval can be enhanced by adding topological
information, topological maps can be enhanced by including
metric information—distance, direction, or both—on the map
edges. For example, both FAB-MAP [6] and SeqSLAM [118]
are originally purely topological systems, but the addition of
odometry information has been demonstrated to improve each
system’s place recognition performance by CAT-SLAM [13]
and SMART [148] respectively.

These topological-metric maps can be appearance-based, in
which case metric information is only included as relative poses
between each place node [149]–[152]. However, metric infor-
mation about the position of landmarks or objects in a place can
also be stored within each node [1], [2], [26], [140], [153]–[156].
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The metric information within the topological place node can
be stored as a sparse landmark map [2], [7], [76], or as a dense
occupancy grid map [134] if depth information is extracted from
the image data. Although the notion of dense spatial modeling
using a truncated signed distance function representation can
be traced back to the work of Moravec and Elfes [39] in the
mid-1980s, it has only become feasible in the past few years
with the advent of GPU technology [134].

VI. RECOGNIZING PLACES: THE BELIEF GENERATION MODULE

Ultimately the purpose of a place recognition system is to
determine whether a place has been seen before. Thus, the cen-
tral goal of any place recognition system is reconciling visual
input with the stored map data to generate a belief distribution.
This distribution provides a measure of likelihood or confidence
that the current visual input matches a particular location in the
robot’s map representation of the world. There is a general un-
derstanding that if two place descriptions appear similar there is
a greater likelihood of them being captured at the same physical
location, but the degree to which this is true depends on the par-
ticular environment. For example, repetitive environments may
exhibit perceptual aliasing where different places are indistin-
guishable. Conversely, changing conditions may cause the same
place to appear drastically different at different times.

A. Place Recognition and Simultaneous Localization
and Mapping

Place recognition plays an important role in pose graph
SLAM algorithms by providing loop closure candidates [157].
Pose graphs, also known as view-based representations [158],
[159], are widely utilized in modern SLAM systems because
of their computational efficiency for fixed size maps, although
they can suffer from an increase in computational requirements
for long duration missions. Loop closure is vital for consis-
tent mapping as it allows the system to correct drift in local
odometry measurements [160], [161]. Loop closure can be de-
coupled from the online local update step, and many systems
independently perform both SLAM-like local metric correction
and topological-like loop closure [1], [2], [80], [161]; a system
can perform local metric correction using laser scan data [80],
[161] or visual odometry [1], [2] while a separate global process
looks for matches in order to close large loops.

If the place descriptions are appearance based and do not
contain any metric information, but the map contains metric
distances between places, the system can still use the loop clo-
sures to perform metric correction at the place level [149]–[152].
However, if the place descriptions contain metric information as-
sociated with the image features, as is the case for FrameSLAM
[2], then a more precise correction can be performed. Maps that
are purely topological do not provide any metric pose correc-
tion. In these cases, localization at a topological level occurs;
that is, the system simply identifies the most likely location.

The place recognition maps that contain metric information
both within and between the place descriptions can be used to
perform a full metric SLAM solution. There are a wide range
of SLAM techniques available, as summarized in [162]–[164].

Thrun and Leonard [164] identify three key SLAM paradigms:
extended Kalman filters (EKF) [37], [38], [165]–[167] and Rao-
Blackwellized particle filters [168], as well as the pose graph
approach discussed above [160], [161], [169]–[171]. Vision-
based systems utilize all these methods: MonoSLAM [7] uses
an EKF, Rao-Blackwellized particle filters are used in [12],
[172], and [173], and pose graph optimization techniques are
used in [2] and [174].

B. Topological Place Recognition

If multiple streams of data are available, a voting scheme
[3], [5], [79], [96], [175] can be used. Ulrich and Nourbakhsh
[5] used multiple color bands, each of which voted for what it
considered the most likely location. Depending on the votes,
the system could be confident, uncertain, or confused. If the
confident bands were unanimous and the total confidence was
above a certain threshold, the system was confident about its
location; if none of the bands were sufficiently confident or the
total confidence value was too low, the system was uncertain;
and if the confident bands disagreed on the location, the system
was confused.

If a system uses the bag-of-words model, inspired as it is
by text-based document analysis, it may use the related Term
frequency-inverse document frequency (TF-IDF) score [56],
[114], [176]. Each visual word in an image has a TF-IDF score,
which is made up of two parts: the term frequency, which mea-
sures how often the word appears in the image, and the inverse
document frequency, which measures whether the word is com-
mon across all images. The TF-IDF score is then the product of
these two values.

A probabilistic calculation can also be used to compute place
matching likelihood, using a calculation based on Bayes theo-
rem. Early examples of appearance-based probabilistic localiza-
tion used Gaussians to represent probability [177], or a mixture
of Gaussians combined with expectation maximization [178],
or a Gaussian kernel [179] with Parzen smoothing [104]. Other
choices for the observation likelihood include the use of TF-
IDF for the observation likelihood, if a bag-of-words model
is being used [83], [180]. Siagian and Itti [111], [181] used
Monte Carlo localization with two observation update steps
each with an independent observation likelihood: one based on
the segment likelihood and one based on the object likelihood.
Garcia-Fidalgo and Rodriguez [182] used the observation like-
lihood that relates the number of feature matches between two
images to the overall number of features in the image, scaled by
a normalizing constant.

The observational likelihood can also be computed via a
data-driven approach. FAB-MAP [6], [87] is a probabilistic
appearance-based localization system that uses a data-driven
approach to calculating an observational likelihood. FAB-MAP
uses a bag-of-words model with SIFT or SURF features for im-
age description and calculates the distinctiveness of each word
during a training phase. As a bag-of-words model may have
many words—FAB-MAP has been used with a 100 000-word
vocabulary [87]—the full joint probability distribution of the
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Fig. 6. FAB-MAP learns a probabilistic model of the relationship between
word appearance and place recognition. (a) Full joint distribution takes into ac-
count the relationships between words (the thick lines between words represent
those with the largest mutual information). (b) Chow–Liu tree approximates the
full joint distribution as a junction tree where each word depends only on one
other word (from [184]).

observed words [see Fig. 6(a)] can be approximated by a naı̈ve
Bayes assumption or a Chow–Liu tree [183] [see Fig. 6(b)].

FAB-MAP handled the perceptual aliasing problem by con-
sidering not only whether two locations were similar in the
sense that they have many visual words in common, but also
whether the words in common were sufficiently rare that the
locations could be considered distinctive. As a result, if two lo-
cations looked similar but the words that appear were frequently
observed, FAB-MAP generated a low matching probability by
using the denominator as a normalizing constant that was cal-
culated over the set of all previously seen locations and the set
of all locations that have not yet been visited.

Originally, the set of unvisited locations was modeled by ran-
domly sampling from the Chow–Liu tree, and the probability
that the robot was at a location that had not yet been observed
was a user-defined parameter. However, Paul and Newman [60],
[62], [185] presented an iterative learning mechanism to gener-
ate a representative set of the true distribution of the appearance
of the world. Latent Dirichlet Allocation [186] was used to clus-
ter images into major topics that summarize how the world, as
seen so far by the robot, appears. These topics were used to
generate a sampling set that is proportional to what is common
in the world; for example, foliage occurs frequently in many en-
vironments so should not be considered distinctive. The system
learned incrementally; after each deployment, a better sampling
set was created as the system discovered more about the world.
Furthermore, an online–offline learning process was proposed,
whereby during the robot’s “down-time,” it could download and
integrate further relevant image data from the internet.

Olson [187] observed that “correct hypotheses generally
agree with each other, whereas incorrect hypotheses tend to
disagree with each other” and used this property to eliminate
false positive matches by calculating a pairwise consistency ma-
trix between possible hypotheses to find the most consistent set
of hypotheses from the dominant eigenvectors. The same pa-
per also observed that the amount of information required to
generate a belief match should scale with the robot’s positional
uncertainty. The system ensured this by requiring that local hy-
pothesis matches covered a large physical space in comparison

Fig. 7. CANs are a type of neural network that can be used to model the
behavior of place cells, head direction cells, and grid cells. (a) Example of a
CAN used to model head direction cells. Each cell excites itself and units near
itself (see local excitation arrows) and inhibits other cells. (b) Stable activity
packet centered at 120◦ generated by the combination of local excitation and
global inhibition with input from a motion input performs place recognition
by exciting nearby pose cells and inhibiting those that are far away through a
combination of odometry and visual input (from [116]).

with the robot’s positional uncertainty to ensure that the robot
was not incorrectly located within its uncertainty ellipse [187].

This approach contrasts with FAB-MAP’s requirement of a
few highly distinctive matches. Instead, many matches are re-
quired, but these matches do not need to be particularly dis-
tinctive, as the geometrical relationship between the matches
ensures the uniqueness of the hypothesis.

Biologically inspired methods for place recognition mimic
the known place cells structure in the rat hippocampus [116],
[188]. In RatSLAM [116], a type of neural network known as
a continuous attractor network (CAN) was used to model place
cells (see Fig. 7). This CAN used a combination of local excita-
tion and global inhibition combined with input from ego-motion
and visual sensors to perform localization. In a similar manner
Giovannangeli et al. [188] used a place cell model to perform
vision-based navigation in indoor and outdoor environments
without a metric map.

C. Evaluation of Place Recognition Systems

Topological place recognition systems are typically evaluated
using precision and recall metrics and their relationship via a
precision-recall curve. A system selects matches based on a
particular confidence measure. The correct matches are known
as true positives, the incorrect matches are false positives,
and matches that the system erroneously discards are false
negative matches. Precision is defined as the proportion of
selected matches that are true positive matches, and recall is the
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proportion of true positives to the total number of actual
matches, that is

Precision =
TP

TP + FP

Recall =
TP

TP + FN
.

A perfect system would be one that achieves precision of
100% and recall of 100%. Precision and recall are often related
to each other via a precision–recall curve, which plots recall
against precision for a range of confidence values.

Until recently, place recognition prioritized avoidance of false
positive matches [6], as introducing false matches into a map
could cause catastrophic failure. As a result, recall at 100%
precision was the key metric for place recognition success.
However, several methods for using topological information to
correct false positive matches have been proposed [189]–[191],
and attention has turned from eliminating all false positives to
finding many potential place matches and then correcting any
mismatches in a topological post-processing step. Increasing
the number of potential matches is particularly important when
performing place recognition in changing environments, when
strict matching methods are liable to fail.

Furthermore, as place recognition systems transition from
“demonstration” (typically with prerecorded data sets) to “de-
ployment” (operating in real time on autonomous vehicles),
the performance evaluation methodology may change further
to include a consideration of the spatial distribution of place
matches within the environment. For example, McManus et al.
[192] used the probability of travelling a given distance without
a successful match as a measure of place recognition success.
This metric expresses how evenly distributed the place matches
are across the environment and is an important measure for the
overall integrity of a navigation system that uses place recogni-
tion as a module.

VII. VISUAL PLACE RECOGNITION IN

CHANGING ENVIRONMENTS

Early place recognition systems often implicitly used the sim-
plifying assumption that the visual appearance of each place
would not change over the course of the experiment. However,
as robotic systems operate in ever-larger uncontrolled environ-
ments and for longer time periods, it has rapidly become ap-
parent that this assumption is no longer valid. Consequently, in
recent years, there has been a growing focus on creating per-
sistent robotic navigation systems, including persistent place
recognition techniques. The ability to localize in and generate
maps of dynamic environments has been identified as being of
key importance [193]. This section revisits each of the previous
concepts: place description techniques, mapping frameworks,
and the belief generation process, and discusses how each has
to be adapted to manage a changing environment.

A. Describing Places in Changing Environments

It is clear that the appearance of a place can vary greatly
over time due to a large number of causes including changes

in lighting and weather (see Fig. 1). There are two approaches
for performing place recognition when faced with appearance
change—the first tries to find a condition-invariant description
of the place, the way local feature descriptors are designed to be
scale-, rotation-, and illumination-invariant. The second method
tries to learn how appearance change occurs.

1) Invariant Methods: The difficulty of matching places in
changing environments using conventional local features is a
significant one for persistent robot navigation. Furgale and Bar-
foot [117] observed that the non-repeatability of SURF features
due to changing appearance, particularly lighting change, was
a major cause of failure during visual-teach-and-repeat experi-
ments. Existing image description methods have been tested to
determine their robustness to illumination and other change. In
[194], Valgren and Lilienthal tested SIFT features and a number
of SURF variants across change in lighting, cloud cover, and
seasonal conditions. The SURF variants all outperformed SIFT,
but none of the tested features were found to be robust across
all conditions. However, in later work [100], the authors com-
bined U-SURF [73], the most successful SURF variant, with a
consistency check using the epipolar constraint, and achieved
between 80% and 100% correct matching within small (40 im-
age) datasets.

Ross et al. [195], [196] studied the effect of lighting change on
features using time-lapse footage across full days to determine
the illumination sensitivity of each descriptor. The feature key-
points were predefined within each image, and only the variance
of the feature descriptor was tested, in contrast with the work of
Valgren and Lilienthal [100], [194], which tested the combined
effect of feature detector and descriptor. The U-SIFT [72] de-
scriptor was shown to display the greatest lighting invariance of
the tested descriptors.

Instead of using point features such as SIFT or SURF,
other descriptors can be chosen. Whole-image descriptors have
been used in systems such as SeqSLAM and others [118],
[119], [197] that demonstrate robustness against environmental
change. However, as for other description methods, too dras-
tic a change in appearance will cause system failure [111] and
whole-image descriptors also suffer from the additional problem
of sensitivity to viewpoint change [198].

Edge features can be used in appropriate environments [172],
[199], as they are invariant to lighting, orientation and scale
[199]. Nuske et al. [199] used line-based localization to localize
against an existing map with a fish-eye camera and tested it in an
outdoor industrial area under various lighting conditions across
times of day from 7:00 to 17:00. Borges et al. [200] extended
this system to generate its own edge map using 3-D laser data
for localization. However, data association using edge features
can be challenging [172].

Techniques such as shadow removal [201] and the use of an
illumination invariant color space [192] can lessen the effect of
appearance variability caused by illumination change. Alterna-
tively, a hardware-based solution to place recognition in variable
lighting conditions can be used. McManus et al. [202] used
scanning laser-rangefinders to create “camera-like” images that
were not affected by the illumination of the scene. This solution
had the advantage of being applicable in complete darkness. A
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long-wave infrared thermal imaging camera is another sensor
that can be deployed in a manner similar to a standard camera
but which responds differently to lighting variance. Maddern
and Vidas [203] showed thermal imaging cameras can provide
improved place recognition at night-time when visible light
cameras fail.

CNNs have recently been used as robust feature extractors
for place recognition in changing environments. Exploring the
utility of CNNs for place recognition has been motivated by their
ability to learn generic features that are transferrable to a variety
of related but different visual tasks [204], [205]. The authors of
[206], [207] utilized CNN features as holistic image descriptors
and analyzed the robustness of different layers against visual
appearance and viewpoint changes. They concluded that mid-
level features exhibit a robustness against appearance changes,
while higher level features are more robust against changes in
viewpoint and carry more semantic information that can be used
to partition the search space [207].

One aspect of visual data that has not been investigated in
depth for place recognition in changing environments is that
of color. While conventional images descriptors such as SURF
and BRIEF operate on grayscale images, most available cameras
capture color images, which have the potential to provide new
and interesting information about place recognition in changing
environments. Color information presents an interesting para-
dox for place recognition in changing environments: it is known
to perform poorly as a feature when the illumination of a scene
changes [195], but conversely, relative color information con-
tains information about lighting that can improve place recogni-
tion dramatically by identifying and removing shadows [201].
Illumination invariant images use relative color information and
are more reliable for place recognition during the day, but are
outperformed by color images at night, when the underlying
assumptions about black-body illumination are violated [208].

2) Learning Methods: The alternative to invariant ap-
proaches is to learn a relationship between how places appear at
different times. These methods assume that places change ap-
pearance in a similar way across an environment, and therefore,
change learned during training can be generalized to previously
unseen locations. This assumption has been tested by observing
static webcams from different locations [209], [210] and demon-
strating that the most significant transformations across time are
similar across different places. Furthermore, a training set of lo-
cations can be used to compute a principal component basis that
encodes new locations with only a small loss of accuracy.

Ranganathan et al. [211] learned a fine vocabulary [212]; a
fine vocabulary is similar to a bag-of-words model in that it
segments a descriptor space, such as SIFT descriptors, but it
does so very finely—into over 16 million words in [212]. The
system then learned a probability distribution over these words.
The motivation for the fine vocabulary is the observation that
descriptors transform in a highly non-linear way due to illumina-
tion change, changing viewpoint, and other effects, and learning
a distribution of alternative words allows these changes to be
learned and quantified. In [211], the distribution was learned
from multiple training runs over the same environment, and
features were matched across different illumination conditions

to generate the probability distribution. Improved performance
was reported compared to using a conventional vocabulary tree
[95], with an additional 10–15% of the dataset being correctly
matched. The distance metric was also compared and the sym-
metric Kullback–Leibler divergence was shown to outperform
either the standard descriptor distance metric or a probability
distance metric.

Using webcam footage, Carlevaris-Bianco and Eustice [213]
tracked image patches over different lighting conditions to gen-
erate a large set (3 million features) of positive and negative
examples. From these data, a neural network learning technique
[214] mapped the patches into a new space in which positive
matches were close together, according to the Euclidean dis-
tance, and negative matches were further away. The mapped
descriptors were shown to be substantially more successful at
place recognition than SIFT and SURF descriptors—compared
with SURF descriptors, an additional 10% of the test locations
were correctly matched.

Neubert et al. [18] learned a visual translation between two
different seasons. Training images from two different seasons
were segmented using SLIC superpixels [215]. The superpixels
were described using a color histogram and a SURF descriptor,
and a dictionary of translations of superpixels from one season
to another season was learned. Similarly, Lowry et al. [216]
learned a linear transformation from images captured in the
morning to images captured in the late afternoon. However, for
such appearance translation to be successful, the pairs of training
images must be well aligned.

Learning-based methods frequently require a supervised
training phase, which implies that the likely appearance change
is known and that relevant training data is available. Lowry
et al. [217] proposed an unsupervised learning method for
place recognition in changing environments. This system iden-
tified and removed aspects from each observation that were
widespread across the environment. Removing commonly oc-
curring elements reduced the risk of widespread place recogni-
tion failure and increased the stability of the place descriptions.

B. Remembering Places in Changing Environments

If the environment is changing, the map also needs to change
to continue faithfully representing the environment. The system
must determine what to remember and what to forget. It may also
be beneficial for the system to maintain multiple representations
of a place, as places can vary between different configurations.
This section presents mapping frameworks for place recogni-
tion that have the capacity to handle changing environments in
one of these two ways—either by deciding what to remember
and what to forget, and/or by remembering multiple different
representations. These systems are not all specific to vision-
based systems, and many have been designed to handle laser
data, but demonstrate concepts that are relevant to any sensor
modality or map framework.

1) Remembering and Forgetting Data: In a dynamic
environment, each place representation must be updated as new
observations are obtained by the robot. A balance has to be
found between using recent observations to overwrite obsolete
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information, and not allowing fleeting events to overwrite the
status quo. However, it is difficult to determine which events
are transient and which are worth remembering. Drawing inspi-
ration from concepts in neuroscience, Biber and Duckett [218]
referred to this as the “stability-plasticity dilemma.” Biological
brains can inspire solutions for coping with this dilemma;
concepts such as sensory memory, short-term memory, and long-
term memory found in human memory models have been co-
opted to create decision models for remembering and forgetting.

One biologically inspired mapping system passes sensor in-
formation through an analog of sensory memory to short-term
memory and long-term memory storage areas [219], [220]. In
the first stage, a selective attention mechanism decides which in-
formation will be upgraded from sensory memory to short-term
memory, based on information from the long-term memory. The
second stage involves using a rehearsal mechanism to deter-
mine which information will be transferred from short-term to
long-term memory. Using attention and rehearsal mechanisms
ensures that more persistent, stable, and frequently occurring
features are remembered, while transient features are forgot-
ten. Elements must be seen and recognized sufficiently often
before they are considered for promotion to a higher level of
memory. Furthermore, obsolete features are slowly filtered out
of the long-term memory. There is a complementary problem
of which elements to remember, which typically uses similar
criteria [219], [221] to the forgetting process.

Andrade-Cetto and Sanfeliu [222] required that features be
trustworthy and reliable as well as up-to-date in order to be re-
tained, while Bailey [221] considered a usefulness criteria based
on visibility—a feature that can be blocked by other elements of
the environment is liable to suffer from occlusion errors and be
less useful in the future. Johns and Yang [102] and Hafez et al.
[223] used a bag-of-words model and applied a quality measure
to determine useful features to retain, considering both feature
distinctiveness and feature reliability when generating a model
of a location. Johns and Yang [224] also proposed a generative
bag-of-words model that considered the variance as well as the
mean value of each data point when matching scenes.

2) Multiple Representations of the Environment: Not only
do places change in appearance over time, but they may also
change in a cyclic manner that cannot be represented by a single
description. During a two-week office-based experiment [225],
Milford and Wyeth noted that “the weakness is that the system
deals rather inefficiently with cyclic changes such as day-night
time cycles. Over a full night of operation, the pruning pro-
cess gradually develops the experience map representation into
one suited to localization at night time, somewhat hindering
localization in the morning.” These observations were corrobo-
rated by Ranganathan et al. [211], who stated that for an indoor
office environment, consistently good localization through the
24-h cycle would require around three to four images per lo-
cation. Rather than continuously remembering and forgetting
information, the map should hold multiple representations of
the area—either at a place level or at a whole-map level.

A place recognition system can use multiple maps of the
same environment. In the work of Biber and Duckett, each map

encoded a different timescale [226]. Some of these maps repre-
sented short-term memory and were updated frequently, while
others were analogous to long-term memory and were not up-
dated for hours, days, or weeks. Keeping maps that updated
at different timescales ensured that old mapping data was not
immediately overwritten by a temporary change in the environ-
ment. Instead static elements were reinforced over time, whilst
transient events were filtered out. Place recognition was per-
formed by selecting the local map that fitted the current sensor
data best.

Systems that maintain multiple maps of the same environ-
ment may also add new map configurations only when they are
necessary, rather than according to a pre-set timeframe [220].
Furthermore, Stachniss and Burgard [227] noted that not ev-
ery place needs multiple representations—certain areas such as
doorways may exhibit more change than the rest of the environ-
ment. Such areas may only possess a few key configurations—
for example, a door may be open or closed—therefore, the world
can be described sufficiently accurately using a finite number
of submaps. Each region in which dynamic activity is observed
was segmented from the rest of the map in a submap. Fuzzy
k-means clustering was used with the Bayesian information cri-
terion to determine the optimal number of typical configurations
of this area. Using submaps to segregate dynamic areas allowed
multiple environmental configurations where necessary while
keeping the map manageable.

Elements of a scene that are moving when the robot observes
them must be detected and may also be removed [229], [230].
However, there are often semistatic elements that are not obvi-
ously moving but which appear and disappear over time. While
these elements can simply be removed as unreliable [69], [231],
it is also possible that such elements may be temporarily use-
ful for localization in specific parts of an environment [232].
Meyer-Delius et al. [232] used the example of a car park build-
ing, where the static elements such as the walls can be far away
and are not distinctive, while the semistatic parked cars are many
and relatively distinctive, and can be used for localization for a
matter of hours or a day, before being forgotten. If this is the
case, temporary maps are created when the robot observations
do not match the expected results of the provided static map.
The temporary maps are discarded when they fail to adequately
match the robot observations over multiple consecutive time
steps.

The systems presented above [220], [226], [227], [232] were
designed for metric systems. Multiple representations can also
be generated for appearance-based systems if multiple train-
ing runs are available. Johns and Yang [102] used feature co-
occurrence maps generated during five training runs on a 20-km
urban road-based dataset between 14:00 and 22:00. Localiza-
tion can then be achieved on the same route at times interpolated
between the five runs.

McManus et al. [120] used multiple training runs through
an environment to learn scene signatures—locally distinctive
elements of a place that are also stable over changes in appear-
ance. For each location within the environment, image patches
were selected that specifically demonstrate both distinctiveness
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Fig. 8. The varying appearance of a changing environment may require a
system to store multiple representations of each place. This image (from [228])
shows the number of robot “experiences” stored during repeated traversals of a
path over a number of months. While most places require five to ten experiences,
some regions require as many as 30.

and stability. The selected patches were described using HOG
descriptors [121] and used to train an SVM classifier for
each location. Using scene signatures for each place allowed
100% correct place recognition in a 31 location dataset, while
SURF features performed poorly, particular in rainy and foggy
conditions.

If the appearance of the environment is assumed to be affected
by a series of hidden periodic processes, spectral analysis such
as Fourier analysis can be used to predict the most likely appear-
ance of a location from multiple training passes at a particular
time in the future. Krajnik et al. [233] learned and modeled
these processes over an environment and demonstrated that this
information can halve the number of place recognition errors
when localizing three months later.

All of the systems described above share an underlying
assumption—that the robot knows where it is sufficiently well
to match different representations of the same location together,
even if the representations are visually dissimilar. A map cannot
be updated if the system does not know which location to update
and, in a changing environment, it may not be possible to know
exactly where the robot is. To avoid this assumption, Churchill
and Newman proposed a plastic map formulation [15] that ex-
plicitly localizes within robot “experiences” rather than physical
locations. A new experience is generated each time a robot visits
a location that it does not recognize, and the map may implicitly
have multiple representations of each location, depending on
the difficulty of matching at that particular location (see Fig. 8).
However, unlike the systems discussed previously, the multiple
representations will not necessarily be linked together as the
same physical place. The plastic map is more informative if the
system can recognize and link more experiences together. How-
ever, it is a pragmatic approach that allows for graceful place
recognition failure without catastrophic map collapse.

Retaining multiple representations of each location increases
the place recognition search space and can decrease efficiency

unless only a subset of representations is used for compari-
son. Because observations captured at similar times tend to
demonstrate similar appearance characteristics, future potential
matches can be probabilistically selected based on the system’s
current localization belief. Carlevaris-Bianco and Eustice [234]
approximated the likelihood of two location exemplars being
“co-observed” within a short time-frame with a Chow–Liu tree,
while Linegar et al. [235] used “path memory” to select past ex-
periences as candidate matches and improve place recognition
without increasing computation time.

C. Recognizing Places in Changing Environments

Integrating appearance change into a place recognition system
requires some key alterations to the belief generation process.
First, as discussed above, changing environments require mul-
tiple representations of each place. If this is the case, a system
may select the best map given its current sensor data [226] or
it may try to predict the most likely appearance matches [18],
[233]–[235].

Alternatively, the place recognition system may run multiple
hypotheses in parallel. Churchill and Newman [15] assigned
every saved experience its own localizer that reports whether or
not the robot is successfully localized within that environment,
while Morris et al. [220] performed filtering over possible map
configurations as well as possible robot poses. Instead of select-
ing the single map that best matches the current sensor data, the
system instead actively tracks the N best navigation hypothe-
ses in multiple maps, while pending hypotheses are maintained
and swapped out when an active hypothesis drops below the
best pending hypothesis. Using multiple map hypotheses was
reported to decrease the mean path error in an indoor office
experiment by as much as 80%.

One factor for place recognition in changing environments is
that topological information becomes more important as incom-
ing sensor data becomes less reliable and more difficult to match
to previous observations [118], [119]. It has been observed that
matching image sequences rather than individual images can im-
prove place recognition in general, and particularly in changing
environments [14], [84], [118], [147].

Place recognition in changing environments benefits from
exploiting the assumption that the system is not just passing
through a particular place, but traversing the same or a very sim-
ilar path through the environment. SeqSLAM [118] used image
sequences to perform place recognition through particularly vi-
sually challenging environments. The original version assumed
a similar velocity profile between traversals, while modified ver-
sions searched nonlinear paths as well as linear paths through
the image similarity matrix [102] or used odometry input to
linearize the signal [148]. Liu and Zhang [236] used a particle
filter to improve the computation efficiency over the exhaustive
search process and achieved a 10 times speed-up factor with
equivalent performance at 100% precision.

Naseer et al. [119] exploited sequence information by for-
mulating image matching as a minimum cost flow. Flow net-
works are directed graphs with a source node and a sink node,
which for path-based place recognition represent the start of the
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traversal and the end of the traversal, respectively. By equating
image comparison values to flow cost, the formulation found the
optimal sequence through the environment. Differing velocity
profiles were handled by allowing nodes to be either matching
or hidden. Similarly, Hansen and Browning [237] used Hidden
Markov Models to determine the most likely path through an
environment using the Viterbi algorithm.

VIII. CONCLUSION

Visual place recognition has made great advances in the last
15 years, but we are still a long way from a universal place recog-
nition system for robots that is robust and widely applicable
across a range of robotic platforms and varying environments.
Here, we highlight several promising avenues of ongoing and
future research that are moving us closer toward this outcome.

Visual place recognition is benefitting from research in other
fields, particularly the great strides being achieved in computer
vision in the fields of deep learning, image classification, object
recognition, and video description. While techniques such as
CNNs depend on Big Data and Big Compute, techniques such as
cloud robotics and online/offline processing paradigms could be
exploited even by small, cheap mobile platforms. Developments
in GPU hardware and novel camera sensors will inspire new
concepts in place recognition as well as improving the efficiency
and robustness of existing approaches.

Research in place recognition can also benefit from the on-
going research in object detection and scene classification. By
exploiting object detections, it is possible to learn that objects
such as buildings are useful for long-term place recognition,
objects such as pedestrians should be ignored, and objects such
as cars might be useful depending on the semantic and temporal
context. An increased robustness to structural changes can be
achieved by exploiting knowledge about which objects are dy-
namic or static and how that property depends on the temporal
and semantic context—for example, cars in a parking garage
can temporarily provide useful place recognition cues. Exploit-
ing the expressiveness of CNNs by training or fine-tuning such
networks specifically for the task of place recognition is a worth-
while direction for future research.

Visual place recognition systems can also exploit context.
Although places change drastically in appearance, the relative
location of places remains unchanged. This fact is integrated
into belief generation modules by using location priors, recur-
sive filtering, and path-based sequences of images, and the de-
pendence on these techniques increases as the variation in the
visual appearance of the environment increases. The use of other
sources of contextual information also has the potential to im-
prove place recognition capability—knowledge about the time
of day, or the current weather conditions can also change how
the place recognition system interprets the incoming visual data.

Semantic scene context can furthermore limit the search space
for place recognition to ensure scalability towards long-term
autonomy. Semantic context can support learning and predicting
the changes in a scene and help increase robustness against
environmental condition changes. Semantic mapping also has
the potential to reduce memory requirements—imagine a house

map only requiring words such as “kitchen,” “bedroom,” and
“bathroom” to describe places—and current research in topic
modeling, coresets and other semantic compression methods is
already showing promise, as is the use of objects as high-level
place recognition features.

Finally, what can visual place recognition offer to other re-
search tasks? By necessity and opportunity, visual place recog-
nition has taken up the challenge to solve condition invariant
recognition to a degree that many fields have not, albeit under
a more tightly constrained task specification than other tasks
such as scene interpretation. The experience gained may have
valuable applications, both in other robotic tasks such as ob-
ject recognition and object classification in the wild, and in a
diverse range of other areas including remote sensing, environ-
mental monitoring, and other tasks that require recognition and
identification in uncontrolled environments.
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“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282,
Nov. 2012.

[216] S. Lowry, M. Milford, and G. Wyeth, “Transforming morning to after-
noon using linear regression techniques,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2014, pp. 3950–3955.

[217] S. Lowry, G. Wyeth, and M. Milford, “Unsupervised online learning
of condition-invariant images for place recognition,” presented at the
Australas. Conf. Robot. Autom., Melbourne, Australia, 2014.

[218] P. Biber and T. Duckett, “Dynamic maps for long-term operation of mo-
bile service robots,” presented at the Robot. Sci. Syst. Conf., Cambridge,
MA, USA, Jun. 2005.

[219] F. Dayoub and T. Duckett, “An adaptive appearance-based map for long-
term topological localization of mobile robots,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robot. Syst., Sep. 2008, pp. 3364–3369.

[220] T. Morris, F. Dayoub, P. Corke, G. Wyeth, and B. Upcroft, “Mul-
tiple map hypotheses for planning and navigating in non-stationary
environments,” in Proc. IEEE Int. Conf. Robot. Autom., May 2014,
pp. 2765–2770.



18 IEEE TRANSACTIONS ON ROBOTICS, VOL. 32, NO. 1, FEBRUARY 2016

[221] T. Bailey, “Mobile robot localisation and mapping in extensive out-
door environments,” Ph.D. dissertation, Univ. Sydney, Sydney, Australia,
2002.

[222] J. Andrade-Cetto and A. Sanfeliu, “Concurrent map building and local-
ization on indoor dynamic environments,” Int. J. Pattern Recog. Artif.
Intell., vol. 16, no. 03, pp. 361–374, 2002.

[223] A. Hafez, M. Singh, K. Krishna, and C. Jawahar, “Visual localization
in highly crowded urban environments,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst., Nov. 2013, pp. 2778–2783.

[224] E. Johns and G.-Z. Yang, “Generative methods for long-term place recog-
nition in dynamic scenes,” Int. J. Comput. Vis., vol. 106, no. 3, pp. 297–
314, 2014.

[225] M. Milford and G. Wyeth, “Persistent navigation and mapping using a
biologically inspired SLAM system,” Int. J. Robot. Res., vol. 29, no. 9,
pp. 1131–1153, 2010.

[226] P. Biber and T. Duckett, “Experimental analysis of sample-based maps
for long-term SLAM,” Int. J. Robot. Res., vol. 28, no. 1, pp. 20–33, 2009.

[227] C. Stachniss and W. Burgard, “Mobile robot mapping and localization
in non-static environments,” presented at the Nat. Conf. Artif. Intell.,
Pittsburgh, PA, USA, 2005.

[228] W. Churchill and P. Newman, “Practice makes perfect? Managing and
leveraging visual experiences for lifelong navigation,” in Proc. IEEE Int.
Conf. Robot. Autom., May 2012, pp. 4525–4532.

[229] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte,
“Simultaneous localization, mapping and moving object tracking,” Int.
J. Robot. Res., vol. 26, no. 9, pp. 889–916, 2007.

[230] J. Dong, S. Wijesoma, and A. Shacklock, “Extended Rao-Blackwellised
genetic algorithmic filter SLAM in dynamic environment with raw sensor
measurement,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Oct.
2007, pp. 1473–1478.

[231] D. Wolf and G. Sukhatme, “ Mobile robot simultaneous localization
and mapping in dynamic environments,” Auton. Robots, vol. 19, no. 1,
pp. 53–65, 2005.

[232] D. Meyer-Delius, J. Hess, G. Grisetti, and W. Burgard, “Temporary maps
for robust localization in semi-static environments,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robot. Syst., Oct. 2010, pp. 5750–5755.

[233] T. Krajnik, J. Fentanes, O. Mozos, T. Duckett, J. Ekekrantz, and M. Han-
heide, “Long-term topological localisation for service robots in dynamic
environments using spectral maps,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robot. Syst., Sep. 2014, pp. 4537–4542.

[234] N. Carlevaris-Bianco and R. Eustice, “Learning temporal co-
observability relationships for lifelong robotic mapping,” presented at
the IROS Worksop Lifelong Learn. Mob. Robot. Appl., Vilamoura, Por-
tugal, Oct. 2012.

[235] C. Linegar, W. Churchill, and P. Newman, “Work smart, not hard: Recall-
ing relevant experiences for vast-scale but time-constrained localisation,”
in Proc. IEEE Int. Conf. Robot. Autom., May 2015, pp. 90–97.

[236] Y. Liu and H. Zhang, “Towards improving the efficiency of sequence-
based SLAM,” in Proc. IEEE Int. Conf. Mechatron. Autom., Aug. 2013,
pp. 1261–1266.

[237] P. Hansen and B. Browning, “Visual place recognition using HMM se-
quence matching,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Sep.
2014, pp. 4549–4555.

Stephanie Lowry received the B.Sc. (Hons.) degree
in logic and computation and the M.Sc. degree in
computer science, both from Victoria University of
Wellington, Wellington, New Zealand, and the Ph.D.
degree in engineering from Queensland University of
Technology, Brisbane, Australia, in 2014.

She was previously a Postdoctoral Researcher with
the Australian Research Council Centre of Excel-
lence in Robotic Vision, Queensland University of
Technology. In June 2015, she joined the Centre for
Applied Autonomous Sensor Systems, Örebro Uni-
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