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Abstract—Convolutional network techniques have recently
achieved great success in vision based detection tasks. This
paper introduces the recent development of our research on
transplanting the fully convolutional network technique to the
detection tasks on 3D range scan data. Specifically, the scenario
is set as the vehicle detection task from the range data of Velodyne
64E lidar. We proposes to present the data in a 2D point map and
use a single 2D end-to-end fully convolutional network to predict
the objectness confidence and the bounding boxes simultaneously.
By carefully design the bounding box encoding, it is able to
predict full 3D bounding boxes even using a 2D convolutional
network. Experiments on the KITTI dataset shows the state-of-
the-art performance of the proposed method.

I. INTRODUCTION

For years of the development of robotics research, 3D lidars
have been widely used on different kinds of robotic platforms.
Typical 3D lidar data present the environment information by
3D point cloud organized in a range scan. A large number of
research have been done on exploiting the range scan data in
robotic tasks including localization, mapping, object detection
and scene parsing [16].

In the task of object detection, range scans have an specific
advantage over camera images in localizing the detected
objects. Since range scans contain the spatial coordinates of
the 3D point cloud by nature, it is easier to obtain the pose and
shape of the detected objects. On a robotic system including
both perception and control modules, e.g. an autonomous
vehicle, accurately localizing the obstacle vehicles in the 3D
coordinates is crucial for the subsequent planning and control
stages.

In this paper, we design a fully convolutional network
(FCN) to detect and localize objects as 3D boxes from range
scan data. FCN has achieved notable performance in computer
vision based detection tasks. This paper transplants FCN to the
detection task on 3D range scans. We strict our scenario as 3D
vehicle detection for an autonomous driving system, using a
Velodyne 64E lidar. The approach can be generalized to other
object detection tasks on other similar lidar devices.

II. RELATED WORKS

A. Object Detection from Range Scans

Tranditional object detection algorithms propose candidates
in the point cloud and then classify them as objects. A common
category of the algorithms propose candidates by segmenting
the point cloud into clusters. In some early works, rule-based
segmentation is suggested for specific scene [10, 20, 5]. For

example when processing the point cloud captured by an
autonomous vehicle, simply removing the ground plane and
cluster the remaining points can generate reasonable segmen-
tation [10, 5]. More delicate segmentation can be obtained
by forming graphs on the point cloud [32, 14, 21, 29, 30].
The subsequent object detection is done by classifying each
segments and thus is sometimes vulnerable to incorrect seg-
mentation. To avoid this issue, Behley et al. [2] suggests
to segment the scene hierarchically and keep segments of
different scales. Other methods directly exhaust the range scan
space to propose candidates to avoid incorrect segmentation.
For example, Johnson and Hebert [13] randomly samples
points from the point cloud as correspondences. Wang and
Posner [31] scan the whole space by a sliding window to
generate proposals.

To classify the candidate data, some early researches assume
known shape model and match the model to the range scan
data [6, 13]. In recent machine learning based detection works,
a number of features have been hand-crafted to classify the
candidates. Triebel et al. [29], Wang et al. [32], Teichman
et al. [28] use shape spin images, shape factors and shape
distributions. Teichman et al. [28] also encodes the object mov-
ing track information for classification. Papon et al. [21] uses
FPFH. Other features include normal orientation, distribution
histogram and etc. A comparison of features can be found
in [1]. Besides the hand-crafted features, Deuge et al. [4], Lai
et al. [15] explore to learn feature representation of point cloud
via sparse coding.

We would also like to mention that object detection on
RGBD images [3, 17] is closely related to the topic of
object detection on range scan. The depth channel can be
interpreted as a range scan and naturally applies to some
detection algorithms designed for range scan. On the other
hand, numerous researches have been done on exploiting both
depth and RGB information in object detection tasks. We omit
detailed introduction about traditional literatures on RGBD
data here but the proposed algorithm in this paper can also
be generalized to RGBD data.

B. Convolutional Neural Network on Object Detection

The Convolutional Neural Network (CNN) has achieved
notable succuess in the areas of object classification and detec-
tion on images. We mention some state-of-the-art CNN based
detection framework here. R-CNN [8] proposes candidate
regions and uses CNN to verify candidates as valid objects.
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Fig. 1. Data visualization generated at different stages of the proposed approach. (a) The input point map, with the d channel visualized. (b) The output
confidence map of the objectness branch at oa

p. Red denotes for higher confidence. (c) Bounding box candidates corresponding to all points predicted as
positive, i.e. high confidence points in (b). (d) Remaining bounding boxes after non-max suppression. Red points are the groundtruth points on vehicles for
reference.

OverFeat [25], DenseBox [11] and YOLO [23] uses end-to-
end unified FCN frameworks which predict the objectness con-
fidence and the bounding boxes simultaneously over the whole
image. Some research has also been focused on applying CNN
on 3D data. For example on RGBD data, one common aspect
is to treat the depthmaps as image channels and use 2D CNN
for classification or detection [9, 24, 26]. For 3D range scan
some works discretize point cloud along 3D grids and train
3D CNN structure for classification [33, 19]. These classifiers
can be integrated with region proposal method like sliding
window [27] for detection tasks. The 3D CNN preserves more
3D spatial information from the data than 2D CNN while 2D
CNN is computationally more efficient.

In this paper, our approach project range scans as 2D maps
similar to the depthmap of RGBD data. The frameworks of
Huang et al. [11], Sermanet et al. [25] are transplanted to
predict the objectness and the 3D object bounding boxes in a
unified end-to-end manner.

III. APPROACH

A. Data Preparation

We consider the point cloud captured by the Velodyne 64E
lidar. Like other range scan data, points from a Velodyne scan
can be roughly projected and discretized into a 2D point map,
using the following projection function.

θ = atan2(y, x)

φ = arcsin(z/
√
x2 + y2 + z2)

r = bθ/∆θc
c = bφ/∆φc

(1)

where p = (x, y, z)> denotes a 3D point and (r, c) denotes the
2D map position of its projection. θ and φ denote the azimuth
and elevation angle when observing the point. ∆θ and ∆φ is
the average horizontal and vertical angle resolution between
consecutive beam emitters, respectively. The projected point
map is analogous to cylindral images. We fill the element at
(r, c) in the 2D point map with 2-channel data (d, z) where
d =

√
x2 + y2. Note that x and y are coupled as d for rotation

invariance around z. An example of the d channel of the 2D
point map is shown in Figure 1a. Rarely some points might
be projected into a same 2D position, in which case the point
nearer to the observer is kept. Elements in 2D positions where
no 3D points are projected into are filled with (d, z) = (0, 0).

B. Network Architecture

The trunk part of the proposed CNN architecture is similar
to Huang et al. [11], Long et al. [18]. As illustrated in Figure
2, the CNN feature map is down-sampled consecutively in the
first 3 convolutional layers and up-sampled consecutively in
deconvolutional layers. Then the trunk splits at the 4th layer
into a objectness classification branch and a 3D bounding box
regression branch. We describe its implementation details as
follows:
• The input point map, output objectness map and bounding

box map are of the same width and height, to provide
point-wise prediction. Each element of the objectness
map predicts whether its corresponding point is on a
vehicle. If the corresponding point is on a vehicle, its
corresponding element in the bounding box map predicts
the 3D bounding box of the belonging vehicle. Section
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Fig. 2. The proposed FCN structure to
predict vehicle objectness and bounding
box simultaneously. The output feature map
of conv1/deconv5a, conv1/deconv5b and
conv2/deconv4 are first concatenated and then
ported to their consecutive layers, respectively.

III-C explains how the objectness and bounding box is
encoded.

• In conv1, the point map is down-sampled by 4 hori-
zontally and 2 vertically. This is because for a point
map captured by Velodyne 64E, we have approximately
∆φ = 2∆θ, i.e. points are denser on horizotal direction.
Similarly, the feature map is up-sampled by this factor of
(4, 2) in deconv6a and deconv6b, respectively. The rest
conv/deconv layers all have equal horizontal and vertical
resolution, respectively, and use squared strides of (2, 2)
when up-sampling or down-sampling.

• The output feature map pairs of conv3/deconv4,
conv2/deconv5a, conv2/deconv5b are of the same sizes,
respectively. We concatenate these output feature map
pairs before passing them to the subsequent layers. This
follows the idea of Long et al. [18]. Combining features
from lower layers and higher layers improves the predic-
tion of small objects and object edges.

C. Prediction Encoding

We now describe how the output feature maps are defined.
The objectness map deconv6a consists of 2 channels corre-
sponding to foreground, i.e. the point is on a vehicle, and
background. The 2 channels are normalized by softmax to
denote the confidence.

The encoding of the bounding box map requires some extra
conversion. Consider a lidar point p = (x, y, z) on a vehicle.
Its observation angle is (θ, φ) by (1). We first denote a rotation
matrix R as

R = Rz(θ)Ry(φ) (2)

where Rz(θ) and Ry(φ) denotes rotations around z and y
axes respectively. If denote R as (rx, ry, rz), rx is of the
same direction as p and ry is parallel with the horizontal
plane. Figure 3a illustrate an example on how R is formed. A
bounding box corner cp = (xc, yc, zc) is thus transformed as:

c′p = R>(cp − p) (3)

Our proposed approach uses c′p to encode the bounding box
corner of the vehicle which p belongs to. The full bounding
box is thus encoded by concatenating 8 corners in a 24d vector
as

b′p = (c′>p,1, c
′>
p,2, . . . , c

′>
p,8)> (4)

Corresponding to this 24d vector, deconv6b outputs a 24-
channel feature map accordingly.

The transform (3) is designed due to the following two
reasons:
• Translation part Compared to cp which distributes over

the whole lidar perception range, e.g. [−100m, 100m] ×
[−100m, 100m] for Velodyne, the corner offset cp − p
distributes in a much smaller range, e.g. within size of a
vehicle. Experiments show that it is easier for the CNN
to learn the latter case.

• Rotation part R> ensures the rotation invariance of the
corner coordinate encoding. When a vehicle is moving
around a circle and one observes it from the center, the
appearance of the vehicle does not change in the observed
range scan but the bounding box coordinates vary in the
range scan coordinate system. Since we would like to
ensure that same appearances result in same bounding
box prediction encoding, the bounding box coordinates
are rotated by R> to be invariant. Figure 3b illustrates a
simple case. Vehicle A and B have the same appearance
for an observer at the center, i.e. the right side is observed.
Vehicle C has a difference appearance, i.e. the rear-right
part is observed. With the conversion of (3), the bounding
box encoding b′p of A and B are the same but that of C
is different.

D. Training Phase

1) Data Augmentation: Similar to the training phase of a
CNN for images, data augmentation significantly enhances the
network performance. For the case of images, training data
are usually augmented by randomly zooming or rotating the
original images to synthesis more training samples. For the
case of range scans, simply applying these operations results
in variable ∆θ and ∆φ in (1), which violates the geometry
property of the lidar device. To synthesis geometrically correct
3D range scans, we randomly generate a 3D transform near
identity. Before projecting point cloud by (1), the random
transform is applied the point cloud. The translation com-
ponent of the transform results in zooming effect of the
synthesized range scan. The rotation component results in
rotation effect of the range scan.

2) Multi-Task Training: As illustrated Section III-B, the
proposed network consists of one objectness classification
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Fig. 3. (a) Illustration of (3). For
each vehicle point p, we define a
specific coordinate system which is
centered at p. The x axis (rx) of
the coordinate system is along with
the ray from Velodyne origin to p
(dashed line). (b) An example illus-
tration about the rotation invariance
when observing a vehicle. Vehicle
A and B have same appearance. See
(3) in Section III-C for details.

branch and one bounding box regression branch. We respec-
tively denote the losses of the two branches in the training
phase. As notation, denote oa

p and ob
p as the feature map

output of deconv6a and deconv6b corresponding to point p
respectively. Also denote P as the point cloud and V ⊂ P as
all points on all vehicles.

The loss of the objectness classification branch correspond-
ing to a point p is denoted as a softmax loss

Lobj(p) = − log(pp)

pp =
exp(−oa

p,lp
)∑

l∈{0,1} exp(−oa
p,l)

(5)

where lp ∈ {0, 1} denotes the groundtruth objectness label
of p, i.e. 0 as background and 1 as a point on vechicles. oap,?
denotes the deconv6a feature map output of channel ? for point
p.

The loss of the bounding box regression branch correspond-
ing to a point p is denoted as a L2-norm loss

Lbox(p) = ‖ob
p − b′p‖2 (6)

where b′p is a 24d vector denoted in (4). Note that Lbox is
only computed for those points on vehicles. For non-vehicle
points, the bounding box loss is omitted.

3) Training strategies: Compared to positive points on
vehicles, negative (background) points account for the majority
portion of the point cloud. Thus if simply pass all objectness
losses in (5) in the backward procedure, the network prediction
will significantly bias towards negative samples. To avoid
this effect, losses of positive and negative points need to be
balanced. Similar balance strategies can be found in Huang
et al. [11] by randomly discarding redundant negative losses.
In our training procedure, the balance is done by keeping all
negative losses but re-weighting them using

w1(p) =

{
k|V|/(|P| − |V|) p ∈ P − V
1 p ∈ V

(7)

which denotes that the re-weighted negative losses are aver-
agely equivalent to losses of k|V| negative samples. In our case
we choose k = 4. Compared to randomly discarding samples,
the proposed balance strategy keeps more information of
negative samples.

Additionally, near vehicles usually account for larger por-
tion of points than far vehicles and occluded vehicles. Thus

vehicle samples at different distances also need to be balanced.
This helps avoid the prediction to bias towards near vehicles
and neglect far vehicles or occluded vehicles. Denote n(p) as
the number of points belonging to the same vehicle with p.
Since the 3D range scan points are almost uniquely projected
onto the point map. n(p) is also the area of the vehicle of p
on the point map. Denote n̄ as the average number of points
of vehicles in the whole dataset. We re-weight Lobj(p) and
Lbox(p) by w2 as

w2(p) =

{
n̄/n(p) p ∈ V
1 p ∈ P − V

(8)

Using the losses and weights designed above, we accumu-
late losses over deconv6a and deconv6b for the final training
loss

L =
∑
p∈P

w1(p)w2(p)Lobj(p) + wbox

∑
p∈V

w2(p)Lbox(p) (9)

with wbox used to balance the objectness loss and the bounding
box loss.

E. Testing Phase

During the test phase, a range scan data is fed to the
network to produce the objectness map and the bounding
box map. For each point which is predicted as positive
in the objectness map, the corresponding output ob

p of the
bounding box map is splitted as c′p,i, i = 1, . . . , 8. c′p,i is
then converted to box corner cp,i by the inverse transform of
(3). We denote each bounding box candidates as a 24d vector
bp = (c>p,1, c

>
p,2, · · · , c>p,8)>. The set of all bounding box

candidates is denoted as B = {bp|oa
p,1 > oa

p,0}. Figure 1c
shows the bounding box candidates of all the points predicted
as positive.

We next cluster the bounding boxes and prune outliers by
a non-max suppression strategy. Each bounding box bp is
scored by counting its neighbor bounding boxes in B within
a distance δ, denoted as #{x ∈ B|‖x− bp‖ < δ}. Bounding
boxes are picked from high score to low score. After one
box is picked, we find out all points inside the bounding box
and remove their corresponding bounding box candidates from
B. Bounding box candidates whose score is lower than 5 is
discarded as outliers. Figure 1d shows the picked bounding
boxes for Figure 1a.
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Fig. 4. More examples of the detection results. See Section IV-A for details. (a) Detection result on a congested traffic scene. (b) Detection result on far
vehicles.

IV. EXPERIMENTS

Our proposed approach is evaluated on the vehicle de-
tection task of the KITTI object detection benchmark [7].
This benchmark originally aims to evaluate object detection
of vehicles, pedestrians and cyclists from images. It contains
not only image data but also corresponding Velodyne 64E
range scan data. The groundtruth labels include both 2D object
bounding boxes on images and its corresponding 3D bounding
boxes, which provides sufficient information to train and test
detection algorithm on range scans. The KITTI training dataset
contains 7500+ frames of data. We randomly select 6000
frames in our experiments to train the network and use the rest
1500 frames for detailed offline validation and analysis. The
KITTI online evaluation is also used to compare the proposed
approach with previous related works.

For simplicity of the experiments, we focus our experiemts
only on the Car category of the data. In the training phase,
we first label all 3D points inside any of the groundtruth
car 3D bounding boxes as foreground vehicle points. Points
from objects of categories like Truck or Van are labeled to be
ignored from P since they might confuse the training. The rest
of the points are labeled as background. This forms the label
lp in (5). For each foreground point, its belonging bounding
box is encoded by (4) to form the label b′p in (6).

The experiments are based on the Caffe [12] framework. In
the KITTI object detection benchmark, images are captured
from the front camera and range scans percept a 360◦ FoV
of the environment. The benchmark groundtruth are only
provided for vehicles inside the image. Thus in our experiment
we only use the front part of a range scan which overlaps with
the FoV of the front camera.

The KITTI benchmark divides object samples into three
difficulty levels according to the size and the occlusion of the
2D bounding boxes in the image space. A detection is accepted
if its image space 2D bounding box has at least 70% overlap
with the groundtruth. Since the proposed approach naturally

TABLE I
PERFORMANCE IN AVERAGE PRECISION AND AVERAGE ORIENTATION

SIMILARITY FOR THE OFFLINE EVALUATION

Easy Moderate Hard
Image Space (AP) 74.1% 71.0% 70.0%

Image Space (AOS) 73.9% 70.9% 69.9%
World Space (AP) 77.3% 72.4% 69.4%

World Space (AOS) 77.2% 72.3% 69.4%
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Fig. 5. Precision-recall curve in the offline evaluation, measured by the world
space criterion. See Section IV-A.

predicts the 3D bounding boxes of the vehicles, we evaluate
the approach in both the image space and the world space in
the offline validation. Compared to the image space, metric in
the world space is more crucial in the scenario of autonomous
driving. Because for example many navigation and planning
algorithms take the bounding box in world space as input for
obstacle avoidance. Section IV-A describes the evaluation in
both image space and world space in our offline validation. In
Section IV-B, we compare the proposed approach with several
previous range scan detection algorithms via the KITTI online
evaluation system.



A. Performane Analysis on Offline Evaluation

We analyze the detection performance on our custom offline
evaluation data selected from the KITTI training dataset,
whose groundtruth labels are accessable to public. To obtain
an equivalent 2D bounding box for the original KITTI criterion
in the image space, we projected the 3D bounding box into
the image space and take the minimum 2D bounding rectangle
as the 2D bounding box. For the world space evaluation, we
project the detected and the groundtruth 3D bounding boxes
onto the ground plane and compute their overlap. The world
space criterion also requires at least 70% overlap to accept
a detection. The performance of the approach is measured
by the Average Precision (AP) and the Average Orientation
Similarity (AOS) [7]. The AOS is designed to jointly measure
the precision of detection and orientation estimation.

Table I lists the performance evaluation. Note that the world
space criterion results in slightly better performance than the
image space criterion. This is because the user labeled 2D
bounding box trends to be tighter than the 2D projection of
the 3D bounding boxes in the image space, especially for
vehicles observed from their diagonal directions. This size
difference diminishes the overlap between the detection and
the groundtruth in the image space.

Like most detection approaches, there is a noticeable drop
of performance from the easy evaluation to the moderate and
hard evaluation. The minimal pixel height for easy samples
is 40px. This approximately corresponds to vehicles within
28m. The minimal height for moderate and hard samples is
25px, corresponding to minimal distance of 47m. As shown
in Figure 4 and Figure 1, some vehicles farther than 40m are
scanned by very few points and are even difficult to recognize
for human. This results in the performance drop for moderate
and hard evalutaion.

Figure 5 shows the precision-recall curve of the world
space criterion as an example. Precision-recall curves of the
other criterion are similar and omitted here. Figure 4a shows
the detection result on a congested traffic scene with more
than 10 vehicles in front of the lidar. Figure 4b shows the
detection result cars farther than 50m. Note that our algorithm
predicts the completed bounding box even for vehicles which
are only partly visible. This significantly differs from previous
proposal-based methods and can contribute to stabler object
tracking and path planning results. For the easy evaluation,
the algorithm detects almost all vehicles, even occluded. This
is also illustrated in Figure 5 where the maximum recall rate
is higher than 95%. The approach produces false-positive
detection in some occluded scenes, which is illustrated in
Figure 4a for example.

B. Related Work Comparison on the Online Evaluation

There have been several previous works in range scan based
detection evaluated on the KITTI platform. Readers might
find that the performance of these works ranks much lower
compared to the state-of-the-art vision-based approaches. We
explain this by two reasons. First, the image data have much
higher resolution which significantly enhance the detection

TABLE II
PERFORMANCE COMPARISON IN AVERAGE PRECISION AND AVERAGE

ORIENTATION SIMILARITY FOR THE ONLINE EVALUATION

Easy Moderate Hard

Image Space (AP)

Proposed 60.3% 47.5% 42.7%
Vote3D 56.8% 48.0% 42.6%
CSoR 34.8% 26.1% 22.7%
mBoW 36.0% 23.8% 18.4%

Image Space (AOS) Proposed 59.1% 45.9% 41.1%
CSoR 34.0% 25.4% 22.0%

performance for far and occluded objects. Second, the image
space based criterion does not reflect the advantage of range
scan methods in localizing objects in full 3D world space.
Related explanation can also be found from Wang and Posner
[31]. Thus in this experiments, we only compare the proposed
approach with range scan methods of Wang and Posner
[31], Behley et al. [2], Plotkin [22]. These three methods all
use traditional features for classification. Wang and Posner
[31] performs a sliding window based strategy to generate
candidates and Behley et al. [2], Plotkin [22] segment the point
cloud to generate detection candidates.

Table II shows the performance of the methods in AP and
AOS reported on the KITTI online evaluation. The detection
AP of our approach outperforms the other methods in the
easy task, which well illustrates the advantage of CNN in
representing rich features on near vehicles. In the moderate and
hard detection tasks, our approach performs with similar AP as
Wang and Posner [31]. Because vehicles in these tasks consist
of too few points for CNN to embed complicated features. For
the joint detection and orientation estimation evaluation, only
our approach and CSoR support orientation estimation and our
approach significantly wins the comparison in AOS.

V. CONCLUSIONS

Although attempts have been made in a few previous
research to apply deep learning techniques on sensor data
other than images, there is still a gap inbetween this state-of-
the-art computer vision techniques and the robotic perception
research. To the best of our knowledge, the proposed approach
is the first to introduce the FCN detection techniques into
the perception on range scan data, which results in a neat
and end-to-end detection framework. In this paper we only
evaluate the approach on 3D range scan from Velodyne 64E
but the approach can also be applied on 3D range scan
from similar devices. By accumulating more training data and
design deeper network, the detection performance can be even
further improved.
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works für räumliche detektion und klassifikation von
objekten in fahrzeugumgebung. Bachelor’s thesis (Stu-
dienarbeit), Karlsruhe Institute of Technology, Germany,
March 2015.

[23] Joseph Redmon, Ross Girshick, and Ali Farhadi. You
Only Look Once: Unified, Real-Time Object Detection.
arXiv, 2015.

[24] Max Schwarz, Hannes Schulz, and Sven Behnke. RGB-D
Object Recognition and Pose Estimation based on Pre-
trained Convolutional Neural Network Features. IEEE
International Conference on Robotics and Automation
(ICRA), (May), 2015.

[25] Pierre Sermanet, David Eigen, Xiang Zhang, Michael
Mathieu, Rob Fergus, and Yann LeCun. OverFeat
: Integrated Recognition , Localization and Detec-
tion using Convolutional Networks. arXiv preprint
arXiv:1312.6229, pages 1–15, 2013.

[26] Richard Socher, Brody Huval, Bharath Bath, Christo-
pher D Manning, and Andrew Y Ng. Convolutional-
recursive deep learning for 3d object classification. Ad-
vances in Neural Information Processing Systems, pages
665–673, 2012.

[27] Shuran Song and Jianxiong Xiao. Sliding shapes for 3d
object detection in depth images. pages 634–651, 2014.



[28] Alex Teichman, Jesse Levinson, and Sebastian Thrun.
Towards 3D object recognition via classification of ar-
bitrary object tracks. Proceedings - IEEE International
Conference on Robotics and Automation, pages 4034–
4041, 2011.

[29] Rudolph Triebel, Jiwon Shin, and Roland Siegwart.
Segmentation and Unsupervised Part-based Discovery of
Repetitive Objects. Robotics: Science and Systems, 2006.

[30] Rudolph Triebel, Richard Schmidt, Óscar Martı́nez Mo-
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