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Abstract

This paper presents a fast algorithm for high-accuracy
large-scale outdoor dense stereo reconstruction of man-
made environments. To this end, we propose a structure-
adaptive second-order Total Generalized Variation (TGV)
regularization which facilitates the emergence of planar
structures by enhancing the discontinuities along building
facades. As data term we use cost functions which are
robust to illumination changes arising in real world sce-
narios. Instead of solving the arising optimization prob-
lem by a coarse-to-fine approach, we propose a quadratic
relaxation approach which is solved by an augmented La-
grangian method. This technique allows for capturing large
displacements and fine structures simultaneously. Experi-
ments show that the proposed augmented Lagrangian for-
mulation leads to a speedup by about a factor of 2. The
brightness-adaptive second-order regularization produces
sub-disparity accurate and piecewise planar solutions, fa-
voring not only fronto-parallel, but also slanted planes
aligned with brightness edges in the resulting disparity
maps. The algorithm is evaluated and shown to produce
consistently good results for various data sets (close range
indoor, ground based outdoor, aerial imagery).

1. Introduction
In the past few years, Total Variation based methods for

minimizing energy functionals arising in common computer
vision problems have been given a lot of attention in the re-
search community. These algorithms are very well-suited
for parallelization and, together with the recent advances
of GPU-based computational power, lead to efficient algo-
rithms, solving these optimization problems globally opti-
mal. Recently published work solving e.g. the optical flow
or stereo estimation problem can be found in [16], [14], [9],
[11]. Total Generalized Variation (TGV) was originally in-
troduced in [2] as a higher-order extension of Total Varia-
tion minimization (TV) and favors the solution to consist of
piecewise polynomial functions (e.g. fronto-parallel, affine,
quadratic). Like the original TV formulation, the TGV reg-

(a) Left input image (b) Two-view 3D reconstruction

(c) Zoom-in: Reconstruction using
TGV and an anisotropic diffusion
tensor based on pixelwise gradients

(d) Zoom-in: Improvements along
discontinuities by additionally us-
ing high-level edge information

Figure 1. Detailled stereo reconstruction using two 1000 × 1000
wide-baseline aerial images, taking 10 seconds on common GPUs.

ularizer also is convex and allows for computation of the
global optimum. In the following two years, the second-
order variant of TGV has been applied to depth map fu-
sion in [10] and dense stereo estimation in [11], basically
assuming that the surface to reconstruct is locally planar
and not implying fronto-parallel constraints only. For being
able to use robust cost functions which are usually highly
non-linear, a typical choice is to linearize the costs inside
a coarse-to-fine strategy (see e.g. [11]). The main draw-
back of this approach is that fine scene-details which are
not captured in the lower pyramid levels are highly likely to
be missing completely in the final reconstruction. Applying
TGV as regularizer for stereo estimation, the energy func-
tional we will use throughout the rest of the paper and need
to minimize reads

E =

∫
Ω

{λs|G(∇u− v)|+ λa|∇v|+ λdC(u)} dx (1)
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with u(x) ∈ Γ the disparity/depth map to solve for (Γ being
the disparity search space), an additional vector field v and
Ω being the image space RM×N . Note that for brevity, we
just write u,v instead of u(x),v(x). So instead of just en-
forcing the norm of the gradient of u to be minimal, which
equals favoring fronto-parallel surfaces, the additional vec-
tor field v gets subtracted from the gradient of u and in
turn is also forced to have low variation. Therefore, piece-
wise affine functions are being favored, as these have a con-
stant gradient whose derivative tends to zero. The values
λs, λa, λd are scalar weights and balance the impact of the
smoothness term, the affine term and the data term.
The linear operator G in Equation 1 serves to adapt the
amount of regularization locally, depending on some infor-
mation derived from the input images. A famous choice for
G is for example the anisotropic Nagel-Enkelmann opera-
tor [7], which, in addition to the original paper, has been
widely used and modified throughout the literature ([16],
[11]). However, all these methods have in common, that
they compute an adaptive regularization weight based on
the local image gradient at the considered pixel solely. This
usually improves the sharpness along discontinuities, but
does not necessarily impose straight edges along man made
structures. To improve the accuracy of the stereo estima-
tion along these straight-line discontinuities, we integrate
an adaptive regularization weight based on detected high-
level line segments, which is inherently easy to integrate
into the proposed global optimization framework.
Unfortunately, we cannot solve Equation 1 directly with
e.g. a primal-dual gradient based approach [9], since the
data term should be a strong and reliable cost function to fit
our needs of being robust against some amount of change
in perspective and illumination (and therefore in general
non-convex). This problem often is bypassed by lineariz-
ing the cost function and solving the resulting convex prob-
lem. Since this 1st order Taylor approximation of the cost
function is only valid locally, the whole algorithm needs
to be wrapped into a coarse-to-fine warping framework [3],
which we explicitly want to avoid to not loose fine struc-
tures already in the coarsest level. In the following section,
we will explain our solution to this minimization problem.

2. Edge-segment based adaptive regularization

The anisotropic diffusion tensor G in Equation 1 serves
the purpose of an anisotropic weighting of the regularizer
based on the image gradient. It enforces low regulariza-
tion/smoothness along image edges, and high smoothness
in homogenous image regions. It is based on the Nagel-
Enkelmann operator [7] and was proposed in [16]:

G = exp(−a · |∇Iref |b) · nnT + n⊥n⊥
T

(2)

with the direction of the image gradient n =
(
nx

ny

)
=

∇Iref
|∇Iref | , an perpendicular vector n⊥ and weighting param-
eters a, b.
However, as this diffusion tensor is based on pixelwise
gradients (incorporating spatial context to a minor degree
by a prior Gaussian convolution), it does not provide a
strong and consistent regularization direction for small
low-contrast edges as shown in Figure 2.
Using high-level edge segments as additional a priori
information is a logical choice for guiding the optimization
framework to straight-line discontinuity reconstructions.
However, the main problem with this approach is the
robustness of the edge detection, as for most edge detection
algorithms (e.g. Canny [4]), textured regions result in a
high edge density and therefore many false detections. A
second problem for heterogenous image data is the need
to manually tune the parameters for each group of images
separately, to obtain reasonable results.
The recently introduced Fast Line Segment Detector (LSD)
[15] adresses both of these problems and gives outstanding
results while being computationally quite efficient. The
integration of the edge-segments into the optimization
framework is straight forward, as we repeat the process
described in Equation 2 with the Gauss-convoluted binary
mask of detected edge segments as input image, resulting
in a second diffusion tensor G′. We obtain the combined
diffusion tensor by updating the values of G with the values
of G′ at the position of detected lines (see Figure 2).

3. Fast optimization by quadratic splitting and
augmented Lagrangian

In [14], a quadratic relaxation between the convex regu-
larizer and the non-convex data term was proposed for min-
imizing a Total Variation based optical flow energy func-
tional and [8] used a similar approach for image driven and
TV-based stereo estimation. We build upon these ideas and
split the image driven TGV stereo problem from Equation 1
into two subproblems and, using quadratic relaxation, cou-
ple the convex regularizer R(u) and non-convex data term
C(u) through an auxiliary variable a:

E =

∫
Ω

R(u) + C(a) +
1

2θ
(u− a)2 dx . (3)

By iteratively decreasing θ → 0, the two variables u,a
are drawn together, enforcing the equality constraint u = a.
As an alternative, we incorporate this equality constraint not
uniformly for each pixel, but via an additional augmented
Lagrange multiplier L (see e.g. [1]) and optimize for it as
well. The resulting energy minimization problem based on
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(a) Part of the left stereo image,
overlayed with detected edges

(b) Zoom-in area of green rectangle

(c) Zoom-in area: Vector field of the anisotropic diffusion tensor based on
pixelwise gradients

(d) Vector field additionally incorporating high-level edge information

Figure 2. Influence of additional high-level edge priors on the
anisotropic regularization: Due to low contrast, the Nagel-
Enkelmann operator in c) cannot capture the building edge of b)
very well. Using additional edge information d) improves the reg-
ularization direction.

Equation 3 then reads as follows

u = argmin
u

{ λs|G(∇u− v)|+ λa|∇v|+ λdC(a) +

L(u− a) +
1

2θ
(u− a)2 } (4)

Our experiments showed that this improves the robustness
of the algorithm w.r.t. the choice of the θ-sequence and ad-
ditionally speeds up the algorithm by a factor of 2 (see Fig-
ure 4).

While the regularization term is convex in u and can be
solved efficiently using a primal-dual approach for a fixed
auxiliary variable a, the non-convex data term can be solved
point-wise by an exhaustive search over a set of discretely
sampled disparity values. This process is done alternatingly
in an iterative way.

3.1. Convex solution

To solve for the disparity map u ∈ RM×N (in the fol-
lowing written as stacked vector RMN×1) in the regular-
izer term of Equation 4, we need to overcome the non-
differentiable L1-norm, which complicates any gradient de-
scent based minimization scheme. To this end we apply the
Legendre-Fenchel transform to obtain the dual formulation
/ conjugate of our L1 regularizers

λ‖AGu‖1 = argmax
‖p‖≤λ

{〈AGu,p〉} (5)

where the matrix multiplicationAu computes the 2MN×1
gradient vector and G ∈ RM×N contains the element-wise
weighting factors. Applied to our problem, we obtain the
conjugates

λs · ‖G(∇u− v)‖1 = max
p∈P
{〈G(∇u− v),p〉} (6)

λa · ‖∇v‖1 = max
q∈Q
{〈∇v,q〉}

such that the saddle-point problem in the primal variables
u,v and their dual correspondences p,q with constraints
P = {p ∈ R2MN : ‖p‖∞ ≤ λs} and Q = {q ∈
R4MN : ‖q‖∞ ≤ λa}, coupled with the data term is
maxp,q minu,v,a{E} with

E = 〈G(∇u− v),p〉+ 〈∇v,q〉+ λdC(a)+

L(u− a) +
1

2θ
(u− a)2 (7)

Fixing the variables a and L, we obtain the minimum of
Equation 7 for ∂u,v,p,qE(u,v,a,p,q) = 0 and using an
iterative gradient descent in the primal variables and gradi-
ent ascent in the dual variables.

3.2. Non-convex solution

To solve for the auxiliary variable a in the data term of
Equation 4, we keep the variables u,L fixed and perform a
point-wise exhaustive search over all a(x) ∈ Γ

min
a(x)∈Γ

{
λdC(a) + L(u− a) +

1

2θ
(u− a)2

}
(8)

Note that in order to retain the TGV smoothness, it is nec-
essary to perform the exhaustive search using subdisparity
sampling steps. As this may look computational expensive
at first glance, it does not affect the overall performance in
a measurable way if implemented with care (see Section 4).
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3.3. Augmented Lagrangian update

According to e.g. [1], the Lagrange multiplier L is up-
dated by Ln+1 = Ln + 1

2θn (u − a), with the augmented
penalty function 1

2θn monotonically increasing as θn → 0.

4. Algorithm
In this section we will describe how to solve the energy

minimization problem stated in Equation 4. As a first step,
since the stereo estimation should work with various scales
in depth and different cost functions as well without having
to adjust the parameters for each dataset, we initially norm
both u→ [0, 1] and the costs C → [0, 1]. Doing so, we can
fix nearly all parameters internally and only need to expose
the weighting factors λd, λs, balancing the impact of the
data term and smoothness term, to be set by the user. After
evaluating the algorithm for a variety of scenarios (indoor,
ground-based outdoor, aerial) and benchmarks (see Section
5), we obtained the best results for λa = 8λs and fix this
value to not bother the user with the weighted impact of the
affine term additionally. The complete optimization of the
proposed energy functional in Equation 4 is done iteratively,
initializing the primal variable with the disparity value asso-
ciated to the data cost minimum (winner-takes-all solution),
u0 = a0 = argmina(x)∈Γ C(x,a(x)), setting the dual vari-
ables to zero (p0 = 0, q0 = 0), and starting with iteration
n = 0 and θ0 = 1.

1. Fixing an and Ln, run the primal-dual optimization for
a number of inner iterations, performing gradient as-
cents on the dual variables p,q and gradient descents
on the primal variables u,v:
for i = 1 : nIterSmooth do

pn+1 = ΠP (pn + τpG(∇ûn − v̂n))

qn+1 = ΠQ (qn + τq∇v̂n)

un+1 = ΠU

(
un + τudiv

(
Gpn+1

)
− τuLn + τu

θn a
n

1 + τu
θn

)
vn+1 = vn + τv(p

n+1 + divqn+1)

ûn+1 = 2un+1 − un

v̂n+1 = 2vn+1 − vn

2. Fixing un+1 = ũ, perform a point-wise search

an+1 = argmin
a(x)∈Γ

{
λdC(a) + Ln(ũ− a) +

(ũ− a)2

2θn

}

3. Update Ln+1 = Ln + 1
2θn (un+1 − an+1)

4. If n < nstop, update θn+1 = θn(1− βn), n = n+ 1,
goto step (1) else stop

To ensure that ‖p‖∞ ≤ λs and ‖q‖∞ ≤ λa, the proxi-
mal mappings above are given as ΠP (p) = p

max{1,‖p‖/λs}
and ΠQ(q) = q

max{1,‖q‖/λa} and for keeping u in valid
range, we use ΠU as the truncation of un+1 onto the in-
terval [0, 1]. Also note, that in the analytical derivation
of the primal-dual scheme above, we require the gradi-
ent and divergence operators to be negative adjoint, such
that 〈∇u,p〉 = −〈u,divp〉 and 〈∇v,q〉 = −〈v,divq〉.
Therefore we use finite forward differences with Neumann
boundary conditions for the gradient operators and for
the divergence operators finite backward difference with
Dirichlet boundary conditions. The step sizes of the gra-
dient ascents/descents are bound to the norm of the gradi-
ent/divergence operators and are set to τu = τp = 1/

√
12

and τv = τq = 1/
√

8, as detailed in [5]. The parameter β
controls how fast the convex and non-convex solution are
drawn together (by decreasing θ) and is fixed to β = 10−3,
while the whole algorithm stops, if n > 80. For the number
of primal-dual iterations, we set nIterSmooth = 150.

As already mentioned in Section 3, retaining the subdis-
parity smoothness resulting from the continuous TGV solu-
tion requires subdisparity accurate results of the exhaustive
search as well. Therefore, after obtaining an integer solu-
tion for the disparity a which minimizes the energy

argmin
a

{
λdC(a) + L(u− a) +

1

2θ
(u− a)2

}
, (9)

we compute the subdisparity solution as the minimum of
a parabola, fitted through the obtained integer minimum
and its adjacent values at ±1 disparities (see Figure 3).
Parametrizing the parabola as C(a + t) = at2 + bt + c,
the coefficients are computed using the abovementioned 3
datapoints and corresponding t ∈ {−1, 0, 1}. Substitut-
ing ã = a + t , C(ã) = at2 + bt + c and optimizing
for the parameter t, we obtain the subdisparity refinement
t̃ ∈ [− 1

m ,
1
m ] as

t̃ =
u−a
θm − λb−

L
m(

2λa+ 1
θm2

) , (10)

with m = |Γ| being the number of disparities.
Finally, due to its iterative and locally confined compu-

tations per iteration, the algorithm is very well-suited for
parallelization and therefore implemented on GPU.
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Figure 3. Subdisparity accurate results are required in the exhaus-
tive search step, to retain the continuous solution of the prior TGV
step

Figure 4. Evolution of the primal energy of Equation 3, with and
without augmented Lagrangian. The runtime is dominated by the
primal-dual algorithm, such that the additional Lagrange multi-
plier L has a neglectable influence and the runtime per iteration is
basically the same for the two algorithms.

5. Evaluation
Our algorithm is evaluated on three different data sets

and in case RGB images are available, only the gray image
will be used. If more than two views are available, only
two of them will be used, in order to demonstrate our al-
gorithm on two-view stereo scenarios. For all datasets, we
used the Census transform [18] with windows size 7× 7 as
cost function, since it is quite robust to a wide range of il-
lumination changes. Additionally, we locally aggregate the
costs using Adaptive support-weights [17] with radius 7 to
reduce the effect of foreground fattening, but keeping the
radius quite small so as not to put too much fronto-parallel
assumption into the cost window. For regularization we
are using two parameter sets: {λd = 1.0, λs = 0.2} for
the low resolution Middlebury stereo benchmark [13] and
{λd = 0.4, λs = 1.0} for the KITTI stereo benchmark [6]

and the aerial images. The algorithm was run on a Nvidia
GTX 680 GPU to which all given runtime performances re-
late to.

Middlebury benchmark: The Middlebury stereo bench-
mark [13] provides an additional discontinuity mask which
we will use for the evaluation of our edge-segment based
adaptive regularization. In Table 1 and Figure 5 we show
the results of our algorithm both with the adaptive edge-
segment regularization switched on and without. For all
scenes except the teddy data set the results improve along
the discontinuity regions, whereas for the teddy dataset re-
sults are worsening on the strongly slanted plane at the very
bottom of the image. We are using the same parameters and
cost functions described in Section 5 for all data sets and
only take the gray value images of the stereo pairs as input.

KITTI benchmark: In contrast to the 4 test images of the
Middlebury benchmark above, where the disparity search
range is very small, the environment highly textured and the
illumination conditions nearly constant, the KITTI stereo
Benchmark [6] consists of 195 very challenging stereo im-
ages from ground based outdoor scenarios, together with
ground truth obtained by laser scanning. In total, we
achieve rank 11 in the benchmark, with a runtime of 20s
per image. Additionally, we compare our results against the
closest related published algorithms, also based on mini-
mizing higher-order Total Variation (see Table 2). While we
outperform the coarse-to-fine based ITGV algorithm [11] in
terms of accuracy, we do not yet quite achieve the accuracy
of the functional lifting based ATGV algorithm [12]. For
some exemplary results of the proposed algorithm see Fig-
ure 6.

Aerial imagery: In a third data set, we apply our algo-
rithm to aerial imagery. Despite usually having numerous
overlapping images, covering every point of the scene man-
ifold, we concentrate on showing the potential of the pro-
posed algorithm on single stereo pairs, and apply no fusion
of the resulting heightmaps in this paper. In contrast to the
rectified images given in the abovementioned benchmarks,
in this data set we have camera models ready for each input
image, allowing us to evaluate the cost function at constant
intervals in object space (using a plane-sweep approach) in-
stead of sampling at constant disparity intervals. Thus our
algorithm can treat every height value equally, whereas in
disparity space, small changes in low disparities result in
bigger height-differences than changes in large disparities.
In Figure 7, the resulting 3D reconstruction is shown to-
gether with the two stereo images. The proposed method
clearly preserves very fine details of the 3D scene (e.g. roof
structures), while at the same time smoothing locally planar
surfaces (church roof) quite well.
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Algorithm Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

TGV 3.66 4.33 12.0 0.21 1.00 2.88 3.93 9.66 12.1 2.44 11.1 7.20
TGV + edge 3.58 4.21 11.6 0.19 1.01 2.61 4.30 9.95 13.0 2.41 11.2 7.01

Table 1. Results of the proposed algorithm for the Middlebury Stereo benchmark (bad pixel ratio for errors > 1px), once without an
anisotropic diffusion tensor (TGV), once with the combined diffusion tensor of Section 2 (TGV+edge).

Figure 5. Results of the proposed algorithm for the Middlebury Stereo benchmark. Top row: ground truth, Middle row: our results, bottom
row: bad pixel areas in black (threshold = 1px). The parameters are identical for all data sets and only the gray value images were taken.

Rank Method Out-Noc Out-All Avg-Noc Avg-All Runtime
8 ATGV 5.05% 6.91% 1.0 px 1.6 px 6 min

11 Proposed 5.48% 6.60% 1.1px 1.2px 20s
17 ITGV 6.31% 7.40% 1.3px 1.5px 7s

Table 2. Results for the challenging KITTI stereo benchmark [6] (195 outdoor stereo pairs). The bad pixel ratio of Out-Noc, Out-All is the
common 3px threshold. For comparison, we further added the closest related algorithms as well. For some exemplary results see Figure 6.
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(a) Reference image 1

(b) Disparity map 1

(c) Reference image 7

(d) Disparity map 7

(e) Reference image 15

(f) Disparity map 15

Figure 6. Example results for the KITTI stereo benchmark. From
top to bottom: bad, medium and good results

(a) Left image (b) Right image

(c) Stereo reconstruction

Figure 7. a), b) Two wide-baseline aerial images (≈15cm ground
resolution) c) Resulting heightmap (in camera coordinate system,
not in orthogonal UTM coordinate system) of two-view stereo es-
timation using the proposed algorithm. Please note the fine roof
structures in the 3D reconstruction, but the outliers due to moving
people as well. The computation time for a 1000 × 1000 image
using 100 disparity values is about 10s (using a Nvidia GTX 680
GPU).
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6. Conclusion
In this paper we proposed an algorithm for large-scale

high-accuracy stereo reconstruction of man-made worlds.
To this end, we combine a non-convex data term which is
robust to real-world illumination changes with a regular-
izer which exploits the fact that man-made worlds (build-
ings, cities, etc.) exhibit a large number of planar facades.
The regularizer is an adaptive second-order total general-
ized variation modulated by means of an edge-indicator. We
propose an optimization scheme consisting of a quadratic
decoupling combined with an augmented Lagrangian ap-
proach which alternatingly solves the problems of cor-
respondence finding and structure-adaptive regularization.
Experiments show that the proposed augmented Lagrangian
approach is faster by about a factor of 2. Validations on es-
tablished stereo benchmarks and large-scale aerial images
show that the proposed method provides substantial im-
provements over the standard TGV regularization leading
to highly-accurate reconstruction of large-scale scenes.
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