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Abstract
We present two novel methods to automatically learn

spatio-temporal dependencies of moving agents in complex
dynamic scenes. They allow to discover temporal rules,
such as the right of way between different lanes or typi-
cal traffic light sequences. To extract them, sequences of
activities need to be learned. While the first method ex-
tracts rules based on a learned topic model, the second
model called DDP-HMM jointly learns co-occurring activi-
ties and their time dependencies. To this end we employ De-
pendent Dirichlet Processes to learn an arbitrary number
of infinite Hidden Markov Models. In contrast to previous
work, we build on state-of-the-art topic models that allow
to automatically infer all parameters such as the optimal
number of HMMs necessary to explain the rules governing
a scene. The models are trained offline by Gibbs Sampling
using unlabeled training data.

1. Introduction
In this work, we address scene understanding and automatic
behaviour mining in video footage from one static camera.
Given a video of a dynamic scene, showing several differ-
ent simultaneous activities interacting according to complex
dependency patterns (Fig. 1), we want a system to automat-
ically answer questions such as: “What are the typical ac-
tions in the scene? How do they relate to each other? What
are the rules governing the scene?”.

This is a challenging problem because both spatial and
temporal dependencies between moving agents are rele-
vant. While many researchers have focused on modeling
isolated, independent behaviour of individual agents by an-
alyzing their trajectories [1, 6, 9, 10], others have concen-
trated more recently on approaches based directly on the
motion between consecutive frames [5, 7, 12, 13, 15]. This
allows to model correlated behaviors of multiple agents.
However, most methods still concentrate either on extract-
ing spatially co-occurring motion patterns (e.g., using topic
models from document analysis [7, 12]), neglecting tempo-
ral dependencies, or on finding temporal dependencies only

(a) The optical flow from a scene. (b) Rules governing the scene.
Figure 1: A typical image from a dynamic scene with many agents.
Many different activities with complex dependencies are possible.
Our algorithm automatically finds sequences of co-occurring ac-
tivities and the rules governing the scene.

for previously defined events in a segmented scene (e.g., us-
ing variants of Hidden Markov Models [4, 13]). Only very
recently, Hospedales et al. [5] try to learn spatio-temporal
patterns and dependencies jointly in a combined hierarchi-
cal model. However, they assume the whole scene is gov-
erned by only one Markov chain, which is problematic for
complex scenes. Furthermore, they use a rather simple topic
model that has several drawbacks (see Sec. 1.1).

In this paper, we propose two novel methods to extract
spatio-temporal dependencies of moving agents in complex
dynamic scenes. First, we present a method that builds on
a state-of-the-art topic model (Hierarchical Dirichlet Pro-
cesses [11]) and automatically learns dependencies between
the motion patterns it extracts (i.e. sequences of activities).
This allows to discover local temporal rules of the scene.
As a second method, we present a novel model called DDP-
HMM to jointly learn co-occurring activities and their time
dependencies, enabling to discover global temporal rules.
Using Dependent Dirichlet Processes, we learn an arbitrary
number of Hidden Markov Models with an arbitrary num-
ber of states each. At the same time, the states (i.e. activi-
ties) of the HMMs are also learned, so that the mixture of
activities from the different HMMs optimally explains the
sequence of observations. When learned jointly, the result-
ing activities differ because they are forced to represent the
movement in the scene rather than instantaneous states of
the scene. We derive a Gibbs sampler for learning the joint
model in an offline batch process.

We show experimentally on two datasets that our method
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can extract spatio-temporal scene rules that answer queries
like those described above. The first dataset has two videos
of three hours each captured in Zurich. The second dataset
has two shorter videos of London [5]. We qualitatively com-
pare to the results of Hospedales et al. [5]. To our knowl-
edge there is no standardized dataset available for activity
mining, which is suitable for our setting. Thus, to encour-
age further work on this topic, we release matlab code for
our method, along with the input videos and the exact flow
features we used, on http://www.vision.ee.ethz.ch/˜calvin/.

As a potential application, after training a model offline,
it can be used to interpret new video data of the same scene
in real-time (e.g. to explain what is currently going on and
what will probably happen next) and to generate a textual
description of the activities in the video. Another applica-
tion is to trigger an alarm when a certain activity is observed
or in the case of an unexpected sequence of activities.

1.1. Related Work
The two works most closely related to ours are the recently
published methods from Wang et al. [12] and Hospedales et
al. [5]. Both divide a video sequence into short clips (docu-
ments) and quantize moving pixels based on their direction
(words) to learn a hierarchical topic model.

In contrast to us, [5] use Latent Dirichlet Allocation
(LDA) [3] to model topics, which is less powerful than HDP
as the number of topics is fixed manually beforehand. How-
ever, it is not obvious how to choose the optimal number of
internal states necessary to represent everything that is go-
ing on in a complex scene. Furthermore, using LDA, the
documents are not forced to share topics.1 Thus, it is pos-
sible that individual activities are learned for many clips,
making it very difficult to find repetitive sequences and tem-
poral rules. Finally, their model only allows to find one
Markov chain. This assumes that the scene is governed by
one simple global rule.

We adopt the more powerful HDP model that is also used
in [12]. Different to us, [12] extend HDP to Dual-HDP,
which allows to additionally recover clusters of documents.
However, their model only finds instantaneous rules (e.g.,
cars can simultaneously drive on two different lanes). In
contrast, our model also finds temporal rules, for which se-
quences of documents are learned.

2. Model
Given an input video, we extract optical flow in each pair
of consecutive frames using [14] (Figure 2(a)). First, the
optical flow is thresholded to remove noise. The remain-
ing optical flow vectors are then quantized using a code-
book. The wordsw = (x, y, u, v) of the codebook represent
displacements (u, v), quantized into 8 directions, at posi-

1I.e., the mixture models in the different documents don’t necessarily
share mixture components [11].

(a) Optical flow. (b) Codebook. (c) Activities and temporal rules.
Figure 2: The optical flow (a) is quantized to build the codebook
(b). (c) Activities a–d are represented by co-occurring words. A
scene consists of several simultaneous sequences of co-occurring
activities. Our method finds these temporal rules (e.g., “When c
happens, d will follow. But if b is also active, d is deferred.”).

tions (x, y) arranged on a grid with a spacing of 10 pixels
(Fig. 2(b)). The video is divided into a sequence of 3-second
clips. Each clip is represented by the words accumulated
over its frames.

We model activities as flow words co-occurring in the
same clip (Fig. 2(c)). As these happen at different image
positions, they form spatial flow patterns. More precisely,
an activity is a distribution over flow words and thus inde-
pendent of time, as the temporal ordering within a clip is
ignored.

In the following subsections, we first recapitulate Hier-
archical Dirichlet Processes (HDP) to model activities from
video. Then we present the novel contributions of this pa-
per: two methods for discovering temporal dependencies
between activities. The first method (Sec. 2.1) first learns
activities using HDP, and then finds dependencies between
them in a second stage (rules). The second method con-
sists of a new model combining HDP and infinite HMMs to
jointly learn activities and their temporal dependencies.

The two methods discover complementary kinds of tem-
poral dependencies. The two-stage approach finds rules of
the scene that are spatially localized (e.g. rules between dif-
ferent lanes, Fig. 1(b)). The joint approach finds global
temporal dependencies. It captures the state of the scene
as a whole, and explains how it changes over time, which
global state transitions are possible, and how likely they are.
Therefore, both proposed approaches are appropriate, but
for different levels of scene analysis.

2.1. Learning Activities using HDP
We model activities using the generative model in Figure 3.
G0 is the global list of activities, shared by all clips. For
each clip t a subset of activitiesGt ⊂ G0 is active, based on
which flow words are repeatedly generated by first drawing
one activity θti and then a word xti.

Mixture of Activities. As mentioned above, activities are
represented by flow patterns θ. A flow pattern is a multi-
nomial distribution over the flow words in the codebook.
Typical flow patterns are caused by a car lane or a tram lane
(Fig. 2(c)). Therefore, a clip t is explained by the mixture
Gt of the activities (MoA) observed during t. A MoA G is
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Figure 3: Hierarchical Dirichlet Processes. Two Dirichlet Pro-
cesses are employed. First, to genera ate the global list of activ-
ities. Second, to choose a subset of activities for a clip. Finally,
words are generated from topics.

a multinomial distribution over flow patterns θ.

Dirichlet Processes. It is difficult to manually specify the
activities θ or to fix their total number beforehand. Instead,
here we infer both from data using a Hierarchical Dirich-
let Process (HDP). HDP uses a Dirichlet process (DP) on
two levels (Fig. 3). In our model, the first DP generates the
global list of activities G0. The second DP generates the
different Gt, which are subsets of activities used to gener-
ate the clip t.2 Thus, activities from the global setG0 will be
shared among different Gt. This allows the different clips
to “share statistical strength”.3

A sample from a DP G0 ∼ DP (γ,H) with base distri-
bution H and concentration parameter γ can be formulated
using the stick-breaking construction [11]:

π′k|γ,H ∼ Beta(1, γ) θk|γ,H ∼ H
πk = π′k

Qk−1
l=1 1− π′l G0 =

P∞
k=1 πkδθk

A DP is a stochastic process that generates a distribution
G0 in the form of an infinite mixture of atoms θk drawn
from H . Thus, drawing from the mixture G0 results in one
of the atoms θk. The construction of π can be abbreviated
with π ∼ GEM(γ).

In our case, the atoms θk are multinomial distributions
over words in the codebook (i.e. activities). Therefore, H
needs to be defined as a distribution over multinomial dis-
tributions, for which we use the Dirichlet distribution:

H = Dir(D0)
θk|γ,H ∼ Dir(D0)

Thus, drawing from θk finally generates a word from the
codebook (i.e. a single flow vector).

We introduce the second DP Gt ∼ DP (α,G0), where
the base distribution G0 itself is drawn from a DP. Thus, a

2Although a DP generates infinite mixtures, typically only a few el-
ements have a significant probability. Thus it is sometimes convenient to
think of G as a set of elements, omitting the elements with negligible prob-
ability [11].

3Without sharing, the model is ill-posed because there exist infinitely
many combinations of activities and MoAs that generate the observed data.
See [11] for a detailed discussion about the learnability.

sampleGt will be a subset ofG0. We illustrate this property
using the stick-breaking construction again:

π̂′k|α,G0 ∼ Beta(1, α)

τk ∼Mult(π1, π2, . . .) θ̂k|α,G0 = θτk

π̂k = π̂′k
Qk−1
l=1 1− π̂′l Gt =

P∞
k=1 π̂kδθ̂k

Parameters. γ and α are hyper-parameters set by the user.
Both are priors on the concentration of the word distribu-
tions within activities, and influence the number of activi-
ties in G0 and Gt (not given explicitly to the system). Fur-
thermore, D0 is the parameter for the Dirichlet distribution
H = Dir(D0). In general, higher elements in D0 produce
less variance in samples fromH . We setD0 experimentally
(Sec. 3).

Summary. The model in Figure 3 first generates a global
set of activities from the infinite mixture G0. Then, each
clip t is assigned a set of activities Gt. Finally, an (arbi-
trary) number of words are generated by repeatedly draw-
ing first an activity θti and then a flow word xti. The model
is learned based on the observed flow words xti (obtained
by assigning each optical flow vector to a word from the
codebook, Fig. 2(b)). In summary, this HDP model clus-
ters co-occurring flow words into activities representative
for single clips of the video (Sec. 3).

2.2. Mining Local Rules
Our first method for finding temporal dependencies be-
tween activities is based on the output of the HDP model.
We focus here on discovering spatially local rules of the
scene. They describe temporal sequences of a few activities
that recur frequently in a region of the scene (e.g. the local
rule illustrated in Fig. 2(c)).

To simplify the notation, let A = {a1, . . . , an} denote
the set of activities found with HDP after training (elements
in G0). Furthermore, let Pk be the set of all subsets of A
with size k, and Sk one element of Pk.

Markov Models on Sets of Activities. We use Markov
Models (MMs) to represent rules. A MM(Sk) = (V, T )
describes a sequence of activities from Sk. The state set
V = {v1, v2, . . .} is the power set of Sk, containing 2k ele-
ments. Thus, a state represents a selection of activities. T is
the transition matrix. The probability for a transition from
state x to state y is Txy .

As an illustration, assume a MM(S2 = {a1, a2}) that
has the state set V = {{}, {a1}, {a2}, {a1, a2}} and a
transition matrix T of size 4 × 4. The sequence of states
q = (q1, q2, . . . , qt, . . .) is the output of a MM, where
qi ∈ V (see Fig. 4).

Rule Prototypes. We first define prototypes for the rules
that we want to find in the data. A prototype rule is defined
by a prototype MM PMM(k, U) involving k activities and
a transition matrix U (see Fig. 5 for an example of such a
prototype rule; more are shown in the results section). To
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Figure 4: Example of a sequence of states q forMM({a1, a2}) =
(V, T ), where V = {{}, {a1}, {a2}, {a1, a2}}. Each state qt de-
pends on its previous state qt−1. The output of a state is a selection
of activities {ai}.
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Figure 5: An exemplary prototype rule for a subset of two random
activities, i.e., k = 2 and Sk = {a1, a2}. The possible states are
thus v1 = {}, v2 = {a1}, v3 = {a2}, v4 = {a1, a2}. U is the
transition matrix that specifies the type of rule that can be found
by mining the learned HMMs.

find an instance of a prototype rule in the video, we search
for learned MM(Sk) = (V, T ), where T is similar to U ,
by iterating over all Sk ∈ Pk (see next paragraphs).

Learning MMs. For a given Sk, we learn MM(Sk) =
(V, T ) based on the output of HDP. Because V is given as
the power set of Sk, only the transition matrix T remains to
be learned. For this purpose, we build the sequence of states
q = (q1, q2, . . . , qt, . . .), where one state qt consists only of
activities in Sk instead of all activities Gt in clip t. Then,
we estimate Txy by counting the number of transitions from
state x to y in the sequence q, normalized by the number of
occurrences of x in q.

Mining Rules. Given a PMM(k, U), we iterate over all
learned MM(Sk) = (V, T ) for Sk ∈ Pk. Each learned
transition matrix T is compared to U using a distance mea-
sure. Then, all MM(Sk) are ranked and those with a
low distance to U are returned as found instances of a
PMM(k, U), i.e., found scene rules of a certain type.

As a distance measure, we use the KL-Divergence DKL

to row-wise compare a prototype transition matrix U to a
learned transition matrix T :

D =
P
xDKL(Ux·, Tx·)

Summary. The system is queried with a number of proto-
type rules PMM(k, U). Based on the output of HDP, all
possible Markov models (up to a certain number of states)
are learned and compared to these prototype rules. Auto-
matically selected instances of learned Markov models are
then returned as scene rules (see results in Sec. 3).

The presented method is able to recover rules involving
small subsets of activities. This is very useful to infer lo-
cal rules that are often meaningful and easy to interpret,
e.g., the right of way between different lanes. However, the

method is not practical for finding rules involving a large
number of activities, i.e., complex rules governing a com-
plete, very complex scene. Furthermore, learning activities
jointly with their temporal dependencies would ensure that
they optimally explain a video of a scene rather than sin-
gle clips. To this end, we introduce the model in the next
section.

2.3. Mining Global Rules
Our second method jointly models activities and their tem-
poral dependencies. For this purpose, we integrate an ar-
bitrary number of infinite Hidden Markov Models Mc in
HDP, such that they run in parallel. In the following, we
gradually describe the resulting model called DDP-HMM.

Joint Model. One HMM Mc = (Kc, T
c) consists of Kc

states and a transition matrix T c. The sequences of states
from the different HMMs are aligned with the clips t. At
each time step t, the HMMMc is in state vct, as can be seen
in the simplified model in Fig. 6. A state corresponds to a
topic θ, from which words x are drawn.

The topics θ for all different states k of one HMM Mc

are drawn from a Dirichlet distribution (similar to Sec. 2.1):

θck ∼ Dir(D0) topics θ for all different states k of Mc

The current state vct is defined by drawing from a multino-
mial distribution Mult(Π)4, where Π denotes the probabil-
ities of the next possible states (given by T c

vc(t−1)
):

vct ∼Mult(T cvc(t−1)
) next state v for Mc based on last state

The words xti of a clip t are finally generated by repeatedly
drawing from the respective topics {θcvct

} from the differ-
ent HMMs, defined by multinomial distributions identical
to Sec. 2.1. Since Mcti is the HMM that generates word xti

and thus currently is in state vctit, xti is sampled from the
current topic θctivctit (Fig. 6):

xti ∼Mult(θctivctit) word from topic of current state

The assignment cti determines which HMM generates the
word xti. This generative model is shown in Fig. 6. Here,
cti as well as the number of HMMs and the number of states
Kc for each HMM are inferred from the data (see subse-
quent paragraphs).
Infinite HMM with DPs. As seen before, in a HMM the
transition probability Txy from state x to state y is a finite
mixture over the set of states {1, . . . ,Kc}. To model the
transition to an unknown number of states, an infinite mix-
ture is required. To this end, we introduce two levels of
Dirichlet processes:

Π0 ∼ GEM(γ)

Πk = DP (α0,Mult(Π0))

vt|vt−1 ∼ Πvt−1

4More precisely, we use Mult(1, ·), which is sometimes also called
categorical distribution.
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. . . v2(t−1) v2t v2(t+1) . . .. . . v1(t−1) v1t v1(t+1) . . .

vctitcti

θctivctit

xti

Figure 6: The states vct from the different HMMs Mc generate
the words xt in clip t. To this end, the assignment cti first selects
one HMM Mcti and its state vctit. Then, a topic θ and finally the
word xti is drawn.

Here, Π0 is the prior on the transition matrix, formulated
as a stick-breaking construction (as in Sec. 2.1). Then,
{Πk}∞k=1 are the (infinite) transition probabilities from state
k to the next state, again defined by Dirichlet processes.

Such a model is shortly described by Teh et al. [11] and
shown to be equivalent to Infinite Hidden Markov Mod-
els [2]. Although the number of states Kc in the model is
infinite, the actual sequence of observed states during train-
ing is finite, thus determining Kc.
Infinite Mixture of infinite HMMs. As described before,
a word is drawn from a mixture of states from infinitely
many HMMs. To select one HMM from an infinite set of
HMMs {Mc}∞c=1, we use a Dirichlet process, again formu-
lated as a stick-breaking construction:

π ∼ GEM(β)

cti ∼Mult(π)

Thus, a sample π is an infinite vector of mixing weights,
based on which one HMM Mcti

is selected to generate a
word xti.

In this DP, the atoms themselves are stochastic processes,
i.e., the HMMs Mc used to generate words. Hence, this is
called a Dependent Dirichlet Process [8].

Complete DDP-HMM Model. Bringing everything to-
gether, Fig. 7 shows the complete model. We call it De-
pendent Dirichlet Process Hidden Markov Model (DDP-
HMM). To sum up, first, an infinite mixture π of infinite
HMMs Mc is generated. Each Mc gets an infinite mixture
as transition prior Πc0. Based on this prior, transition prob-
abilities are generated as infinite mixtures Πck. Each state
is associated with one topic θck.

Then, the sequence of states for a HMM is generated by
consecutively drawing from the respective transition prob-
ability vector Πck. To generate a word xti, first a HMM
is selected by cti ∼ Mult(π). Second, the word is drawn
from the corresponding topic θctiv at time t.
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k c

. . . v3(t−1) v3t v3(t+1) . . .

...
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...

. . . v2(t−1) v2t v2(t+1) . . .. . . v1(t−1) v1t v1(t+1) . . .

vctitcti

θctivctit

xti

π

β

Πck

Πc0

θck

γ
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Figure 7: The complete DDP-HMM model integrates an infinite
number of infinite HMMs running in parallel. They jointly gener-
ate the flow words xti in clip t. In contrast to the reduced model in
Fig. 6, the DP is shown to select a HMM Mcti for generating one
word xti. Furthermore, the transition prior and transition probabil-
ities for the infinite HMMs are shown, generated by two levels of
DPs. Also, the Dirichlet distribution to generate all possible topics
θck is included.

The complete DDP-HMM model can be written as the
following process:

π ∼ GEM(β) mixing weights for HMMs
cti ∼Mult(π) selected HMM Mcti

Πc0 ∼ GEM(γ) transition prior for Mc

Πck = DP (α0,Mult(Πc0)) transition prob. from state k
θck ∼ Dir(D0) topics θ for states k of Mc

vct ∼ Πcvc(t−1) next state for Mc

xti ∼Mult(θctivctit) word from topic of one state

Inference. We use Gibbs Sampling for inference in our
DPP-HMM model. For this purpose, we alternate between
sampling the assignment of words to HMMs (π, cti) and
sampling the sequence of states (Πc0, Πck, vct). The first
step is similar to inference in HDP (described in [11]), i.e.,
the assignments of words to topics. Furthermore, as in [11],
θck is integrated out.

Summary. This model jointly learns activities and depen-
dencies, while inferring different parameters such as the op-
timal number of HMMs and the number of their states from
the data. Modelling activities and their time dependencies
jointly over time results in different activities compared to
those learned by HDP for single clips (Sec. 2.1). The result-
ing activities from DDP-HMM explain a whole state of the
scene rather than small atomic activities (see Sec. 3). While
this allows to find global rules that govern the whole scene
rather than local, spatially limited rules, they are not as easy
to interpret anymore.

3. Experiments
We experiment on videos of two different crowded, public
scenes in Zurich (HD, 25 fps, 2x3 hours) and on two videos



Figure 8: The most important activities (topics) for the first se-
quence. The topics are shown in order of decreasing importance,
as automatically determined by the model.

Figure 9: The most important activities (topics) for the second
sequence. The single car and tram lanes are separated well.

of London traffic scenes from [5] (360x288, 25 fps, 2x1
hour)

Local Rules. For both sequences we show all activities
(Figs. 8 and 9) found by HDP that explain at least 2% of
all observations (Sec. 2.1). Based on them, we search rules
of up to 4 activities (Sec. 2.2). Here, we show two exem-
plary results for each sequence.

The rule in Fig. 10 shows the relationship between trams
that pass by straight and turning cars. The activities are
never observed simultaneously, thus are mutually exclu-
sive. The car activity (a) is observed more frequently than
tram activities (b and c) (see HMM transition probabili-
ties). After a tram passed by, it is very likely that cars are
observed again afterwards. Only after a tram drove from
right–left (c), a tram from left–right is sometimes observed
next, never the other way around.

The turning car activity is divided into two separate ac-
tivities by our model (Figs. 11(a), 11(c)). This is necessary
because cars driving straight (Fig. 11(b)) have the right of
way. Hence, turning cars sometimes have to wait (a) and
let other cars (b) pass before continuing (c). They should

(a) Tram left–right. (b) Bus turns. (c) Tram right–left.

a b c1

0.5

0.8

0.5

Figure 10: A blocking rule between trams and buses. A bus mov-
ing in (b) is blocked by a tram in either (a) or (c). Only transitions
with probability higher than 0.2 are shown.

(a) Bus turns (start). (b) Car right–left. (c) Bus turns (end).

0.8

0.4

a c

b0.5

0.8

Figure 11: A bus moving on the sequence (a)-(c) is often inter-
rupted by blocking traffic in (b).

(a) Cars left–
right.

(b) Cars right–
left.

(c) Cars top–
down.

(d) Cars right–
down.

a b

0.4

cc 0.5

0.3 0.50.5
0.3

0.4

0.3

Figure 12: A local rule that explains a traffic light sequence.

wait behind a line (left border of the image), thus (a) and
(b) should not be observed simultaneously, which however
is not always the case. In contrast, (c) and (a) are never
observed simultaneously, which would cause an accident.

For the second sequence, Fig. 12 shows a traffic light rule
between cars with mutually exclusive activities. Although
there exists a most probable sequence, almost every other
sequence is possible, which is unusual for a traffic light sit-
uation. Thus, either the traffic light system is intelligent and
adapts permanently to the current traffic situation, or a local
rule involving four activities is not sufficient.

Global Rules. For the second scene, we show in Fig. 13 the
5 states that explain at least 5% of the observed flow in the
scene, discovered by the DDP-HMM. Activities found with
HDP and activities (i.e., states) found with DDP-HMM on
the same scene are different (compare Fig. 9 and Fig. 13).
In general, DDP-HMM finds more global activities, since
it has to explain the complete state of the scene, not just a
locally restricted part.

The scene is a crossing governed by a traffic light. Thus,
the sequence of activities is theoretically strictly defined.
The transition matrix learned by DDP-HMM reflects this



Figure 13: Transition graph and matrix for a traffic light controlled
scene. The usual loop for the traffic lights is: (A,C)−(B,E)−D.

well with its simple structure (Fig. 13): State A represents
the two lanes from left to right and vice versa. Often how-
ever, there are more cars coming from the right, thus state
C usually follows A, as the lane from right to left tends to
be active for a longer time. Then either state B or E follow,
which both correspond to the same signal light configura-
tion. Depending on whether there are more cars going left
(B) or straight (E), a different state is used. Finally, state B
follows, representing cars going up and down.

The usual loop for the traffic lights is: (A,C)−(B,E)−
D. We group the states (A,C) and (B,E) because they cor-
respond to the same traffic light configuration. Even though
the model is not restricted to only one HMM, here it has
learned that one is sufficient, because the traffic light can be
represented by a single HMM.

This fact is supported by an evaluation on β. β is the
concentration parameter that acts as a prior on the num-
ber C of HMMs. We performed a grid search on β ∈
{0.1, 0.5, 1.5, 5.0}. Although the concentration parameter
is chosen very high, the learned model always converges to
one HMM that explains at least 90% of the scene. Only if
very rare motion needs to be explained, a single HMM is
not sufficient anymore.

To further validate that the model is able to find more
than one HMM we first generated (artificial) data accord-
ing to the model and then applied our inference algorithm.
Averaged over 100 runs with different generated data from
on average 3.4 HMMs about 73% of the words are assigned
correctly. For 6 HMMs it scores at 59%.

In contrast, the other traffic scene is not governed by a
traffic light (Fig. 14). Thus, the transition matrix is much
more complex. There is no single typical sequence of activ-
ities. Figure 14 shows a few selected states along with the
transition matrix.

Based on a trained model, new video data of the same
scene can be annotated with states along the timeline in
real-time. At each time step, the state that explains best
the current flow is chosen. Consequently, if an observation

Figure 14: A selection of states and
the transition matrix of a global rule
found by the joint DDP-HMM for an
erratic scene, i.e. not controlled by a
traffic light. As can be seen, there are
many different sequences of activities
because the transition probabilities to
different states are often similar.

Figure 15: The graph in the middle shows state switches as the
sequence progresses along the time line. A time step is 3 seconds.
At each state change, we show the flow explaining the scene until
the next state change.

cannot be explained well, an alarm could be triggered auto-
matically. Figure 15 illustrates this on a short extract from
the video of the traffic light scene (Fig. 13), where the cur-
rent state is plotted for some time steps.

Hospedales et al. [5]. We apply our models to the 2 traffic
scenes of [5] and compare to their results qualitatively.

First, we learn activities. Fig. 17 shows only a few of the
activities found, due to space limitations. Our method finds
activities similar to those shown in [5], but a full comparison
is not possible, as also [5] show only a few activities.

Next, we use our model of Sec. 2.3 to find global rules,
akin to the Markov Models of [5]. Fig. 16 shows the states
along with the transition matrix. For the top scene, our
model accurately recovered the traffic light cycle govern-
ing the scene. The transition matrix shows our method has
found two alternating cycles DB. . . and DCAB. . . , whereas
the transition matrix in [5] does not support any cycle. For



Figure 16: Top: A scene with a traffic light. 4 states are automatically found. The transition matrix accurately reflects the traffic light
cycle. Bottom: Traffic scene with crossing pedestrians. 5 states are automatically found. After state A (pedestrian crossing the street on
the right), either state B or C follows with pedestrians either crossing the street on the left or waiting in between.

Figure 17: A selection of found activities on the data of [5]. We
find the same lanes. Also, on the second row, the pedestrians and
cars are recognized as different activities.

the bottom scene, every car lane and pedestrian crossing is
covered by some of the 5 states found by our model. In con-
trast, the 3 states found in [5] do not cover all the movement
in the scene. As in [5], our transition matrix suggests that
states A and B (pedestrians crossing) occasionally interrupt
the flow of traffic. Moreover our transition matrix is more
complete than that of [5], as it also explains transitions be-
tween states covering movement missed by the states found
by [5]. Finally, note that our model learns both the number
of activities and the number of states automatically, whereas
in [5] they are manually set for each video.

4. Conclusion
To understand the behaviour of agents in a scene, both
spatial and temporal dependencies between moving agents
are relevant. To analyze them, we presented two meth-
ods to automatically learn co-occurring activities and tem-
poral rules between them, first stepwise and then jointly.
The first model allows to mine local rules. The second
DDP-HMM model is more powerful and automatically in-
fers all parameters from the data, such as the optimal num-
ber of HMMs necessary to explain the rules governing a
scene. It finds global rules. We demonstrated experiments
using two long video sequences of complex Zurich scenes
and discussed the differences between the two proposed ap-

proaches. Moreover, we qualitatively compared our results
with [5] on their London videos. As a possible application,
a trained model can annotate new video data from the same
scene with states along the timeline in real-time for an auto-
matic interpretation of video, e.g. to detect unusual activity.
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