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Abstract— In order to support driver assistance systems
in unconstrained environments, we propose to extend local
appearance-based road classification with a spatial feature gen-
eration and classification. Therefore, a hierarchical approach
consisting of multiple low level base classifiers, the novel spatial
feature generation, as well as a final road terrain classification,
is used. The system perceives a variety of local properties of the
environment by means of base classifiers operating on patches
extracted from monocular camera images, each represented in
a metric confidence map. The core of the proposed approach is
the computation of spatial ray features (SPRAY) from these
confidence maps. With this, the road-terrain classifier can
decide based on local visual properties and their spatial layout
in the scene. In order to show the feasibility of the approach,
the extraction and evaluation of the metric ego-lane driving
corridor on an inner city stream is demonstrated. This is a
challenging task because on a local appearance level, ego-lane
is not distinguishable from other asphalt parts on the road.
However, by incorporating the proposed SPRAY features the
distinction is possible without requiring an explicit lane model.
Due to the parallel structure of this bottom-up approach, the
implemented system operates in real-time with approximately
25 Hz on a GPU.

I. INTRODUCTION

In order to decrease the number of traffic accidents accom-
panied by an increase of driving comfort for future cars, the
topic of road terrain detection is of high interest for ADAS.
Road terrain detection is beneficial for path planning and
other kinds of object detection, because it creates knowledge
about where the ego-vehicle and other traffic participants will
probably move to and where other road users, e.g. cars and
pedestrians, can potentially appear.

Due to lack of generality, commercial ADAS are often
limited to specific scenarios. For example, Lane Keeping
Assistant and Lane Departure Warning Systems are restricted
to highway situations with certain conditions, e.g. a low
curvature of the lane and good quality of the lane-markings.
However, the robust recognition of the driving path on
arbitrary roads will be needed for future ADAS operating
in more complex traffic situations, especially in inner city
and rural roads. If there are no explicit road boundaries (like
curbstones / lane makers) detectable, e.g., because of parking
cars on the side occluding them, current systems based on
delimiter detection or explicit lane models (e.g. clothoids)
are not working.
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Fig. 1. Demo images showing the challenges in the urban dataset:
Situations with bad lane-marking quality, curbstones as road delimiter,
unmarked lanes, pot holes in the road and a strong curve.

Therefore, the proposed approach aims at improving
appearance-based classification by incorporating the spatial
layout of the scene. This allows handling a high variety
of complex situations, which is demonstrated on an ego-
lane detection scenario. For this task, classification deci-
sions cannot be taken on a local appearance level without
considering the spatial layout. In our dataset, geometrical
constellations of the ego-lane and variations of asphalt color
and texture on the road are manifold. This can be seen in
Fig. 1, showing situations with bad lane-marking quality,
curbstones delimiting the road, potholes (visually distinct
from road), and unmarked road. The proposed system aims
at detecting ego-lanes (see Fig. 2) in cases of both explicit
(lane-markings or curbstones) and implicit (unmarked road)
delimiters.

Fig. 2. Exemplary top view of road-scenes illustrating different scenarios
for ego-lane detection that can be handled by the proposed system.

For that, the system represents visual properties of both,
the road surface and delimiting elements in confidence maps
based on analyzing local visual features. On such confi-
dence maps, spatial ray features (SPRAY) that incorporate
properties of the global environment are calculated. Only
after this two-step extraction process, a decision for road
terrain is taken, which implicitly reflects both, local visual
properties and their spatial layout. Considering the spatial
layout of properties helps for any classification task where
there is a clear structural correspondence between properties
at different spatial locations.
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II. RELATED WORK

Vision-based road segmentation has been addressed in many
papers in the last decade: One direction taken by a large
number of researchers is the perception of road delimiting
elements (e.g. curbstones, lane-markings) for the detection
of actual driving space (see, e.g. [1], [2], [3]). Features
for these models are extracted from longitudinal road struc-
tures like lane markings or road boundary obstacles (e.g.
curbstones or barriers) by visual processing. This is mainly
based on color and edge appearance (see e.g. [1]), 3D
information from stereo processing (see e.g. [2]) or Structure
From Motion (see e.g. [3]). From the extracted features,
lane/road model parameters can be tracked using different
road shape models (see e.g. [4]). However, especially for
inner city the applicability of these approaches is limited
because of violated model assumptions (intersections, parked
cars occluding curbstones). In addition, using road delimiter
information only is sometimes not sufficient, because lane-
markings might be in a bad condition or not existing.

Alternatively, visual properties of the actual road surface,
like, e.g., the mainly gray and untextured asphalt region, can
also be beneficial in the detection process [5], [6], [7], [8].
In prior work, a learning approach [5] was presented that
captures the typical visual properties of road-like area using
monocular, patch-based classification. Pixel based classifica-
tions, using Conditional Random Fields (CRF), can be used
to identify multiple scene elements in the field of view, in-
cluding the road surface [7]. However, classifying the visual
appearance on a local scale only, can lead to ambiguities.
Therefore, Kang et al. [8] showed that incorporating a pixel’s
larger visual context by using multi-scale grid histograms
increases the detection quality of all classes. This idea is
similar to our approach, but our focus lies on capturing not
spatial image statistics but rather geometrical constellations
in a metric representation. This bottom-up spatial context
allows detecting semantic categories like ego-lane, which is
usually done with a model-based approach (e.g., [1]).

Complementary to such bottom-up approaches, top-down
scene context (e.g., based on scene category, location of
horizontal line and vanishing point) as prior to further
enhance robustness of bottom-up classification decisions is
proposed by Alvarez et al.[9].

III. SPRAY-BASED ROAD-TERRAIN DETECTION

The system (see Fig. 3) consists of three parts: base classi-
fication, SPRAY feature generation, and road terrain classi-
fication. The camera input is fed into each of the N base
classifiers (M11) as can be seen in the right part of Fig. 3.
Each base classifier (M11) obtains a confidence map for a
specific visual property such as road, boundary and lane-
marking appearance. On each confidence map, a spatial
layout computation (M12-1) that captures spatial aspects of
this confidence map’s property is applied. All the individual
features computed from the N different base classifiers are
merged (M12-2) to obtain a spatial feature vector (I13) for
each base point, before performing the road terrain classifi-
cation (M13). The following subsections III A-C detail these

three system parts. Additional technical information on the
system setup and its implementation are given in Sec. IV.
Sec. V describes a metric driving corridor estimation which
is used for evaluation.

Fig. 3. System block diagram showing the main processing steps (left)
and a more fine grained structure (right).

A. Base Classification

The block diagram in Fig. 4 shows the system setup with
camera input and 3 base classifiers in module (M11).

Fig. 4. System block diagram showing the setup for base classification
in module M11. Note that all base classifiers (*) include preprocessing and
inverse perspective mapping to provide metric confidence maps.

Each base classifier generates a map of confidence values,
wherein each location corresponds to a certain location in the
metric space which is internally obtained using inverse per-
spective mapping [10]. An entry of this confidence map con-
tains confidence information about whether a corresponding
cell in metric space has a certain property. The combination
of all confidence maps builds a value-continuous spatial rep-
resentation. We propose the use of 3 base classifiers (M11.1-
3) which work on preprocessed camera images and result
in three confidence maps in a metric representation. These
are base boundary classifier (M11.1), base road classifier
(M11.2) and base lane marking classifier (M11.3).

The base boundary classifier (M11.1) is specialized on
detecting boundaries between the road-like area and adjacent
regions like e.g. sidewalks, traffic islands, off-limits terrain,
or non-road terrain based on the metric image representation.
This base boundary classifier generates low confidences
on road-like area and high confidences at locations that
correspond to boundaries. The base road classifier (M11.2)
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is specialized to generate high confidences on the road-like
area and low confidences on non-road terrain. The two base
classifiers for road and boundary are based on the work
of [5]. This approach enables to learn the typical visual
appearance of a given base class. Different training strategies
are used to specialize each base classifier on its specific task.

Fig. 5. Result of the base classification showing an illustration of the
base boundary (left), base road (center) and base lane marking (right). The
brightness denotes the confidence of the classification.

For the base lane marking classifier (M11.3), standard
techniques (see, e.g., [11]), can be applied to generate
a confidence map having a high confidence at locations
corresponding to lane markings and low confidences on road
terrain (e.g. road-like area, sidewalk, traffic island).

Fig. 5 shows exemplary results of the base classification
in the metric space. These confidence maps are used as input
for the SPRAY feature generation.

B. SPRAY Feature Generation

It has been shown that spatial features can be very beneficial
for shape based classification [12]. Features extracted at
different locations relative to a base point were also used for
body part recognition [13]. In order to use these concepts for
the task of road-terrain detection a ray-like feature approach
inspired by [12] has been developed.

The SPRAY feature generation (M12) process is illustrated
in Fig. 6. The left part of Fig. 6 shows the general processing
steps for feature generation: Taking a confidence map from
a base classifier as input (I12), for a defined number of
base points (BP) in the metric representation, spatial feature
vectors can be extracted.

The distribution of base points is in this example defined
as a grid as shown in Fig. 7 (left). The spatial layout with
respect to the confidence map is captured at each individual
base point by radial vectors, which are called rays (see Fig. 6,
right).

The example in Fig. 7 illustrates a confidence map of
one base classifier in the metric space [10] which is used
for explanation purpose. It represents a simplified confi-
dence map (example for I12) for a two-lane road with
lane markings in the center and curbstones on the left and
right side. The simulated base classifier has the ability to

Fig. 6. System block diagram showing the general processing steps of
spatial feature generation (left) and a fine grained illustration of the spatial
feature computation which is applied for each base point (right).

generate high confidences on curbstones and lane markings
and low confidences on road terrain (dark color indicates
high confidences) and is therefore comparable to the base
boundary classifier.

Fig. 7. Distribution of base points over the metric space (left) and the
SPRAY feature generation procedure illustrated for one base point (right).

A ray-vector Rα includes all confidence values along a
line, with a certain angular orientation α, starting from a
specific base point and ending at the border of the metric
representation. To convert this information into a defined
number of feature values f , the integral of the confidence
values Aα(ρ) along the ray Rα is computed (see Eq. 1).
This integral can be interpreted as absorption of confidences
along the ray.

Aα(ρ) =

∫ ρ

0

Rα(γ) dγ (1)

ADα(ti) = argmin
ρ

(ρ |Aα(ρ) > ti) (2)

By defining a certain number T of absorption thresholds
ti, the absorption distances ADα(ti) (see Eq. 2), i.e. the
locations where the integral value reaches a certain threshold
ti, are obtained as SPRAY features. The generation of the
SPRAY features for a number of R rays with orientation
αr is performed for each base point. For one specific base
point in a confidence map, R rays result in R ·T absorption
distances. The absorption distances serve as SPRAY features
for the road terrain classification, because they describe the
spatial layout of the environment, captured in the confidence
maps of the properties, relative to the predefined base points.
Notice that this has to be done independently on every
confidence map. All SPRAY features are finally merged to
a single feature vector.
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In Fig. 7 (right part), an example of the spatial layout
computation is shown for one base point. SPRAY features are
extracted along six rays (1-6), numbered clockwise. For the
third ray (3) additionally the absorption distances AD3(t1)
and AD3(t2) for two thresholds are illustrated. The graph in
Fig. 8 shows a principal sketch of the integral over the ray (3)
given the confidence map mentioned above. The thresholds
t1 and t2 lead to absorption distances that correspond to the
distances from the base point to a lane marking AD3(t1)
and the left curbstone AD3(t2). Obviously, the selection of
’good’ thresholds is crucial for the method (cf. Sec. IV).

Fig. 8. Integral over the confidences (absorption) for a specific ray (here
ray 3 in the scenario from Fig. 7). Two SPRAY features AD3(t1) and
AD3(t2) are obtained, which reflect in this case the distance to the lane-
marking and the left road border.

Combined SPRAY Features: In order to simplify the
learning, a SPRAY feature fα can be combined with its
corresponding SPRAY feature pointing to the opposite side
fα+180. This combined SPRAY feature fcmb,α, see Eq. 3,
can be obtained for all ray orientations α that have a
corresponding ray in the opposite side.

fcmb,α(ti) = ADα(ti) +ADα+180(ti) (3)

The presumption is that lanes (or even roads) have a fixed
width which is captured by combined SPRAY features. For
example, assuming ray number 5 and ray number 2 (example
right part in Fig. 7) would have been combined: Then there
will be a constant combined distance value for all base points
BP that are located on the lane (assuming ray 5 hit the
lane-marking). Even if this information could be captured in
the learning process of the classifier by combining several
features, the representation would be much more complex.
Ego SPRAY Features: To obtain an additional measure
which indicates if a base point is located on the ego-lane,
ego SPRAY features fego are used. The idea is to use
the absorption value of the integral produced from a ray,
send from a base point (xBP , zBP ) to the ego-position
(xego, zego) in the metric representation, as a feature. The
feature value fego can be obtained with Eq. 1 after obtaining
the angle αego (see Eq. 4) from BP to the ego-position.

αego = arctan

(
zBP − zego
xBP − xego

)
(4)

In contrast to the standard SPRAY features the orientation
αego is changing for different base points. This is beneficial
for encoding ego-lane specific spatial properties.

C. Road Terrain Classification

For training a classifier based on the proposed SPRAY
features a GentleBoost classifier [14] is used, because it
has been shown that boosting is very successful in feature
selection and classification [15]. The algorithm generates a
sequentially weighted set of weak classifiers that build a
strong classifier in combination. In every training iteration
the method attempts to find an optimal classifier according
to the current distribution of weights on the input signal.
Training of GentleBoost: We set up the weak classifiers
with decision trees (6 tree split) and a maximum of 120
boosting iterations to get a classifier combining different
SPRAY features. Ground truth is needed for training the
road terrain classifier on a specific road terrain category.
After training is finished, the classifier generates a confidence
value for a given feature vector, indicating whether the
corresponding base point is likely belonging to the trained
category or not. For the proposed detection of ego-lane the
classifier learns the distinction between ego-lane and non-
ego-lane.
Processing: Once the road terrain classifier is trained, the
system can process input images with the learned parameters.
An exemplary classification result is given in the right part
of Fig. 9. It is used as input for driving corridor extraction
as described in Sec. V.

Fig. 9. Result of the road terrain classification showing the metric
representation of the image (left) and the classification result for ego-lane as
confidence map on the right. The ego-lane is unoccupied up to a distance of
33m. The corresponding base classification results can be found in Fig. 5.

IV. SYSTEM SETUP

For the proposed system RGB images with a resolution
of 800 × 600 pixels are used. The metric representation
is defined for a range of −10m to 10m in x direction
(lateral) and 8m to 48m in z direction (see Fig. 9). With
a resolution of 5cm, a representation with a block size
of 800 × 400 is obtained. Because the GentleBoost road-
terrain classifier has the ability to select the best out of
a large variety of features it is proposed to use a feature
setup, which is a trade-off between brute force (take all
features one can get) and training duration. Here the SPRAY
feature generation is set up to have 7 ray orientations φ =
[−20, 0, 20, 160, 180, 200, 270] (φ = 0 is rightwards, counted
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clockwise positive). As mentioned above selecting good
absorption thresholds is significant for the performance of the
system. In the example of Fig. 8, thresholds are selected in an
optimal way in order to encode the distance to relevant scene
elements. This selection is of course not trivial in reality.
However, by using a large number of thresholds one can use
the GentleBoost to select the best. Based on experiments
the absorption thresholds are set to th = [3, 10, 30, 70, 120],
although finer graduation and modification for every base-
classifier could be more appropriate.

The whole system is implemented to run on a GPU using
OpenCL. Due to the parallel system architecture a frame
rate of 25 frames

s on a NVidia GTX 580 is obtained. Averaged
timings of the main system parts measured in isolation can
be found in Tab. I (note that several system parts run in
parallel in the full system).

TABLE I
AVERAGE TIME OVER 200 ITERATIONS

time [ms]

Base classification (bound./road/lane mark.) 11.2 / 8.8 / 9.9

SPRAY feature generation 13.4

Road terrain classification 2.8

Full system 38.4

V. DRIVING CORRIDOR ESTIMATION

In order to measure the quality of the ego-lane detection,
a metric driving corridor is estimated. Therefore, multiple
candidates of driving corridor elements with a certain width
w(z) are obtained. Starting at the approximate first visible
ground element (8m from the rear axle of the ego-vehicle)
the corridor is sampled at discrete distances with ∆z = 0.5m.
In Fig. 5, it can be seen that the perception of the local visual
properties by the base classifiers gets worse with increased
distances, thus the estimation is applied up to a maximum
distance of 28m (roughly 24m from the front bumper).

To represent the drivability of the driving corridor four
categories are used: The non-drivable corridor has a width
of w(z) ≤ 1m, the narrow corridor width spans a range
of 1m < w(z) ≤ 2m, the drivable corridor satisfies 2m <
w(z) ≤ 4m and for completeness the fourth category for
w(z) > 4m is named oversized corridor. For visualization
purposes the metric corridor elements are mapped back into
the perspective image as can be seen in Fig. 10.

VI. EVALUATION

The publicly available datasets of road scenes do not fit
our requirements in terms of resolution or sequence length.
Therefore, we evaluate the proposed system on an own but
rather small dataset, consisting of images with manually
annotated ground truth. The total stream length is approx-
imately 4 minutes with 247 annotated frames (1 fps). We
split the dataset into training and testing part by using N-fold
cross validation with blocks of approximately 20 seconds
(resulting in 12 blocks). Each of the 12 blocks is separately
tested with a classification system trained on the remaining
11 blocks. The training blocks are split into those used for

Fig. 10. Visualization of driving corridor results. Examples I-VI corre-
sponding to Fig. 1. Green indicating drivable and yellow narrow corridor.
The visualization is limited to a distance of 28m.

training the base classifiers and those used for training the
road terrain classifier (alternating blocks). This is important
because first the base classifiers are trained on one half.
Afterwards the road terrain classifier is trained on base
classifier results generated on unseen images

The driving corridor visualization in Fig. 10 shows the
results for challenging situations. There one can see that the
major part of the ego-lane is captured by the system. Even in
cases with bad-lane marking quality (ex. I and II), curbstones
(ex. III), and missing lane-markings (ex. IV), the system
works nicely. There are errors around road signs and close to
lateral road markings (ex. VII and VIII). The system shows
an error compensating behavior for appearance variances on
the road surface caused by, e.g., shadows, asphalt joints,
gully covers, and potholes (see ex. V).

For evaluating the driveability of the ego-lane, the metric
driving corridor is used. Note that the results for every frame
are obtained in isolation without any temporal information.
From the four classes (cf. Sec. V), the corridor width is
compared with ground-truth information (extracted from
perspective polygonal-data). The histogram of all samples
for each corridor class is illustrated in Fig. 11. One can see
that the narrow corridor (orange) and the oversized corridor
(blue) are very rare in the ground truth. However, these
classes can be used to assess errors in the corridor estimation
with a finer graduation.

Fig. 11. Histogram of corridor categories over distance.

In Fig. 12, the results for the overall true positive rate
TPRall (purple) and false negative rate FNR as a function
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of the metric distance to the ego-position are depicted.
Here the false negative rate is split into its components
corresponding to the four corridor categories, reflecting their
missed detections. The feasibility of ego-lane detections with
the presented approach can be seen by the TPR which varies
from 90% to 80%.

False negative detections mainly occur in a construction
site where the asphalt is milled off, and especially on
road signs (e.g. arrows or letters, see ex. VII) on the ego-
lane. Using a road sign detection method [16] in the base
classification would allow to suppress these errors.

Additionally, the evaluation method is not adequate in
the transition region between ego-lane and preceding cars
because of ambiguities for the corridor category assignment.

Fig. 12. Drivability evaluation of the driving corridor elements in distinct
distances.

In Fig. 13, the quality (see Eq. 5, cf. [17]) of all classes
(blue) and the drivable corridor class (green) as a function
of the metric distance to the ego-position is shown.

Q =

∑n
i=1 TP∑n

i=1 (TP + FN + FP )
· 100% (5)

The quality measure is relevant because all errors, also
including false positives FP , are considered. The decrease
of quality for the drivable corridor (green) from 90% at 8m
to 60% at 28m, can be explained by the low resolution in
the image at far distances1. This effect does not arise in the
quality of all categories Qall (purple) because in far distances
mostly non-drivable corridor occurs. For non-drivable cor-
ridor, e.g., in case of a preceding vehicle occluding the
corridor ahead of it, the detection of this category is based
on the image part depicting the vehicle which has a higher
resolution because it is closer to the camera.

Fig. 13. Evaluation of the driving corridor detection quality in distinct
metric distances for all (blue) and the drivable category (green).

1This effect could be reduced using a multi-scale approach.

VII. CONCLUSION AND FUTURE WORKS

In this paper, SPRAY features that enhance local classifica-
tion decisions are proposed. The approach enables to capture
the geometric characteristics of man-made road. Embedded
in the presented framework, learning the spatial layout of
local visual properties for ego-lane detection is demonstrated.
In a first evaluation, it was shown that this approach can
handle various scenarios for ego-lane detection including
parts without lane-markings and varying asphalt appearances.

In the future we want to improve the approach by finding
optimal configurations for different scenarios (e.g., highway
and inner-city). Furthermore, it is planned to train the system
on a larger dataset.
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