
The HCI Benchmark Suite: Stereo And Flow Ground Truth With Uncertainties

for Urban Autonomous Driving

Daniel Kondermann∗ Rahul Nair∗ Katrin Honauer∗ Karsten Krispin∗ Jonas Andrulis†
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Abstract

Recent advances in autonomous driving require more

and more highly realistic reference data, even for difficult

situations such as low light and bad weather. We present

a new stereo and optical flow dataset to complement ex-

isting benchmarks. It was specifically designed to be repre-

sentative for urban autonomous driving, including realistic,

systematically varied radiometric and geometric challenges

which were previously unavailable.

The accuracy of the ground truth is evaluated based on

Monte Carlo simulations yielding full, per-pixel distribu-

tions. Interquartile ranges are used as uncertainty mea-

sure to create binary masks for arbitrary accuracy thresh-

olds and show that we achieved uncertainties better than

those reported for comparable outdoor benchmarks. Binary

masks for all dynamically moving regions are supplied with

estimated stereo and flow values.

An initial public benchmark dataset of 55 manually se-

lected sequences between 19 and 100 frames long are made

available in a dedicated website featuring interactive tools

for database search, visualization, comparison and bench-

marking.

1. Introduction

In computer vision, ground truth generation and perfor-

mance analysis have received increasing attention in the

past years [10, 5, 39, 7]. As a result, recent ground truth

databases have successfully pushed the limits of optical

flow and stereo estimation. One quickly evolving appli-

cation with safety relevance is autonomous driving. Here,

computer vision results such as optical flow and depth are

used to make decisions for steering and velocity control.

The generation of reference data for these sensors enables

Figure 1. Top: sample image (left) and masks of dynamic regions

with labels (right). Center: stereo (left) and flow ground truth

(right), masked with certainties better than two pixels (otherwise

black). Bottom: uncertainties for stereo (left) and flow (right).

The HSV color coding for flow is chosen such that the V com-

ponent is maximal at a flow magnitude of four pixels; all other re-

gions have a lower V value. Our new dataset covers previously un-

available, difficult light and weather situations and supplies ground

truth with uncertainties.

researchers to compare methods with respect to various al-

gorithm properties such as accuracy and robustness. In this

paper, we introduce an extensive dataset specifically tai-

lored to complement existing flow and stereo benchmarks

for urban autonomous driving. It covers previously unavail-

able, challenging situations such as low light or rain and

comes with pixel-wise uncertainties. The main components

of our dataset are visualized in Figure 1.

One of the guiding principles for our database design is

a direct consequence from the generalization-specialization
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dilemma1 known from machine learning [21]. It states that

an algorithm either works reasonably well for a broad range

of applications or it works excellently for a very specific do-

main [23]. In order to achieve superior performance, stereo

and flow algorithms therefore need to be defined such that

they perform particularly well in a predefined use-case as

for example autonomous driving. To empower algorithm

designers to find models generalizing well to the full spec-

trum of the actual use-case, a dataset tailored to the applica-

tion needs to be representative. A dataset is representative

if computed benchmark results allow for a prediction of the

performance in the actual application.

Our contribution is threefold: first, we designed a ground

truth acquisition method for urban autonomous driving

datasets (Section 3), including requirements relevant for

this use-case. Second, we present the first radiometri-

cally challenging stereo and flow ground truth dataset with

full measurement error distributions containing high resolu-

tion (HR), high frame rate (HFR) and high dynamic range

(HDR) (Section 4.1). Third, we deploy an interactive web

application and SDK with detailed visualization and bench-

marking tools including search functionality and state of the

art performance metrics (Section 4.3).

2. Related Work

Performance analysis for flow and stereo is addressed

from two main directions: First, synthetic images can be

created for benchmarks (e.g. with computer graphics). Sec-

ond, reference results for real images are measured with

specialized hardware. A third alternative is to not generate

ground truth at all and leave the benchmarking to experts.

Creating synthetic ground truth by simulation is a very

flexible approach. It is relatively straightforward to gener-

ate flow and depth ground truth while allowing for system-

atic variations in all scene parameters such as material prop-

erties, light sources as well as animations. Important early

flow and stereo datasets were [4, 36, 29, 44, 26, 34, 43]. The

first widely recognized synthetic dataset with a benchmark-

ing website was MPI-Sintel [5] which used existing assets

from a Blender movie to generate a dataset termed natu-

ralistic, addressing the fact that the data looks a bit more

like a cartoon than the real world, but still resembles real

images to some degree [46]. In [35], the focus lies on sim-

ulating motion blur for simultaneous localization and map-

ping, whereas [14] suggests to use computer game engines

to generate large amounts of data by simply playing a game.

A dataset for learning occlusion boundaries was presented

in [18], including published tools to create new datasets.

While some preliminary statistical results indicate that

synthetic data can be used as ground truth [46], these meth-

ods have not been thoroughly evaluated with respect to their

1also referred to as bias-variance trade-off

representativeness [31, 12].

Creating ground truth by measurement is based on real-

world images. Here the challenge lies in creating reference

data which is accurate enough. One option is to record

real data and use manual measurements. Some success was

achieved both with expert [27, 25] as well as laymen anno-

tations [9]. Although the accuracy in [27] is good compared

to reference data from the Middlebury flow benchmark, an-

notations are not measurements. Possible biases introduced

by humans have yet to be investigated.

(Semi-)automatic measurement setups have a human in

the loop to correct algorithm results. They are more reli-

able, but only work in restricted scenarios. Proposed meth-

ods include using more than two cameras [33] or additional

modalities such as structured light [30, 40], LIDAR [10] or

UV-paint with multiple exposures and light sources [3]. An-

other approach is to use approximated GT based on domain

specific assumptions, e.g. planar “Stixels” [37, 38],

These approaches are not as costly as completely manual

processing. Our dataset follows these approaches in that we

use experts to correct ground truth generation algorithm re-

sults and obtain as much information as possible from mea-

surement devices. Another downside of such approaches

is that they still are prone to outliers and biases caused by

measurement devices and human corrections. Yet, it is the

only currently known method for large-scale, outdoor stereo

and flow ground truth generation.

To deal with such uncertainties during benchmarking,

several approaches have been developed. The first Middle-

bury datasets contain general discussions on accuracy [3].

The latest Middlebury stereo set [39] contains estimated

per-pixel standard deviations based on multiple measure-

ments. For LIDAR-based datasets, accuracy based on error

propagation was discussed in detail in [42]. A faster method

for accuracy estimates based on sampling was presented in

[24].

Datasets coming with a benchmark website have be-

come a popular approach to performance analysis. They

offer a very diverse in choice of hardware, settings and

content. With a benchmark, algorithms can be compared

more easily and the research community can focus on rele-

vant challenges in the field. We focus on the four datasets

coming with a benchmark most relevant for autonomous

driving: KITTI [10], MPI-Sintel [5], Middlebury [39] and

Cityscapes [7].

We compared these datasets with respect to the require-

ments to be discussed in Section 3.1. An overview is given

in Figure 5, while details are discussed in Section 4.2. A

more comprehensive summary of all dataset properties such

as images numbers, resolution and camera settings are given

in the supplemental material.

With respect to benchmarking metrics, all current web-

sites are largely based on average, standard deviation, quan-

20



tiles and pixel counts with error thresholds of performance

metrics such as disparity and endpoint error. They further

come with binary masks containing undefined regions due

to occlusions or motion outside the frame. Recent research

showed that additional, geometrically meaningful metrics

can be used to further describe algorithm properties in the

stereo domain [16]. In our benchmarking website, we build

on these existing metrics.

3. Methods

Our dataset generation approach comprises three ma-

jor steps: first, we derive requirements for a representative

dataset (Section 3.1). Second, we built a ground truth acqui-

sition system (Section 3.2). Third, we devised a recording

strategy to meet the requirements (Section 3.3).

3.1. Dataset Requirements

The goal in autonomous driving is to at least achieve

the average reliability of humans [45]. This requires ex-

tensive context knowledge such as speed limits and three-

dimensional trajectories of traffic participants. More gener-

ally, context can be established by exploring all properties

of the scene sensed by the car. These can be described by

distance, motion, relation and type of all objects. Scene

understanding and object recognition describe relation and

type of objects. To complement these relatively orthogo-

nal fields of research coming with their own benchmarking

methods (e.g. [7, 8]), we focus on distance and motion mea-

surement.

Many autonomous driving systems are based on visual

data acquired by cameras. They need to remain reliable

whenever images deteriorate due to environmental situa-

tions. Typically, stereo and optical flow methods struggle

with a number of effects caused by geometric and radio-

metric challenges such as complex occlusions, fast motion,

brightness changes, lens flares, etc. [41].

Based on these observations, we define the first group of

content requirements as follows. Note that we do not for-

mulate explicit requirements on traffic rules implying scene

understanding based on e.g. road markings and signs. Since

the present version of our dataset focuses on dense corre-

spondences, we are less interested in these semantics of a

scene and focus more on geometric and radiometric chal-

lenges occurring in our scenario. A good overview on scene

understanding content requirements can be found in [7].

We require a dataset for urban autonomous driving sys-

tem to challenge: (R1) robustness against radiometric chal-

lenges such as direct sunlight, strong specularities, lens-

flares, low light occurring at night, in tunnels or parking

lots; (R2) robustness to imaging distractions such as rain-

drops on the windshield, reflecting puddles on the road,

snow and fog; (R3) robustness to changes induced by the

time of year (vegetation, pedestrian clothes and sun posi-

tion) and (R4) robustness with respect to location (longi-

tude/latitude on earth, country, culture and traffic laws). Fi-

nally, the behavior of traffic participants should be repre-

sentative. For low-level vision this amounts to geometric

complexity (R5).

To create a representative dataset we need to make sure

that (1) the important real-world observations for our use-

case are covered by the dataset and that (2) the dataset pro-

vides a high enough number of observations so that noise

may not lead to overfitting. While (1) calls for a carefully

selected bias-free scene content (2) calls for a high number

of sequences. We require quality and quantity of the dataset

sequences to at least match current best practices in perfor-

mance analysis (R6).

In addition to the content of the scenes, we need to define

a ground truth acquisition system. Our goal is to bench-

mark the state of the art in stereo and flow for urban au-

tonomous driving for the next years. We assume that cur-

rently too expensive systems will soon be built-in parts of

next-generation vehicles. Since camera systems are quickly

evolving, we require our camera system to be at least as

capable as the best commercially available system in terms

of high resolution (R7), dynamic range (R8) and frame rate

(R9). R7 will further push algorithm development as cur-

rent methods often cannot handle large images sizes. On

the other hand, future algorithms should be able to assume

relatively small motions due to R9 and good image quality

due to R8. Finally, the ground truth coming with the images

should be at least an order of magnitude more accurate than

the best available algorithm (R10).

Among the most important results of a recent CVPR

workshop on performance analysis2 was a consensus that

the user interface and the way the performance metrics are

presented play a crucial role in how researchers use and in-

terpret the data. The attendees further found that simply

using a single metric and trying to be at the first rank is

not always the best way to design and compare algorithms.

Therefore, and to attract many researchers to use the dataset,

it should not only be highly accessible (R11) but also al-

low for state-of-the art comparative performance analysis

as well as scientific dissemination (R12).

3.2. Ground Truth With Uncertainties

We use a hardware setup similar to [24]3. In order to

compute depths as well as optical flow based on measure-

ment devices, we used one of the most accurate LIDAR

scanners suitable for scanning large-scale outdoor areas.

We scanned the empty scene first, excluding all traffic par-

2http://hci.iwr.uni-heidelberg.de//Static/

cvpr15ws-correspondence/
3All details on the LIDAR system are given in the supplemental mate-

rial.
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Figure 2. Top: For each frame, we provide individual labels for

dynamic objects (left), binary object masks (center) and approx-

imate constant flow vectors per object (right). Bottom: We fur-

ther provide approximated constant disparity estimates per object

(left) which can be used to assess stereo algorithm results (center)

for edge fattening (right) and further metrics which do not require

pixelwise accurate disparities.

ticipants such as vehicles, pedestrians and movable carry-

on items. The average distance between two points in the

final point cloud is 1-2 cm on a planar surface, yielding a

good density at all relevant locations. This allows for high-

accuracy ground truth of all static parts of the scene which

are visible to the LIDAR system (cf. R10).

In order to meet imaging quality requirements R6-8, we

designed a stereo camera system consisting of two pco.edge

5.5 cameras with parallel mounted optical axes. The base-

line of 30 cm is oriented horizontally, which is commonly

used in automotive applications. The system was mounted

at rear mirror height behind the windshield of the test vehi-

cle.

The sensor of each camera has the dimensions of

14.04mm× 16.64mm at a resolution of 2160 px× 2560 px

with a pixel pitch of 6.5µm. We used a configuration with

a resolution of 1080 px × 2560 px, so we could achieve a

maximal frame rate of almost 200Hz at horizontal and ver-

tical fields of views of about 70 and 30 degrees respectively.

These cameras have a dynamic range of 27000:1 linearly

encoded in 16 bit values, which were mapped to 8 bit val-

ues through a non-linear noise equilibrating transform with-

out loss of information [19, 20]. Two Kowa LM12XC C-

Mount lenses with a focal length of 12mm were used at

f-Numbers ranging from 4 to 8, depending on the light con-

ditions. The exposure time was adjusted manually between

sequence recordings to avoid saturation in the images and

ranged from 0.5 to 4.9ms.

We determined the internal camera parameters of the

stereo camera pair using the method described by Abra-

ham and Hau [1]. The RMS re-projection error reached

0.22 px with a variance of 3.6 px. We measured lens dis-

tortions and performed all subsequent calculations on the

undistorted and stereo rectified images.

To meet the technical requirements to reduce overfitting

due to limited or unknown dataset accuracy (R6) and to fur-

ther validate the accuracy of the ground truth (R10) we fol-

low the goal of [24] to generate ground truth with uncer-

tainties: we want to know the interquartile range of the dis-

parity and flow at each ground truth pixel. This quantity

should be derived from first principles, using all observable

error distributions such as those of LIDAR measurements,

intrinsic camera calibration estimates and 2D feature corre-

spondence accuracy.

Since in our case the scene is scanned once before the ac-

tual recordings with actors, the main task for ground truth

generation for stereo and flow lies in registering each stereo

image pair with the LIDAR point cloud. This yields a cam-

era pose which can be used to project all 3D points into the

2D image plane. We used the approach described in [24]

with few extensions, where features in the LIDAR point

cloud where labeled manually and then semi-automatically

associated with 2D feature tracks in the stereo images.

Once camera pose and the newly established 2D to 3D

feature correspondences in each frame have been found, a

final pose estimation is computed using bundle adjustment.

The objective function is the same as in [24], yielding op-

timal camera poses given all known uncertainties in cam-

era calibration, 3D point accuracy and 2D feature accuracy.

The final depth and optical flow ground truth as well as the

respective pixel-wise error distributions for each frame are

computed based on Monte Carlo Sampling as described in

[24].

This process yields ground truth with uncertainties for

all parts in the sequence which are not individually moving,

which this amounts to about 94% of all pixels minus sky

regions. In a next step, we manually annotated all dynam-

ically moving regions in all images at 25 Hz temporal res-

olution with pixel-accurate contours. Each object instance

was labeled individually (even if overlapping), allowing for

additional labels for future benchmarks e.g. in action recog-

nition. Example annotations can be found in Figure 2. From

the polygon contours we created binary masks in which

no ground truth is available. In these regions, we provide

rough estimates on displacements. To this point, no reli-

able ground truth exists for these regions. Yet, these regions

allow for more qualitative evaluations such as foreground

fattening or thinning.

3.3. Recording Strategy

Most current datasets in the automotive domain focus on

unconstrained scenes recorded in the public. This comes

with the advantage that the real-world distribution can be

sampled relatively uniformly, assuming that biases due to

recording in e.g. a single country are negligible. A disad-

vantage is that rarely occurring events such as accidents are

hard to acquire, resulting in a reduced representativeness.

In order to model all requirements addressing the rep-

resentativeness of content (R1-5) we were challenged with

the combinatorial explosion of possible environmental and
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Figure 3. A Google Maps satellite photo of the location where

recording took place. The part of the street used as scene is marked

in white.

behavioral effects.

Therefore, we decided to accept less complete coverage

of R4 by recording all sequences at one street section de-

picted in Figure 3, yielding two advantages: First, we re-

duce the complexity of the acquisition process. Second, we

achieve maximum control over the sequence content.

Instead of sampling from the real world distribution, our

recording strategy aims to include each difficult combina-

tion of adverse effects at least once. We address the as-

sumed weak representativeness of real-world sampling by

constructing a sample we assume to be more representative.

We assume the most critical regions for driving decisions

are the road and sidewalks next to it. We approximate these

effects at a 300 meters long street section with a T-junction

at around 230m. The scene contains small and tall build-

ings as well as trees causing complex shadows, influencing

R1 (light) and R2 (weather). The turning situation at the

junction allows to change the angle of the sun with respect

to the car. We had to accept the weather occurring during

the recording days scheduled at various times of the year

relying on weather forecasts.

To address R1 and R3, we recorded on six days dis-

tributed over three seasons. The effects caused by time of

year mainly included change of vegetation (leaves versus no

leaves) and pedestrian clothing (more versus less). A minor

role played the light intensity and direction of the sun which

could be varied more strongly by time of day. Sequences

where recorded on relatively regular intervals between sun-

rise and sunset during the day (R1). To simulate a situation

of heavy rain directly followed by direct sun, we had fire-

fighters emptying their tanks on the road to create very wet

roads including large puddles.

To address R5, we hired around 40 actors consisting of

infants, kids, teenagers as well as adults. Each of them were

asked to attend a subset of our recording sessions. A main

point was to include as much variance in looks as possible,

roughly approximating the distribution of the real world.

We added a variety of animals and props, including large

and small dogs, toys, balls of various sizes, umbrellas, bags

and exotic items such as a large mirror. To simulate ac-

tual car crashes with pedestrians, we used a moving pup-

pet which could be overrun by a car without damaging the

vehicle. Our selection of vehicles contained a skateboard,

skates, kid’s strollers, bikes, a motorbike, trucks and cars.

We asked the respective drivers to arrange situations with

approaching, queuing and overtaking vehicles and different

turning and parking situations at two junctions.

To generate a large range of situations we varied the

number of pedestrians and their behavior in each sequence.

Therefore, we supplied the actors with a set of 10 instruc-

tions, each coming with a few examples: they had to choose

a starting location, a speed, a speed change while they are

seen by the cameras, a direction, a change of direction, an

intention, a pose, a prop to act with, one or more co-actors

and a scenario in which this combination seems likely to

them. Each time a new sequence was recorded, the direc-

tor went through these items and asked everyone to select a

new combination.

A number of situations could not properly be addressed:

High-speed driving on highways is not included as well as

driving at deep night. We do not feature situations with

bridges and tunnels which are of special interest due to sud-

den changes of lighting. Snow and fog were not available

at any of our recording sessions. Further, complex turning

situations with a varying number of junctions could not be

addressed. Finally, there are most likely scenarios we did

not think of at all mainly due to cultural biases and differ-

ences in technologies in different countries.

However, our dataset is the first that was specifically

designed to sample from a relevant subset of urban au-

tonomous driving situations. The limitations in the parame-

ter space have been chosen carefully in order to make a sys-

tematic variation of the remaining parameters more feasi-

ble. All situations are well-motivated and represent a mean-

ingful subset of sequences.

4. Results

In this Section, we verify that the recorded data meets

our requirements (Section 4.1), compare our results with the

four most relevant datasets (Section 4.2) and select a subset

of our data for a benchmark to be published on a dedicated

website (Section 4.3).

4.1. Dataset Overview

From around 200 sequences comprising 2.5 million im-

age pairs at 200Hz, we selected 55 partial sequences with a

total of 3563 image pairs at 25 Hz. Each sequence contains

between 19 and 100 consecutive frames

We had clear skies, cloudy days and overcast days in-

cluding occasional light rain. Including the simulated rain,

we cover day and night, as well as dry and wet roads includ-

ing combinations of all situations.

Although we recorded at several times of year, the light

effects on images where negligible, mainly because the ex-
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Figure 4. Sample images from our dataset. It comprises a large

number of difficult light and weather situations such as low light,

lens-flares, rain, and wet streets.

posure times could be adjusted to the amount of light avail-

able without requiring long exposure times causing motion

blur. The different trajectories of the sun could as well be

simulated by recording different angles of road as well as

different times of day. A comparison of some weather situ-

ations is shown in Figure 4.

Depending on temperatures the actors dressed appropri-

ately. Since we had some very hot and very cold recording

sessions, the diversity of clothes is very high. Based on the

results of the acting instructions we selected both very com-

mon as well as really surprising sequences for the bench-

mark. In the final selection, we have between 0 and 16 of

these actors populating each sequence.

Since our dataset only allows for LIDAR-measured

ground truth in the static parts of the sequence, we created

manually annotated masks via crowdsourcing. We labeled

each dynamic region with either vehicle, person, other and

unsure. About 6% of all pixels contain dynamic motion.

About 5% of all pixels are equally distributed between ve-

hicle and person. Example labels are shown in Figure 2.

4.2. Dataset Comparison

With our dataset, we add difficult light and weather situ-

ations to the mix. Complementary to other datasets we fo-

cus on robustness given a high-end camera system: HFR at

200Hz enables research in new methods focusing on both

large and very small motions; HR challenges existing al-

gorithms since large images often cause them to use pro-

hibitive amounts of time and memory; HDR is a technology

soon to become mainstream and should hence be a stan-

dard for new datasets. It reduces the challenges caused by

strong light effects so that algorithms have a more realis-

tic chance at delivering good results in adverse conditions.

As a downside, we did not record color images because the

required hardware was not commercially available at that

time. Other limitations are the dynamic regions which con-

tain only estimated ground truth as well as the restriction to

a single location. The ground truth accuracy is limited due

to a doubled image width compared to KITTI, containing

regions with uncertainties of around 3 px.

Comparison to KITTI. KITTI uses a similar ground truth

acquisition strategy to ours based on LIDAR. In contrast to

our approach (cf. Section 3.2), KITTI scans continuously

while driving with a car-mounted Velodyne device. The

main advantage of their approach is that the extrinsic cal-

ibration with the LIDAR can be carried out once and the car

can record ground truth without a prior scanning step. Yet,

KITTI has a sparser and less accurate point cloud (±2 cm

according to the manufacturer) which is densified using a

semi-automatic ICP step. The manual interaction in KITTI

comes in with the cleaning and fine-tuning of the aggrega-

tion of the multiple scans for each frame. We only need

to clean up the point cloud once, but need to manually es-

tablish 2D to 3D correspondences. Our approach delivers a

very dense point cloud at a high accuracy of ±1 cm. This al-

lows for a higher image resolution because more 3D points

fall into the 2D pixel locations.

KITTI further comes with a number of additional anno-

tations such as semantic segmentations and scene flow (cf.

e.g. [32]). To ensure representativeness, they used an unsu-

pervised clustering approach applied to the recorded image

sequences. In contrast, we chose to design the dataset by

controlling the environment (cf. Section 3.3).

With respect to dataset content (R1-5), KITTI focuses

on scenes with good weather and sufficient light, whereas

we also address bad weather and low light. In KITTI, dif-

ficult light situations occur in saturated pixels and specu-

lar reflections e.g. on other vehicles. Dynamically moving

parts are excluded from the ground truth and not treated fur-

ther. We include pixel-accurate contours of the regions with

coarse estimates of ground truth, allowing e.g. for analysis

of foreground fattening metrics [16]. The scene locations

in KITTI vary significantly, while the time of year does not

change noticeably. Our dataset is complementary in that the

location does not change, but time of year is covered well.

Overfitting (R6) is reduced in KITTI by a relatively large

amount of short sequences (around 800 in total) and separat-

ing the dataset into a training and a hidden test ground truth

set. The resolution (R7, 1240× 380), dynamic range (R8, 8

bit) and frame-rate (R9, 10Hz) of the images are relatively

low compared to ours. Uncertainties (R10) are not avail-

able in KITTI, but according to the authors, most disparities

are around 3 px accurate with some flow vectors containing

relative errors around 5% of the magnitude. Scaling their

disparities up to our image width this would result in accu-
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Labels

MPI-Sintel Ours Cityscapes Middlebury MPI-Sintel Ours

Max. Resolution 1396x1110 2964x1988 1240x380 1240x380 1024x436 2560x1080 2048x1024 640x480 1240x380 1240x380 1024x436 2560x1080

Dynamic Range [bit] 14 to 8 14 to 8 8 8 8 16 to 8 16 to 8 12 to 8 8 8 8 16 to 8

Baseline [cm] 8-16 14-40 54 54 10 30 NA NA NA NA NA NA

Max GT Length [px] 240 800 150 150 yet unkown 200 NA 35 150 250 400 12

Overall Accuracy [px] 1/4 (low res) 1/5 3 3 Optimal Selectable 3 (contours) 1/10-1/60 3 (or 5%) 3 (or 5%) Optimal Selectable

Year of Publication 2003-6 2014 2012 2015 2016 2016 2015 2007 2012 2015 2012 2016

R1 (Radiometry) + + + + + ++ + - + + + ++

R2 (Distractions) - - + + + ++ - - + + + ++

R3 (Time of Year) - - ++ - - - ++

R4 (Location) + + - ++ + + -

R5 (Geometry) + ++ + + ++ ++ ++ + + + ++ ++

R6 (Overfitting) - ++ + + ++ ++ ++ + + + ++ ++

R7 (Resolution) + ++ - - + ++ ++ - - - + ++

R8 (Dynamic Range) + ++ - - + ++ ++ - - - + ++

R9 (Frame Rate) ++ - - + ++

R10 (Accuracy) + ++ - - ++ + + - - ++ +

R11 (Accessibility) ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

R12 (Comparison) + ++ ++ ++ ++ ++ + ++ ++ ++ ++

KITTIKITTIMiddlebury

Stereo Flow

Figure 5. Overview of all dataset and benchmark requirements as defined in Section 3.1 and the most relevant benchmarks for autonomous

driving. This Figure has been created in close collaboration with the respective paper authors. Green: best or equivalent to others. Yellow:

good compared to others. Red: suboptimal properties compared to other entries. Gray: not applicable or unknown. Note that the MPI-Sintel

stereo dataset is not yet published.

racies around 6 px. The benchmark website and dataset are

highly accessible (R11) and allow for comparison based on

a number of metrics (R12).

Comparison to MPI-Sintel. Although not perfectly real-

istic for autonomous driving, we include a comparison be-

cause MPI-Sintel encouraged a number of well-performing

algorithms for large-displacement optical flow. Another im-

portant advantage of MPI-Sintel is that the ground truth can

be parameterized and re-rendered arbitrarily (R6) with per-

fect ground truth (R10).

The current version comprises 35 sequences and already

comes with two rendered passes including e.g. more and

less realistic material properties (R1). Distractions (R2)

can be found (fog, snow, etc.) but are of no special focus.

Location and time of year play no meaningful role due to

the artificial nature of the images. Resolution and dynamic

range are as low as those of KITTI, while a slightly higher

frame rate is available. Accessibility and comparison tools

are comparable to those of KITTI.

Although not relevant for fixed-focus cameras in au-

tonomous driving, one interesting aspect is that the focal

length varies throughout the sequences including zooms,

which are not present in other datasets.

Comparison to Middlebury v3. The most recent Middle-

bury stereo dataset uses high-end cameras and a very robust

measurement system based on structured light scans of rel-

atively large setups. The main advantage of this approach is

its accuracy (R10) and versatility at least for medium-sized

scenes. It further comes with multiple exposures and light

settings (R1) for each dataset, supporting new research into

learning better data terms [50]. Geometric complexity, reso-

lution, dynamic range are all high. The downsides are that it

does not come with flow ground truth, is of relatively small

size (R6) and was recorded indoors with controlled light-

ing (R2-4). To reduce overfitting, uncertainties are supplied

and each algorithm can only be submitted once to the test

set. Accessibility and comparison tools are comparable to

those of KITTI.

Comparison to Cityscapes. Finally, the Cityscapes

Dataset is somewhat unrelated as it does not come with flow

or stereo ground truth. On the other hand, it comes with

pre-computed depth maps based on SGM [7] and covers

scene labeling very thoroughly. This dataset is highly rele-

vant for autonomous driving with respect to context aware-

ness. Therefore, Cityscapes is very complementary to all

other related datasets.

4.3. Benchmarking Approach

In this Section we discuss how we address requirements

R11-13. To create a benchmark focusing on stereo and

flow (cf. Section 4.3) we selected frames for low-level ef-

fects with light and geometry rather than for high-level se-

mantics. We further selected sequences at various driving

speeds ranging from around 0-70 kph.

The radiometric challenges (cf. Figure 4) in our selected

sequences comprise: Raindrops in the scene and on the

windshield (R2); The windshield wiper obstructing the view

on the scene (R2); Saturated pixels caused by the sun, head-

lights of approaching vehicles and road reflections (R1);

Mirroring reflections in puddles, on car surfaces and objects

carried around by pedestrians (R1,R2); Very dark sequences

after sunset (R1).

Geometric challenges are mainly created by traffic par-

ticipants (R5); Complex occlusion patterns caused by

pedestrians and vehicles; Geometrically highly detailed ob-

jects such as fences, street lamps, and other elongated ob-

jects such as a blind man’s stick; Very large displacements

and disparities; Small and independently moving objects

such as balls; Complex deformations such as opening um-

brellas, flapping blankets, flying hair as well as a skate-
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Figure 6. Example results for various stereo algorithms at difficult

locations. The two top rows visualize stereo results of various

algorithms; the two bottom rows show flow with the same color

coding as in Figure 1. A closer look at the results can be found in

the supplemental material.

boarder separating from his board; Standing, turning, park-

ing and backwards-driving vehicles such as motorbikes,

cars, vans and trucks; Suddenly opening vehicle doors;

Large crowds of people running or walking at various dis-

tances on the road.

From all selected frame pairs we selected another sub-

set of 10 key-frames for an example benchmarking based

on four flow4 and stereo algorithms5 including most recent

methods. As depicted in Figure 6 and detailed in the sup-

plemental material, even most recent methods struggle with

challenges such as raindrops on the windshield or intense

glare.

For optimal accessibility (R11), we created a bench-

marking website which allows for searching all sequences

for relevant properties such as weather. We make available

the full training dataset as well as uploaded results.

To enable comparison with other methods (R12), we

implemented performance metrics currently available in

KITTI and Middlebury. Additionally, for stereo we use a

recently proposed set of semantically meaningful perfor-

mance metrics such as edge fattening and surface smooth-

ness [16] along with their respective visualizations.

To ease scientific dissemination of the results, re-

searchers can upload their results and compare it to all pub-

licly available datasets with ground truth as well as previ-

ously uploaded results. Especially the availability of results

4flow: Horn&Schunck[17], FlowFields [2], MDPFlow [47], Charb.[6]
5stereo: Elas[11], SPS-St[48], OCV-SGBM[15], MST [49]

of existing methods allows for research in confidence anal-

ysis [13], post-processing [22] and aggregation [28]. Many

visualizations can be downloaded in formats suitable for

figures in publications.

Similar to other benchmarks, we avoid overfitting by

only providing ground truth for half of all sequences. To

create a variety of challenges, we reduced the frame-rate to

25Hz of another half of the public datasets. Finally, we re-

moved the right frame from another half of the dataset to

motivate research in strictly monoscopic algorithms.

Computing stereo or flow on all frames in the bench-

mark can be infeasible due to time and memory constraints

for many algorithms. Hence, to improve accessibility and

comparisons, for each sequence we selected representative

frames as challenge frames which will be used to compute

the rankings. Submission rules for the challenge frames

will be aligned with the most recent Middlebury stereo chal-

lenge [39]. Both website and initial benchmark dataset in-

cluding training and test images can be found at

http://hci-benchmark.org.

5. Conclusion

We designed and recorded a new stereo and flow dataset

and extracted an initial benchmark subset comprising

28504 stereo pairs with stereo and flow ground truth with

uncertainties for static regions. Dynamic regions, covering

around 6% of all pixels, are manually masked out and

annotated with approximate ground truth on 3500 pairs.

Half of the ground truth is made available as training data.

New stereo metrics and interactive results visualizations

are accessible through our benchmark website. This way,

we push the boundaries of what is currently achievable for

large-scale outdoor stereo and flow reference data.

This dataset is highly accurate compared to similar existing
benchmarks. However, a small fraction (we estimate much
fewer than 0.1% of all pixels) of our ground truth contain

wrong values, mainly due to current technological limits in
LIDAR. Future work will therefore focus on improving
outlier detection tools and measurement setups. We are

now working on more detailed labels including a full scene
labeling and specialized pedestrian labels for action

recognition as well as new metrics for temporal
consistency. In the future, we will update our dataset with
more sequences and more detailed masks for all kinds of

radiometric as well as geometric challenges.
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zweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele.

The cityscapes dataset. In CVPR Workshop on The Future of

Datasets in Vision, 2015. 1, 2, 3, 7

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. IEEE, 2009. 3

[9] A. Donath and D. Kondermann. Is crowdsourcing for opti-

cal flow ground truth generation feasible? In Lecture Notes

in Computer Science, pages 193–202. Springer Science and

Business Media, 2013. 2

[10] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for

autonomous driving? the KITTI vision benchmark suite.

In 2012 IEEE Conference on Computer Vision and Pattern

Recognition. Institute of Electrical & Electronics Engineers

(IEEE), June 2012. 1, 2

[11] A. Geiger, M. Roser, and R. Urtasun. Efficient large-scale

stereo matching. In Asian Conference on Computer Vision

(ACCV), 2010. 8

[12] B. Gussefeld, D. Kondermann, C. Schwartz, and R. Klein.

Are reflectance field renderings appropriate for optical flow

evaluation? In 2014 IEEE International Conference on Im-

age Processing (ICIP). Institute of Electrical & Electronics

Engineers (IEEE), October 2014. 2

[13] R. Haeusler, R. Nair, and D. Kondermann. Ensemble learn-

ing for confidence measures in stereo vision. In 2013 IEEE

Conference on Computer Vision and Pattern Recognition. In-

stitute of Electrical & Electronics Engineers (IEEE), June

2013. 8

[14] V. Haltakov, C. Unger, and S. Ilic. Framework for generation

of synthetic ground truth data for driver assistance applica-

tions. In GCPR, September 2013. 2

[15] H. Hirschmueller. Stereo processing by semiglobal matching

and mutual information. PAMI, 30:328–41, 2008. 8

[16] K. Honauer, L. Maier-Hein, and D. Kondermann. The HCI

stereo metrics: Geometry-aware performance analysis of

stereo algorithms. In Computer Vision (ICCV), 2015 IEEE

International Conference on. IEEE, 2015. 3, 6, 8

[17] B. K. Horn and B. G. Schunck. Determining optical flow.

In 1981 Technical symposium east, pages 319–331. Interna-

tional Society for Optics and Photonics, 1981. 8

[18] A. Humayun, O. Mac Aodha, and G. J. Brostow. Learn-

ing to find occlusion regions. In Computer Vision and Pat-

tern Recognition (CVPR), 2011 IEEE Conference on, pages

2161–2168. IEEE, 2011. 2

[19] B. Jähne. Digitale Bildverarbeitung. Springer, Berlin, 7 edi-

tion, 2012. 4

[20] B. Jähne and M. Schwarzbauer. Noise equalisation and quasi

loss-less image data compression–or how many bits needs an

image sensor? tm-Technisches Messen, 83(1):16–24, 2016.

4

[21] N. Japkowicz and M. Shah. Evaluating learning algorithms:

a classification perspective. Cambridge University Press,

2011. 2

[22] C. Kondermann, D. Kondermann, and C. Garbe. Postpro-

cessing of optical flows via surface measures and motion in-

painting. In Lecture Notes in Computer Science, pages 355–

364. Springer Science and Business Media, 2008. 8

[23] D. Kondermann, S. Abraham, G. Brostow, W. Förstner,

S. Gehrig, A. Imiya, B. Jähne, F. Klose, M. Magnor,

H. Mayer, R. Mester, T. Pajdla, R. Reulke, and H. Zimmer.

On performance analysis of optical flow algorithms. In Lec-

ture Notes in Computer Science, pages 329–355. Springer

Science and Business Media, 2012. 2

[24] D. Kondermann, R. Nair, S. Meister, W. Mischler,
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