
Point Cloud Labeling using 3D Convolutional
Neural Network

Jing Huang and Suya You
University of Southern California

Los Angeles, California 90089

Abstract—In this paper, we tackle the labeling problem for 3D
point clouds. We introduce a 3D point cloud labeling scheme
based on 3D Convolutional Neural Network. Our approach
minimizes the prior knowledge of the labeling problem and does
not require a segmentation step or hand-crafted features as most
previous approaches did. Particularly, we present solutions for
large data handling during the training and testing process. Ex-
periments performed on the urban point cloud dataset containing
7 categories of objects show the robustness of our approach.

I. INTRODUCTION

Point cloud labeling is an important task in computer vision
and object recognition. As a result, each point is assigned with
a redefined label, which further serves as a cue for scene
analysis and understanding. The classes of interest include
most common objects in the urban scenario (Figure 1): large-
scale planes (including ground and roof), buildings, trees, cars,
poles as well as wires.

Traditionally, hand-crafted features are widely used in exist-
ing methods [1], [2], [3]. However, the recent progress of deep
learning techniques show that, the simplest feature like pixels
can be directly combined with the neural networks and trained
together. On the other hand, simply projecting 3D data to 2D
representations such as depth images and then applying the
2D techniques can easily lead to loss of important structural
information embedded in the 3D representation. Inspired by
the success of deep learning on the 2D image problems,
we present the voxel-based fully-3D Convolutional Neural
Network on the point cloud labeling problem.

In most existing approaches, segmentation is a necessary
step before performing tasks such as detection and classi-
fication [4]. Our method does not require prior knowledge,
such as the segmentation of the ground and/or buildings,
the precomputed normals, etc. Everything is based on the
voxelized data, which is a straightforward representation. From
another point of view, our approach works as an end-to-
end segmentation method. Our work shows the power of
neural networks to capture the essential features needed for
distinguishing different categories by themselves.

Despite the conceptually straightforward idea of represent-
ing point clouds as voxels to solve the problem, there are
many underlying challenges. First, the dense voxel represen-
tation will quickly exceed the memory limit of any computer.
Secondly, it will require too much time without proper opti-
mization of the algorithm. Also, the classifier could be easily

Fig. 1. Objects of interest. The buildings are colored with orange, horizontal
planes (e.g., ground and roof) are colored with yellow, trees are colored with
green, cars are colored with red, poles are colored with blue, and wires are
colored with black. The points in the other categories are colored with light
gray.

biased towards some dominating categories (e.g., buildings)
without deliberately balancing the training data.

Our contributions mainly include:
(1) We introduce a framework of 3D Convolutional Neural

Network (3D-CNN) and design effective algorithms for label-
ing complex 3D point could data.

(2) We present solutions for efficiently handling large data
during the voxelization, training and testing of the 3D network.

II. RELATED WORK

A. 3D Object Detection and Labeling

Pinheiro et al. applied Recursive Neural Network for scene
parsing [5]. Habermann et al. present a 3D object recognition
approach based on Multiple Layer Perceptron (MLP) on
2D projected data [4]. However, their method requires data
segmentation. Koppula et al. take a large-margin approach
to perform the 3D labeling classification based on various
features [1]. PCA analysis and the dimensionality feature



based on it have been applied in point-level classification tasks
[6], [3]. Still, the parameter selection for the features are highly
empirical, and we show in this work that 3D-CNN based on the
simplest occupancy voxels could achieve comparable effects
without any task-specific features.

B. 3D CNN

3D CNN has been proposed first in the application of video
data analysis, because videos can be seen as a temporal 3D
extension of the 2D images as have well-defined grid values.
Ji et al. proposed 3D-CNN for human action recognition in
video data [7]. For 3D point cloud, Maturana and Scherer
applied 3D-CNN for landing zone detection from LiDAR point
clouds [8]. Prokhorov presented a 3D-CNN for categorization
of segmented point clouds [9]. 3D Shape Nets applied 3D
CNN to learn the representation of 3D shapes [10]. VoxNet
integrated a volumetric Occupancy Grid representation with
3D CNN [11]. All of their approaches require pre-segmented
objects before applying the 3D-CNN method. To incorporate
the localization problem in the 3D CNN framework, Song
and Xiao proposed the deep sliding shapes for 3D object
detection in depth images [2] and RGB-D images [12], with
the 3D Region Proposal Network (RPN). However, they use
the Manhattan world assumption to define the bounding box
orientation of indoor objects, which is not feasible for outdoor
objects in our case.

III. SYSTEM OVERVIEW

Our labeling system is depicted in Figure 2. The system is
composed of an offline training module and an online testing
module.

The offline training takes the annotated training data as
input. The training data are parsed through a voxelization
process that generates occupancy voxel grids centered at a
set of keypoints. The keypoints are generated randomly, and
the number of them are balanced across different categories.
The labels of the voxel grids are decided by the dominating
category in the cell around the keypoint. Then, the occupancy
voxels and the labels are fed to a 3D Convolutional Neural
Network, which is composed of two 3D convolutional layers,
two 3D max-pooling layers, a fully connected layer and a
logistic regression layer (Section V). The best parameters
during training are saved.

The online testing takes a raw point cloud without labels as
input. The point cloud is parsed through a dense voxel grid
and results in a set of occupancy voxels centered at every grid
centers, respectively. The voxels are then used as the input to
the trained 3D convolutional network, and every voxel grid
would produce exactly one label. The inferred labels are then
mapped back to the original point cloud to produce a pointwise
labeling result (Section VI).

Note that, due to different requirements of the training and
testing modules, the voxelization process are quite different
except the parameters such as grid size and voxel number. We
will discuss the details of voxelization in Section IV.

IV. VOXELIZATION

We turn the point cloud into 3D voxels through the follow-
ing process. We first compute the bounding box for the whole
point cloud. Then, we describe how the local voxelization is
obtained if a center point from the point cloud is chosen. The
choice of the center would be different depending on whether
we’re in the training process or the testing process and will
be discussed in the experiment section.

Given the center point (x, y, z), we set up a cubic bounding
box of radius R around it, i.e., [x−R, x+R]×[y−R, y+R]×
[z−R, z+R]. Then, we subdivide the cube into a N×N×N
grid of cells. In our experiment, R = 6 and N = 20, resulting
in a cell of size 0.3 × 0.3 × 0.3 and 8000 cells. We then
go through the points that lie within the cubic box and project
them with the integer indices. The result of a local voxelization
is thus a 8000-dimensional vector.

There are several ways of computing the value of each cell.
The simplest one is to compute the occupancy value, i.e.,
if there’s a point inside it, the value becomes 1, otherwise
becomes 0. A slightly complicated version is to compute a
density value, which could be realized by counting how many
points lie within each cell. In our experiment, we find that
occupancy value is enough to generate a good result.

By moving the center point around, we can generate a
dictionary of different local voxelization results.

Figure 3 shows the original input point cloud and the
generated voxels.

The process above is enough for the testing process. How-
ever, for training purpose, we need to provide a unique label
for each generated voxel grid. We define the label for the
entire voxel grid as the label of the cell around its center, i.e.,
[x− r, x+ r]× [y− r, y+ r]× [z− r, z+ r]. In our experiment
r = 0.3/2 = 0.15, so that the size of the cell is identical to
the cells constructing the voxel grid. In most cases, there are
points of multiple categories lying within a single cell. We
apply a voting approach to decide the label of the cell, that is,
the category with the most points in the cell will be treated as
the representative category of the cell. In the rare case where
two or more categories have equal number of points, we just
pick a random one.

V. 3D CONVOLUTIONAL NEURAL NETWORK

After generating the voxels, we feed them to our 3D
convolutional neural network. Here are some essential blocks
forming the 3D CNN.

A. 3D Convolutional Layer

A 3D convolutional layer could be represented as
C(n, d, f), meaning a convolutional layer with input size
n× n× n and d feature maps with size f × f × f . Formally,
the output at position (x, y, z) on the m-th feature map of 3D
convolutional layer l is

vxyzlm = blm +
∑
q

f−1∑
i=0

f−1∑
j=0

f−1∑
k=0

wijk
lmqv

(x+i)(y+j)(z+k)
(l−1)q , (1)



Fig. 2. The labeling system pipeline, including the offline training module and the online testing module.

(a)

(b)

Fig. 3. Illustration for dense voxelization. The input point cloud (a) is parsed
through the voxelization process, which generates a dense voxel representation
depicted in (b).

where blm is the bias for the feature map, q goes through
the feature maps in the (l − 1)-th layer, wijk

lmq is the weight
at position (i, j, k) of the kernel of the q-th feature map. The
weights and the bias will be obtained through the training
process.

B. 3D Pooling Layer

A 3D pooling layer can be represented as P (n, g), meaning
a pooling layer with input size n×n×n and a pooling kernel
of g× g× g. In this approach, we use max pooling. Formally,
the output at position (x, y, z) on the m-th feature map of 3D
max pooling layer l is

vxyzlm = max
i,j,k∈{0,1,...,g−1}

v
(gx+i)(gy+j)(gz+k)
(l−1)m . (2)

To increase nonlinearity, we use the hyperbolic tangent
(tanh(·)) activation function after each pooling layer.

C. Network Layout

In terms of the layout of the 2D network, our work is
based on the success of LeNet [13], which is composed of
2 convolutional layers, 2 pooling layers and 1 fully-connected
layer. We replace the 2D convolutional layers and 2D pooling
layers with the 3D convolutional layers and 3D pooling layers,
respectively, and obtain our architecture (Figure 4).

The architecture could be represented as C(nc1, dc1, fc1)−
P (np1, gp1) − C(nc2, dc2, fc2) − P (np2, gp2) − FC(nf1) −
LR(nf2); FC(n) represents a fully-connected layer with input
size n; LR(n) represents a logistic regression layer with input
size n. The final output denoting the labeling result is an
integer l ∈ {0, 1, 2, ..., L} produced by softmax. In this case



Fig. 4. 3D Convolutional Neural Network. The number on the top denote the number of nodes in each layer. The input is the voxel grid of size 203, followed
by a convolution layer with 20 feature maps of size 5 × 5 × 5 resulting in 20 × 163 outputs, a max pooling layer with 2 × 2 × 2-sized non-overlapping
divisions resulting in 20 × 83 outputs, a second convolutional layer with 20 feature maps of size 5 × 5 × 5 resulting in 20 × 43 outputs, a second max
pooling layer with 2×2× 2-sized non-overlapping divisions resulting in 20×23 outputs, a fully connected layer with 300 hidden nodes, and the final output
is based on a softmax over 8 labels (including 7 categories and an empty label).

L = 7, representing the 7 categories specified in Figure 1,
while the label 0 denotes the degenerated case where the
central region of the voxel grid contains no point.

VI. LABEL INFERENCE

Given the trained network, we can perform voxel-level
classification on the cells. We densely sample the center point
of the voxel grids with a distance of 0.3. The coincidence of
the center distance and the cell size is intended to generate a
unoverlapped compact division of the whole space. Given the
labeling result of a local voxel box, we label all points in the
cell near the center of the box as the corresponding category.

The compact division would label every point in the data
exactly once. However, this would restrict the precision of the
labeling to the degree of the cell size. In our experiments,
we find the granularity is sufficient to produce quite a good
result (see Section VII) with negligible boundary artifacts. In
practice, when there’re enough computational resources, we
can shift the centers around and redo the classification process,
and finally, we can employ a voting scheme to decide which
label is assigned to each point.

VII. EXPERIMENTS

A. Dataset and Training Setup

The labeling system is evaluated on a large Lidar point
cloud dataset of the urban area of Ottawa. The data come
from a fusion of one airborne scanner and four car-mounted
scanners. We implement the 3D convolutional network using
the Theano library [14] and the network is trained with the
Stochastic Gradient Descent method. The size of mini-batch
is 30 examples, and the learning rate is 0.1 with a decay rate
of 0.95. We manually labeled a few trunks from the entire
data, which could generate up to 500k features and labels.
However, we only selected 50k of them as training data and
20k of them as validation data under a random and balanced
scheme.

B. Balance of Training Samples

During training, we find that a dense sampling of the
training data leads to undesired behavior of bias among
common categories such as buildings, versus the less common

dc1/dc2 10 20 40
20 91.9% 93.0% 92.7%

TABLE I
COMPARISON OF DIFFERENT NUMBERS OF KERNELS IN THE TWO 3D

CONVOLUTIONAL LAYERS.

categories such as the wires. Therefore, we implement a bal-
anced random sampling of different categories of the training
data. Specifically, we extract the same number of key points
from each category, as the centers of the voxelized regions.
Experiments show that despite the vastly uneven number of
points in category in the real data, the balance of the training
data among each categories contributes to a key boost of the
performance of the method.

C. Parameter Selection

We perform experiments with a few parameter settings. We
fix the kernel size to be 5× 5 and evaluate how the numbers
of kernels affect the performance. From Table I we can see
that the best performance is achieved when dc1 = dc2 = 20,
and generally speaking, the parameter here does not have huge
impact on the labeling result.

D. Qualitative Result

Figure 6 shows the labeling result of a large area in the
city of Ottawa by our approach. Figure 7 shows the closeups.
We can see from the result that although we don’t have a
segmentation step for this task, the generated result shows
clearly distinguished labeling result for different objects.

E. Quantitative Result

We evaluate our approach by comparing the results and
the ground truth labels. We implement an automatic program
to evaluate the methods. The points are sorted according to
their coordinates in O(nlogn) time so that the labels can be
compared in O(n) time, where n is the number of points.

Figure 5 shows the confusion matrix across the categories.
The entry at the i-th row and the j-th column denotes
the percentage of points of the j-th truth category that are
classified as the i-th category, and the background of the cells
is color-coded so that 1 is mapped to black, 0 is mapped to



Fig. 5. Confusion matrix for different categories. The entry at the i-th row
and the j-th column denotes the percentage of points of the j-th truth category
that are classified as the i-th category.

white and anything in between is mapped to the corresponding
gray values. From the table we can see that the cars and planes
are well-classified with an accuracy higher than 95%, while
buildings, poles and wires have an accuracy between 80% and
90%. The accuracy for trees is a little below 80%, mainly due
to the confusion with the others category containing many
scattered clusters such as humans and bushes. In some area, the
parallel wires have a high density and lead to some confusion
with the horizontal planes. The overall precision for point
labeling of all categories is 93.0%.

Despite the high dimensionality of the voxel representation
and 3D CNN, our system is highly efficient in terms of both
space and time. The training process takes around 2 hours on
a PC with NVIDIA GeForce GTX 980M GPU. For one trunk
of data (100m×100m) and with voxel size of 0.3m×0.3m×
0.3m, the voxelization process takes less than 5 minutes, and
the classification step takes less than 3 minutes.

VIII. CONCLUSION AND FUTURE WORK

We propose a 3D point cloud labeling system based on
fully 3D Convolutional Neural Network. Our approach does
not need prior knowledge for segmentation. In the future,
there are a few directions in which we can explore. First,
the current labels can be used as input to the network again,
which resembles the idea of recursive neural networks. Also,
the multi-resolution version of the network might work even
better for objects of large scale variance.

REFERENCES

[1] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena, “Semantic
labeling of 3d point clouds for indoor scenes,” in Advances in neural
information processing systems, 2011, pp. 244–252. 1

[2] S. Song and J. Xiao, “Sliding shapes for 3d object detection in depth
images,” in Computer Vision–ECCV 2014. Springer, 2014, pp. 634–
651. 1, 2

[3] H. Yokoyama, H. Date, S. Kanai, and H. Takeda, “Detection and
classification of pole-like objects from mobile laser scanning data of
urban environments,” International Journal of CAD/CAM, vol. 13, no. 2,
2013. 1, 2

[4] D. Habermann, A. Hata, D. Wolf, and F. S. Osorio, “Artificial neural nets
object recognition for 3d point clouds,” in Intelligent Systems (BRACIS),
2013 Brazilian Conference on. IEEE, 2013, pp. 101–106. 1

[5] P. H. Pinheiro and R. Collobert, “Recurrent convolutional neural net-
works for scene parsing,” arXiv preprint arXiv:1306.2795, 2013. 1

[6] J. Demantke, C. Mallet, N. David, and B. Vallet, “Dimensionality based
scale selection in 3d lidar point clouds,” The International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 38, no. Part 5, p. W12, 2011. 2

[7] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for
human action recognition,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 35, no. 1, pp. 221–231, 2013. 2

[8] D. Maturana and S. Scherer, “3d convolutional neural networks for
landing zone detection from lidar,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on. IEEE, 2015, pp. 3471–3478.
2

[9] D. Prokhorov, “A convolutional learning system for object classification
in 3-d lidar data,” Neural Networks, IEEE Transactions on, vol. 21,
no. 5, pp. 858–863, 2010. 2

[10] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1912–1920. 2

[11] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015,
pp. 922–928. 2

[12] S. Song and J. Xiao, “Deep sliding shapes for amodal 3d object detection
in rgb-d images,” arXiv preprint arXiv:1511.02300, 2015. 2

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998. 3

[14] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. De-
lalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron
et al., “Theano: Deep learning on gpus with python,” in NIPS 2011,
BigLearning Workshop, Granada, Spain, 2011. 4



Fig. 6. Labeling result for a large urban area through the 3D-CNN.

(a) (b)

(c) (d)

Fig. 7. Close-ups of the labeling result. (a) The ground planes, buildings, trees and cars. (b) The street view with various poles including light poles, sign
poles, utility poles and flag poles. (c) The street view with utility poles and wires. (d) The parking lot scene.


